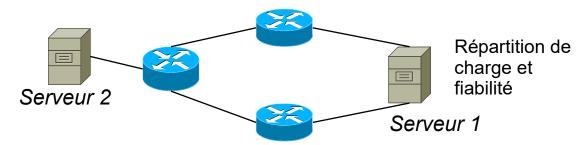
- Métrologie : science de la mesure au sens le plus large. Mesure : opération qui consiste à donner une valeur à une observation.
- Métrologie réseau : mesure des performances du réseau :
  - Instrumenter le réseau et mesurer des caractéristiques du réseau
  - Analyser les mesures collectées
  - Repérer des comportements normaux/anormaux
- Supervision « classique/historique » (monitoring) informe en temps réel de l'état des équipements, par contre ne permet pas de savoir si le réseau assure parfaitement le service pour lequel il a été conçu.
- Métrologie : notion de qualité de service / Supervision : avant tout disponibilité.
- Monitoring : lancer un nombre élevé de vérifications sur les hôtes distants. La métrologie doit conserver un nombre plus restreints d'éléments mais sur une durée assez longue.


## Métrologie et qualité de service

- Réseau est partagé par différentes applications qui ont des besoins (latence, variation de délai, débit) contradictoires.
- Certaines applications sont « nativement » respectueuses des autres flux d'autres non. Citez lesquelles et pourquoi?

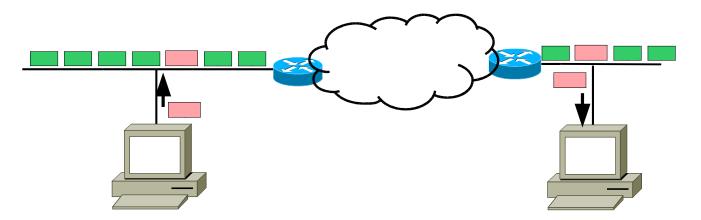
- Des mesures (passives et actives) permettent de vérifier le bon fonctionnement du réseau et le respect du niveau de service.
- Comment diagnostiquer un problème de performances qui se caractérise par une dégradation de service sans coupure ?

# Importance de la métrologie dans les réseaux actuels

Algorithme de répartition de charges (ECMP) type round robin ==> nécessite parfois un ré-ordonnancement des paquets sur le serveur ==> consomme du temps CPU.



- Comment savoir où passent les paquets d'une connexion ?
- Sécurité : attaque DoS, DDOS, détection de signaux « faibles », évasion de données.
- Complexification des protocoles de transport (IPSec, vpn tls).
- Forte augmentation du trafic UDP.
- Externalisation des services : Cloud (laaS, PaaS, SaaS), Centrex IP.
- Effacement de la frontière entre LAN, MAN et WAN.
  Pourtant ce n'est techniquement pas la même chose :
  - Latence et nombre d'équipements traversés (files d'attentes)
  - Partage de l'infrastructure
  - Le WAN n'est pas supervisé par l'entreprise.


### Les outils pour la métrologie

#### Métrologie passive :

- Capture et analyse du trafic généré par des utilisateurs.
- Permet d'avoir une bonne vision du trafic utilisateurs (pic de trafic dans la journée ou dans la nuit lors des sauvegardes, applications générant le plus de trafic ....).
- Par contre certaines caractéristiques sont inconnues :
  - · date d'émission du paquet,
  - nombre de saut franchis par un paquet,
  - ce paquet correspond-t-il à une retransmission ?
- Impossible de vérifier (avant mais aussi en temps réel) si un service peut être rendu.
- Outils utilisés : SNMP, Wireshark, Netflow,

#### Métrologie active :

 générer du trafic (dont on connaît forcément la nature) et étudier le comportement (pertes, délai, débit) de ce trafic lorsqu'il traverse le réseau.



Machine 1 : génère des paquets « sonde » et les envoie dans le réseau

Machine 2 : (sonde ) récupère les paquets générés par machine 1 et les analyse (durée de traversée du réseau, nombre de bits faux ...)

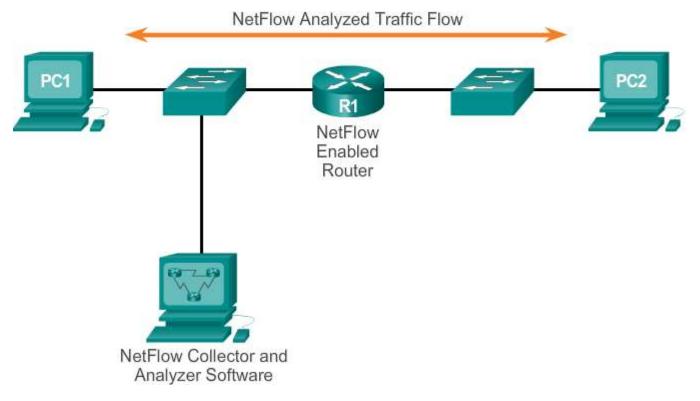
# Métrologie – mesure active

#### Possibilité ainsi de :

- Vérifier le bon fonctionnement du réseau (pertes, délai, bande passante ...),
- Vérifier aux extrémités qu'un service fonctionne correctement (qualité de la voix dans une application ToIP, temps de réponse d'une base de données ...)
- Reproduire un problème et mieux le diagnostiquer

|               | Mesures actives                                | Mesures passives                                   |
|---------------|------------------------------------------------|----------------------------------------------------|
| Principe      | Générer du trafic dans le réseau pour en       | Obtenir des informations sur le trafic utilisateur |
|               | observer les caractéristiques : délai, taux de | en un ou plusieurs points du réseau.               |
|               | pertes, gigue                                  |                                                    |
| Avantages     | On obtient des métriques (débit, latence)      | Avoir une bonne vision de l'utilisation du réseau  |
|               | sur un service que l'on utilise ou que l'on    | sans être trop intrusif.                           |
|               | veut garantir.                                 | Assez facile à mettre en place (SNMP).             |
| Inconvénients | Perturbations possibles introduites par le     | Ne permet pas de déterminer si un service peut     |
|               | trafic de mesure. Nécessite des outils         | être garanti.                                      |
|               | spécifiques.                                   | *****                                              |
| Exemples      | Garantir l'utilisation d'applications temps    | Détecter des goulots d'étranglements, de           |
| d'utilisation | réel : ToIP, visioconférence.                  | dépassement de débit, d'attaques DOS, de virus     |
|               | Tests de fonctionnalités de QoS déployées.     |                                                    |
| Outils        | ping, iperf, netperf, owamp, curl              | SNMP, Netflow, Wireshark                           |

# Métrologie : outils de mesures passives


### Outils de mesures passives

#### > SNMP

 Quels objets sont intéressants pour la métrologie réseau ?

#### Netflow - sflow

- Netflow : à l'origine développé par Cisco s'appuyant sur la notion de flux pour effectuer ses mesures ==> analyse de trafic.
- Export d'informations vers un collecteur. Mécanisme Push contrairement à SNMP.
- La version 9 est standardisée : RFC 3954.



# Métrologie : outils de mesures passives

- L'agent Netflow (dans le routeur) maintient en mémoire une table des flux actifs (le cache netflow) à un instant t et compte le nombre de paquets et d'octets reçus pour chaque flux.
- Traditionally, an IP Flow is based on a set of 5 and up to 7 IP packet attributes. IP Packet attributes used by NetFlow:
  - IP source address
  - IP destination address
  - Source port
  - Destination port
  - Layer 3 protocol type
  - Class of Service (DSCP)
  - Router or switch interface
- All packets with the same source/destination IP address, source/destination ports, protocol interface and class of service are grouped into a flow and then packets and bytes are tallied.
- Lorsqu'un flux a expiré, il est
  - supprimé du cache Netflow
  - exporté vers une machine de collecte au moyen de messages Netflow

# Outils de mesures passives - Netflow

- Rules for expiring NetFlow cache entries include:
  - Flows which have been idle for a specified time are expired and removed from the cache.
  - Long lived flows are expired and removed from the cache. (Flows are not allowed to live more than 30 minutes by default; the underlying packet conversation remains undisturbed.)
  - As the cache becomes full a number of heuristics are applied to aggressively age groups of flows simultaneously.
  - TCP connections which have reached the end of byte stream (FIN) or which have been reset (RST) are expired with small delay.

NetFlow Enabled Device

Traffic

#### Inspect Packet

Source IP address

Destination IP address

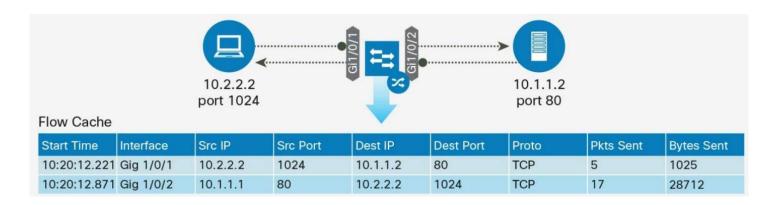
Source port

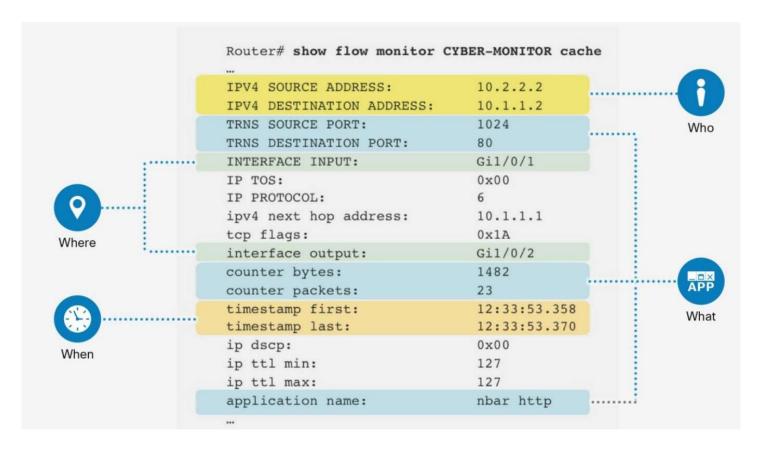
Destination port

Layer 3 protocol

TOS byte (DSCP)

Input Interface


#### NetFlow Cache


| Flow Information | Packet | Bytes/packet |
|------------------|--------|--------------|
| Address, ports   | 11000  | 1528         |
|                  |        |              |

Create a flow from the packet attributes

# Outils de mesures passives - Netflow

### Exemples de cache Netflow





# Outils de mesures passives - Netflow

#### Différences Netflow – sflow :

- Netflow: le collecteur ne reçoit que les informations générales sur le flux (metadata). Tous les paquets traversant l'équipement peuvent être analysés ou on analyse par exemple qu'un paquet sur 10.
- Sflow (sampled flow): l'équipement prélève aléatoirement des trames circulant et les renvoie à un collecteur dans un paquet UDP.
  - C'est le collecteur qui analyse par la suite les trames : retrouve IP-sce, IP-Dest, Ports... et compte les octets / paquets.
  - A 1 Gbit/S le rythme d'échantillonage est de une trame toutes les 1000 trames.

# Métrologie active - Métrique réseau

## Qu'est ce qu'une métrique ?

- Caractéristique du comportement d'un réseau.
- Elle sert à qualifier une situation (normale /anormale)
- Elle est exprimée dans une unité standard et permet de faire des comparaisons :
  - dans le temps :
    - Après un changement de configurations
    - Après une panne, un changement de route
  - dans l'espace
    - Entre un poste et deux autres postes (comparaison des situations)
    - Entre deux réseaux dont les topologies sont proches mais les performances différentes
- Les métriques sont utiles :
  - pour les fournisseurs d'accès
  - pour les utilisateurs
  - afin qu'ils comprennent les performances qu'ils fournissent ou qu'ils perçoivent.
- Les métriques IPPM IP Performance Metrics (RFC 2330, RFC 4148, RFC 6248...). Cf IP performance metrics working group.
  - Connectivity (ping)
  - One-way delay
  - One-way Packet Loss
  - Delay Variation (Gigue-Jitter)
  - Bulk Transfer Capacity (Bande passante disponible à un moment donné)

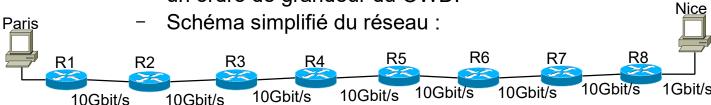
- ...

# Métrologie active - Métrique IPPM

### Métrique IPPM Wire Time

- Inadéquat que les mesures soient faites au niveau du système ou au niveau applicatif :
  - interruptions matérielles introduisent des délais inacceptables
  - gestion du temps partagé entre les applications
- RFC recommande que la mesure du temps de réception ou d'émission d'un paquet soit réalisée le « plus près possible du fil ».

#### Mesure du délai


- One Way Delay.
  - Quel autre terme est généralement utilisé pour le OWD ?
  - Expliquer une méthode permettant de mesurer le OWD.
     Justifier qu'il est plus simple de mesurer le RTT.
  - Quelle est la difficulté associée à la mesure du OWD ?
  - Par quels moyens techniques cette difficulté peut-elle être gérée ?
  - Pourquoi mesurer OWD et ne pas se contenter de RTT ?

# Métrologie active- Métrique IPPM - OWD

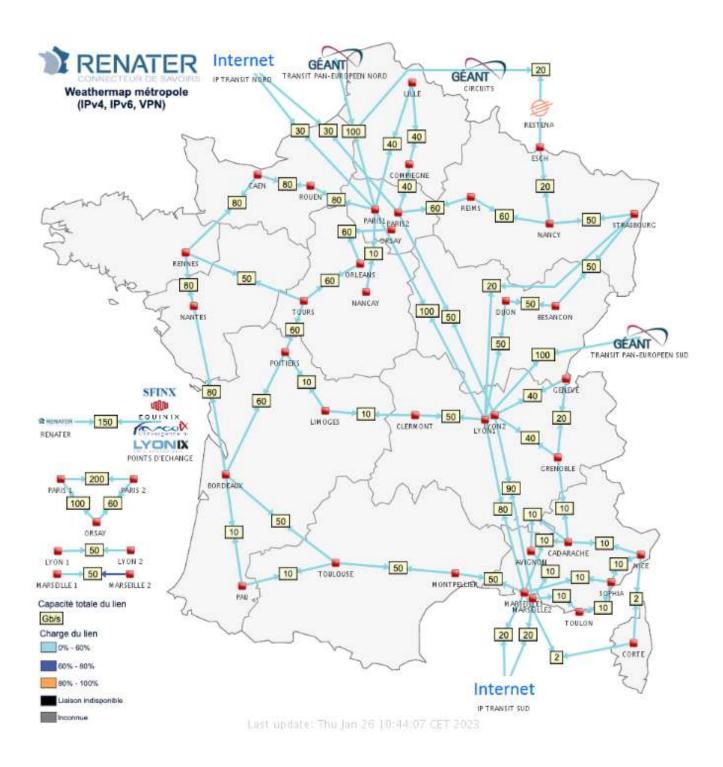
- Composition du OWD sur une liaison point à point :
  - OWD =  $\Sigma$  (sur chaque lien)
    - Temps de propagation (la plupart du temps dans la fibre)
    - Temps d'insertion d'un paquet sur une ligne physique (Serialization Delay)
    - Temps de traitement dans les organes intermédiaires (Queuing delay).
  - On considère deux machines reliées par une fibre optique de 200km (vitesse de propagation 0,7c) à 1Gbit/s. Calculer les temps de propagation et d'insertion et le OWD.

#### Exercice

 On considère une liaison Paris → Nice, on souhaite avoir un ordre de grandeur du OWD.



- Entre Paris et Nice au total 1200 km de fibre. On considère : vitesse de propagation dans une fibre : environ 0,66c.
  - Calculer le temps de propagation total dans la fibre.
- On considère que R1 et R8 fonctionne en mode store and Forward. R2 à R7 fonctionnent en mode Cut through.
  - Calculer le temps d'insertion (serialization delay) pour une trame de 1450 octets, pour A, R1 et R8.
- On mesure un OWD de 8,97 ms.
  - Sachant que l'on a 8 routeurs, calculer le queuing delay moyen par routeur.


Que peut-on déduire si cette valeur de OWD varie ?

# Métrologie active - Métriques IPPM - Suite

- Autres métriques IPPM :
  - One Way Packet Loss
  - Connectivity
  - Delay variation (Gigue Jitter). Pour applications temps réel : voip , visio conf.
- Deux types de mesure :
  - Mesures au sein du réseau ==> superviser la santé du réseau
  - Mesures de bout en bout ==> Vision utilisateur final, supervision des applications.
- Recherche d'outils sur Internet (mots clés à utiliser) :
  - Network monitoring tools open source
  - Speed network measurement
  - bandwidth speed test tools open source
  - benchmarking network monitoring throughput
  - One way delay
- A One-way Active Measurement Protocol (OWAMP).
  - https://github.com/perfsonar/owamp

# Mesures actives – outils et méthodes

#### **Exemple Weathermap Renater**



# Mesures actives – Outils bout en bout

#### Mesures de bout en bout et QoE

- QoE : Quality of Experience :
  - mesurer le ressenti utilisateur
  - établir des références
  - diagnostiquer un problème ou surveiller des applications.
- Outils dans les OS pour mesurer de bout en bout : ping, traceroute
  - Ces outils présentent des limites ==> attention à l'interprétation des résultats :
    - Les chemins aller et retour peuvent être différents.
    - Paquets ICMP pas traités dans les routeurs comme les autres paquets (souvent traités en CPU)
- Préférer l'utilisation d'outils simulant des requêtes applicatives :
  - les outils se comportent en tant que client et interrogent les applications que l'on veut superviser
  - Exemple:
    - curl -o /dev/null -s -w 'Total: %{time\_total}s\n' https://www.univ-smb.Fr/lorawan
    - disponibilité de l'application
  - temps de réponse applicatif
- Pour de la QoE on instrumente directement l'application de l'utilisateur (téléphone, client lourd, client web).
- Les mesures doivent absolument être corrélées à des mesures réseau pour pouvoir différencier des problèmes réseaux de problèmes applicatifs.

# Résolution des problèmes de performance de bout en bout

### Qu'est ce qu'un problème de performance ?

- Problème de performance : dégradation sans coupure du service
  - problème généralement non permanent : des fois ça fonctionne, des fois ça ne fonctionne pas. Exemples :
    - voix saccadée
    - temps de réponse d'un serveur plus élevé que d'habitude

#### Difficultés :

- les dégradations perçues au niveau applicatif, donc par l'utilisateur final.
- c'est souvent lui qui signale les problèmes de performances.
- Déploiement d'outils de QoE
- Nécessité d'avoir mis en place des outils pour :
  - Comparer des situations
  - Être proactif : anticiper sur le problème ou à minima déceler les problèmes de performances avant l'utilisateur final
  - Faciliter la résolution du problème
- Pendant la résolution du problème, les utilisateurs doivent être informés que le service est dégradé

# Résolution des problèmes de performance de bout en bout

# Démarche pour résoudre un problème de performance

- Collecte d'informations :
  - Auprès de l'utilisateur final
    - Attention : informations à prendre au conditionnel
    - Les performances perçues par l'utilisateur sont différentes des performances réseau: performances perçues par l'utilisateur dépendent de l'application.
    - Utilisation de métriques applicative ex VoIP: MOS (Mean Opinion Score)
  - Sur son propre réseau
  - Informations mises à disposition par les autres réseaux
  - Vérifier qu'il s'agit d'un problème réseau, d'un problème applicatif, ou autres : Base de données, CPU/mémoire de la machine, etc
- Investigation/mesures/tests :
  - Faire des tests de bout en bout avec les machines impliquées
  - Faire des tests à partir de systèmes dédiés
- Vérification des informations aux extrémités :
  - Le type d'application/logiciel et son mode de fonctionnement
  - Les systèmes d'exploitation (version, noyau, etc.)
  - Cartes réseau, processeur, disque dur, mémoire vive

# Haute disponibilité - Introduction

#### Introduction

- Définition : Disponibilité :
  - Probabilité qu'un service fonctionne lorsque l'on en a besoin.
  - Pourcentage de temps pendant lequel un service est accessible.
  - Sous forme d'équation : MTBF= MTTF + MTTR
    - Mean Time Between Failure
    - Mean Time To Failure
    - Mean Time To Repair
- Règle des 9 :
  - 2 neuf : 99 % → arrêt du service ~ 4 jours par an
  - 3 neuf : 99,9 % → arrêt du service ~ 9 heures par an
  - 4 neuf : 99,99 % → arrêt du service ~ 1 heure par an
  - 5 neuf : 99,999 % → arrêt du service ~ 5 minutes par an
- Nécessité de la haute disponibilité :
  - Dépendance par rapport aux services ==> Impacts en cas d'indisponibilité
  - Palier les arrêts planifiés et non planifiés
  - Pas de système 100% fiable
- Complexité (et donc les coûts) dépendront des objectifs S'assurer de ses besoins réels.

### Le maillon faible (Single Point Of Failure)

- Définir la chaîne complexe assurant le service
- Identifier les «points durs» (SPOF)
- Disponibilité du service = disponibilité du SPOF le plus faible
   COURS ETRS813 TRI