

SPEC902 a – Exercices n°1, year 2024

1) Adsorption, application of the BET method to measure the specific surface area

The adsorption (and desorption) isotherm for nitrogen (N₂) from an activated carbon at 77 K is shown in Figure 1 (adsorbed volume in cm^3 STP/g versus P/P₀ relative pressure).

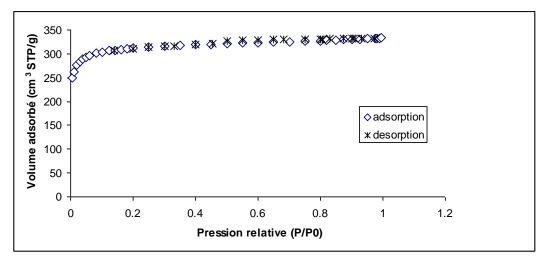


Figure 1

- What type of isotherm is used?
- Is it physisorption or chemisorption?
- What information can we obtain about activated carbon from this isotherm?

- Assuming that liquid nitrogen occupies the pore volume of the material (at saturation vapour pressure). Determine the total pore volume of the activated carbon.

Table 1 gives the volume of nitrogen adsorbed (in cm³ STP/g) as a function of the relative pressure P/P_0 at 77 K. Deduce the B.E.T. surface area (in m²/g) of the activated carbon obtained by adsorption of N₂.

P/P ₀	V				
	(cm ³ STP /g)				
0.01005406	262.759287				
0.02041868	276.668179				
0.02903427	283.528682				
0.03829813	288.656001				
0.04947417	293.130085				

Tableau 1

Table2 gives the volume of carbon dioxide adsorbed (in cm³ STP/g) as a function of the relative pressure P/P_0 at 273 K. Deduce the B.E.T. surface area (in m²/g) of the activated carbon obtained by adsorption of CO₂.

P/P ₀	n		
	(mmol/g)		
0.01015983	4.08453952		
0.02017185	6.02879156		
0.02514073	6.79071045		
0.03000805	7.46800456		
0.03491634	8.07566693		

Tableau 2

Why are the two B.E.T. surfaces obtained by adsorption of N2 and CO2 different?

Données :

- Density of liquid nitrogen at 77 K : 0,807 g.cm⁻³
- Cross-sectional area of the N_2 molecule : $0.162.10^{\text{-}18}\ \text{m}^2$
- Cross-sectional area of the CO_2 molecule: $0.210.10^{-18} \text{ m}^2$
- Avogadro number : 6.02 10²³ molecules/mole
- $M(N) = 14 \text{ g.mol}^{-1}$

2) Isotherm of Langmuir

Table 3 gives the volume (STP - at standard conditions of temperature and pressure) of nitrogen adsorbed on the mica surface at 90 K. The adsorption isotherm shows that a monolayer is formed. Check that Langmuir's law is satisfied. Determine the specific surface area of the mica (in m^2/g of mica).

P (atm)	2.8	3.4	4.0	6.0	9.4	17.1	23.5
V STP (10 ⁻⁶ m ³ /g)	12.0	13.4	15.1	17.0	23.9	28.2	30.8
Table 2							

T	ab	le	3

Data :

- Cross-sectional area of the N_2 molecule : $0.162.10^{\text{-}18}\,\text{m}^2$
- Molar volume for perfect gases under STP conditions : 22414 cm³.mol⁻¹
- Avogadro number : 6,02 10²³ molecules/mole