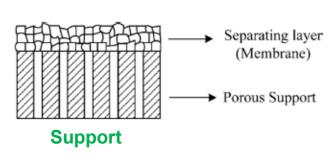


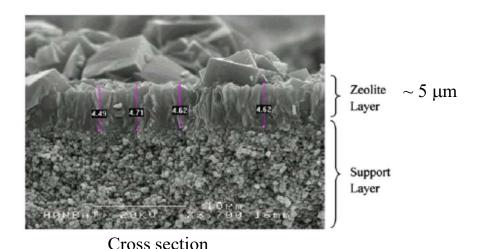

# Zeolite membranes




## **\$** development of selective zeolite membranes

Zeolite membrane specifications ⇒ pure phases

⇒ particles of small sizes


⇒ uniform size distribution of particles

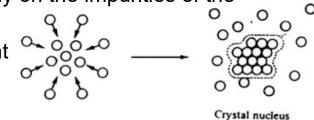
Most zeolite membranes are supported to ↗ mechanical strength



 $Al_2O_3$  tube,  $\varnothing$  pores 5 - 200 nm

Stainless steel,  $\varnothing$  pores 0.5 – 4  $\mu m$ 

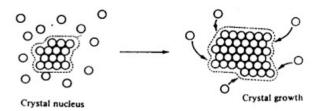


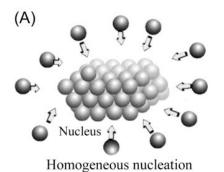

#### → synthesis control difficult

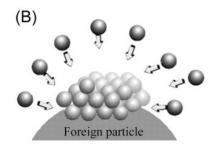
L, the presence of impurities → the selectivity and the separative properties

L, an heterogeneous crystallite size creates multi scale porosity (⇒ favors leaks)

#### Membranes preparation : nucleation - growth mechanism


- Control of the nucleation (germination) step
   germination = formation of crystal nuclei = heterogeneous process
  - ⇒ The nuclei of the future crystalline phase form preferentially on the impurities of the system
  - ⇒ Support = impurity ⇒ the choice of the support is important





· Control of the growth step

search for a continuous, homogeneous film

⇒ control of the deposition rate of reactive species on the substrate, T, H<sub>2</sub>O content, [reagents]



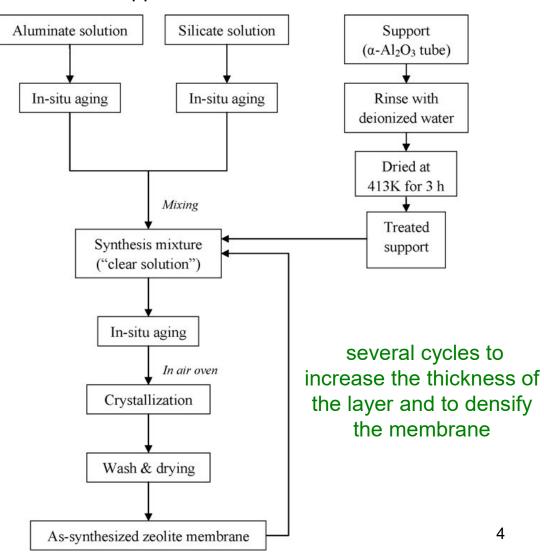




Heterogeneous nucleation

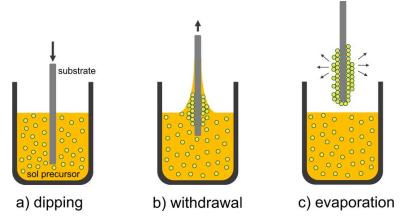
- → The presence of impurities 

  the selectivity and the separation properties
- → A heterogeneous crystallite size creates meso and macroporosity


## **♦ Classical hydrothermal synthesis route**

⇒ hydrothermal synthesis in the presence of the support

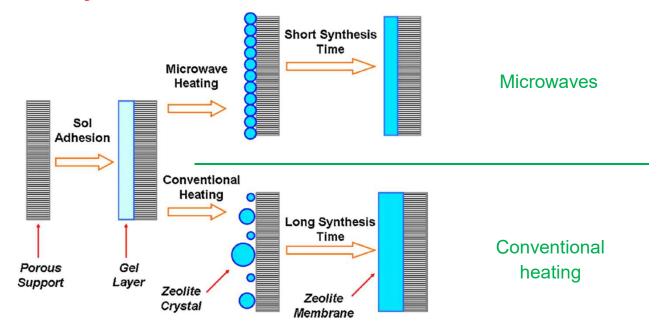



#### Disadvantages

- Low density membranes
- Long time synthesis (days)
- Frequent formation of impurities (nucleation step difficult to control)
- ⇒ reduced separation properties
- Crystalite size control difficult



# **♦** Secondary growth synthesis of the material

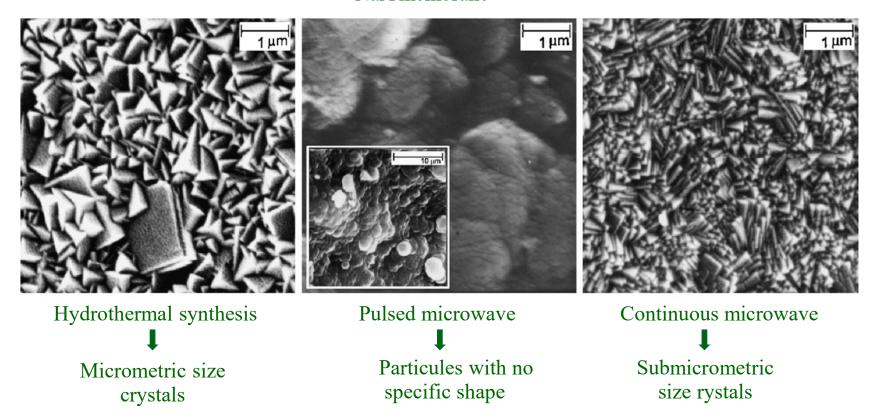

- 1) Deposition of zeolite seeds on the support prior to hydrothermal synthesis
- $\Rightarrow$  Deposition by dip-coating  $\rightarrow$  a) Immersion of the substrate in a solution containing seeds
  - $\rightarrow$  b) Formation of a continuous film on the surface of the substrate
  - → c) Evaporation of the solvent: formation of crystal nuclei



- 2) Hydrothermal synthesis on the support coated by the crystal nuclei
  - ⇒ Better control of the membrane microstructure (crystal thickness and orientation)
  - ⇒ Better reproducibility

Control of the nucleation step = key step

## **♦ Microwave assisted synthesis**




Advantages microwave synthesis vs conventional heating

- Less time consuming (~ 10 min for crystallization)  $\Rightarrow$  no conduction or convection: direct transfer of microwave energy to the core of the material
- Formation of smaller crystallites which are better stacked on the surface of the support, because of a rapid crystallization  $\Rightarrow$  presence of fewer defects ( $\searrow$  meso/macroporosity)
- Narrower pore size distribution ⇒ the thickness of the layer is well controlled
- High purity

## **♦ Microwave assisted synthesis vs conventional heating**

#### NaA membrane



- → characterisation of the porosity by gas permeation (presence of defects ?)
- → Measure of BET surface area (S<sub>BET</sub>) : characterisation of the microporosity

## Efficiency criteria for membranes

#### **⇒** Selectivity

It is expressed by a parameter called « retention » or by the « Separation Factor » :  $\alpha_{A/B}$  (SF)

$$\alpha_{A/B} = \frac{\left(\frac{x_A}{x_B}\right)}{\left(\frac{x_A}{x_B}\right)}$$
 permeate  $x_A, x_B : molar ratios$ 

⇒ The Separation Factor must be as high as possible

#### ⇒ Productivity

It is expressed by a parameter called « flux »

It is the volume of fluid separated, per unit of membrane surface, per unit of time

$$\rightarrow$$
 in L/m<sup>2</sup>/h

- ⇒ The Productivity must be as high as possible
  - $\Rightarrow$  A good compromise must be found between the two factors

### Pervaporation (= pervaporative separation)

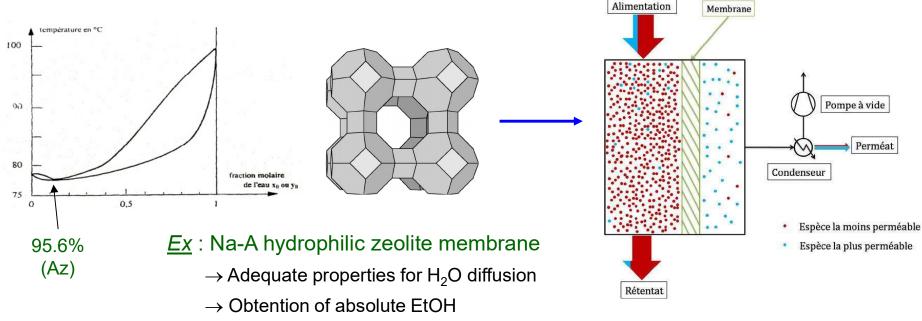
= process for the separation of liquid mixtures by partial vaporization through a membrane



- A pressure difference ( $\triangle P$ ) is applied between both sides of the membrane
  - → the phase able to pass through the membrane (size match) is vaporised, diffuses through the membrane and is recondensed into liquid phase ⇒ permeate
  - → the mismatched phase remains in liquid form upstream
  - ⇒ transfer possible due to the difference in vapour pressure of the compounds

Ideal material: ⇒ good selectivity ⇒ high productivity (L/m²/h)

### **♦ Pervaporation : separation of water – ethanol mixtures**


 $\rightarrow$  Flux ~ 2.3 kg/m<sup>2</sup>/h

- Used in bio-ethanol production units
- Bioethanol production (by fermentation of sugars/starch) produces large amounts of aqueous ethanol solutions
- To obtain absolute ethanol (99.9%): → azeotropic distillation (Az = 95.6%)

 $\rightarrow$  drying

But: long/difficult process (especially as constituents have close volatilities)

⇒ Possibility of separation by pervaporation on hydrophilic membranes

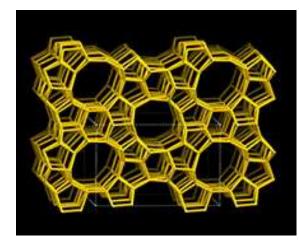


#### **♥ Pervaporation membranes at industrial scale**

#### Advantages

- Low energy consumption compared to distillation (only the extracted liquid fraction is evaporated: 10 to 150 kWh/m³)
- Flexibility and compactness of the plant (can be easily adjusted)
- High purity of the obtained products and absence of polluting emissions
- Easy to operate and to control

#### Disadvantages


- The investment cost is high compared to other technologies (distillation, molecular sieve adsorption)
- The choice of industrial membranes is insufficient : does not cover all types of separations
- Many preliminary tests must be carried out before sizing
- Membranes are very sensitive to variations in composition of the liquid

#### ♦ Acetic acid / water mixture on a Sn-substituted MFI-type zeolite

- Polymeric hydrophobic membranes present poor performances for CH<sub>3</sub>COOH/H<sub>2</sub>O separation
  - $\rightarrow$  Separation Factor  $\alpha \sim 2$
  - $\rightarrow$  flux  $< 0.15 \text{ kg/m}^2/\text{h}$

$$\alpha_{\text{A/B}} = \frac{\left(\frac{x_A}{x_B}\right)}{\left(\frac{x_A}{x_B}\right)} \text{ permeate}$$

- Aim of the study : comparison of the separation properties of:
  - $\rightarrow$  a silicalite (MFI, Si/Al =  $\infty$ )
  - $\rightarrow$  a Sn-substituted MFI

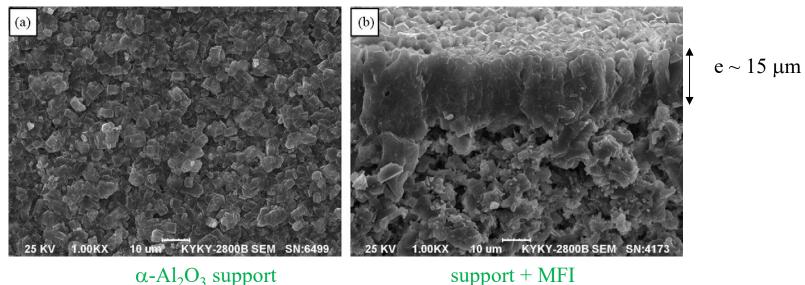


MFI viewed along [010]

 $\Rightarrow$  Elaboration of MFI membranes supported on  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> tubes

 $Hydrothermal\ synthesis\ route: TEOS + SnCl_4, \\ 5H_2O + NaOH + TPABr$ 

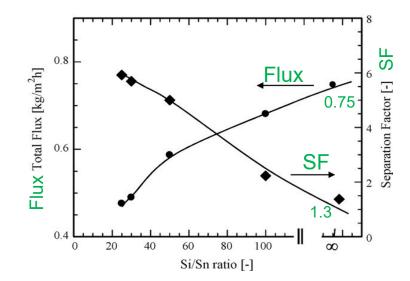
$$Si/Sn = \infty$$
, 100, 50, 30 and 25


$$H_3C$$
 $N^+$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 

Water adsorption tests ⇒ the substitution of Si by Sn led to an increase in hydrophobicity

#### **♦ Acetic acid / water mixture on a Sn-substituted MFI-type zeolite**

Characterization of Si/Sn substitution:


- → FTIR : shift of the Sn-O vibration bands compared to Si-O ones
- → XRD : increase of the lattice parameters after substitution
- → SEM : high density of crystals, no crackings

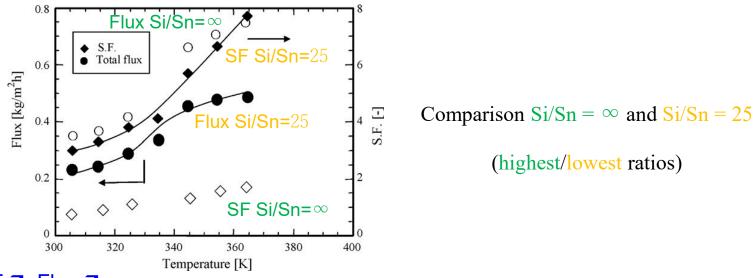


#### SAcetic acid / water mixture on a Sn-substituted MFI-type zeolite

• For silicalite (Si/Al =  $\infty$ ) : SF  $\sim 1.3$ , flux  $\sim 0.75$  kg/m<sup>2</sup>/h

[CH<sub>3</sub>COOH]
5 wt.%
70°C

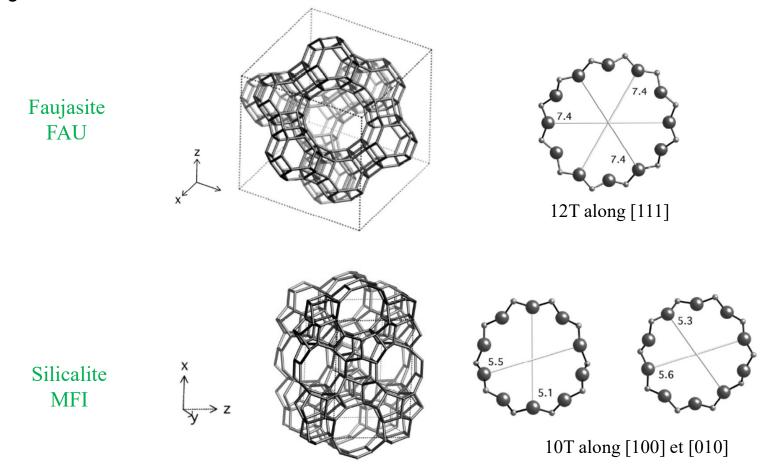



$$\mathrm{SF} = \alpha_{\mathrm{A/B}} = \ \frac{\left(\frac{x_A}{x_B}\right)}{\left(\frac{x_A}{x_B}\right)} \ \mathrm{permeate}$$

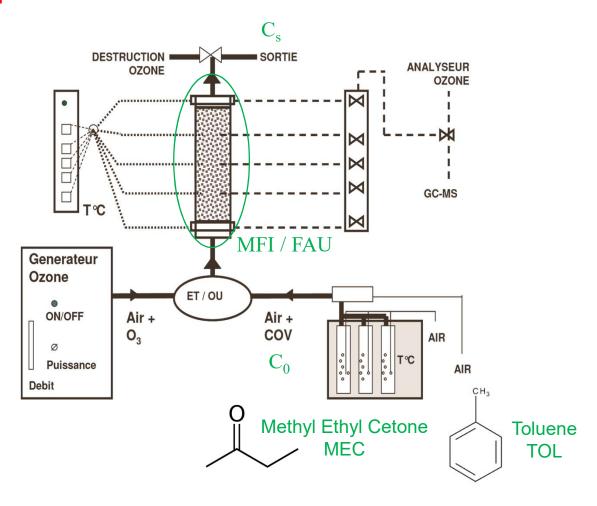
- When Si/Sn →, the SF →
  - ⇒ the increase in Sn content leads to a better separation
  - ⇒ the increase in Sn content increases hydrophobicity
  - $\Rightarrow$  the zeolite does not retain H<sub>2</sub>O
  - $\Rightarrow$  H<sub>2</sub>O (permeate) is better separated from the acid

- - ⇒ the increase in Sn content increases hydrophobicity
  - $\Rightarrow$  the zeolite has a low affinity for H<sub>2</sub>O
  - $\Rightarrow$  H<sub>2</sub>O passes through it slowly
  - $\Rightarrow$  The separation kinetic is slow

When Si/Sn \(\sigma\), the separation is better but the kinetic of separation is slower: compromise needed

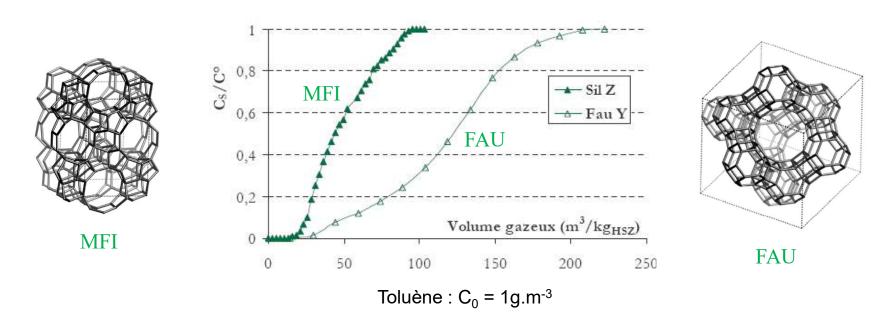

♦ Acetic acid / water mixture on a Sn-substituted MFI-type zeolite : effect of T




- When T 7, Flux 7
  - ⇒ The diffusion rates of H<sub>2</sub>O and CH<sub>3</sub>COOH increase with the increase in T
- When T 7, SF 7
  - $\Rightarrow$  The diffusion rate of H<sub>2</sub>O increases more then the one of CH<sub>3</sub>COOH
- $\Rightarrow$  for Si/Sn = 25 (25/75 wt.% CH<sub>3</sub>COOH/H<sub>2</sub>O), the Sn-substituted MFI has a better performance than the silicalite (Si/Sn =  $\infty$ ) and also than classical polymeric membranes
- ⇒ However: צצ in performance as [CH<sub>3</sub>COOH] 7, which limits the applications

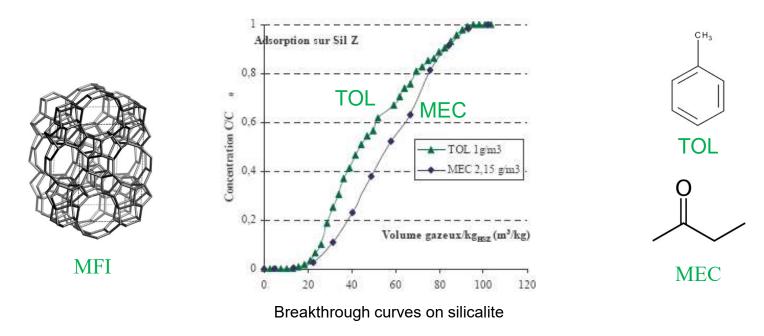
### ♥ VOC adsorption and in-situ regeneration of zeolites by simultaneous O<sub>3</sub> adsorption

- Comparison of the adsorption properties of a faujasite (FAU) and a silicalite (MFI)
- Adsorption of toluene (1 g.cm<sup>-3</sup>) and methyl ethyl cetone (2.15 g.cm<sup>-3</sup>) present in a gaseous effluent




#### ♥ Experimental bench




- ⇒ Saturation of the zeolites by the gaseous effluent
- $\Rightarrow$  Study of the breakthrough curves :  $C_s/C_0 = f(Volume of gas treated per unit mass of adsorbent)$

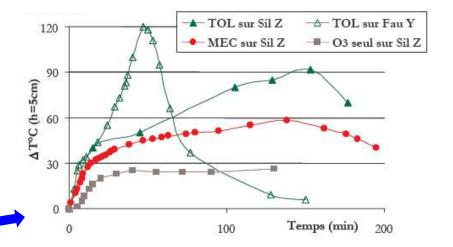
#### ♥ Breakthrough curves of toluene ("courbes de percée")



- ⇒ Both zeolites present different adsorption properties
  - Silicalite adsorbs toluene more rapidly (breakthrough more vertical)
  - Silicalite is more quickly saturated (V  $_{gas~at~saturation} \sim 100~m^3.kg^{\text{-}1}~vs~225~m^3.kg^{\text{-}1}$  )
  - Qads (FAU) > Qads (MFI)
- ⇒ The cavity of FAU is more suitable for the adsorption of TOL than the channels of MFI

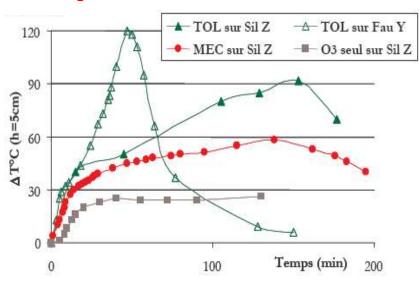
#### ♥ Breakthrough curves of MEC and TOL on silicalite




#### Silicalite adsorbs more MEC:

- → The saturation is obtained for a similar gas volume but for a more concentrated effluent (1 g.m<sup>-3</sup> for TOL vs 2.15 g.m<sup>-3</sup> for MEC)
  - ⇒ The channels of MFI are more suitable for the adsorption de MEC than the cavities of FAU

#### ♥ Zeolites regeneration


- $\rightarrow$  a dry air/O<sub>3</sub> (18 g.m<sup>-3</sup>) flow is passed through the saturated adsorbent
- $\rightarrow$  Measurement of  $C_{\textsc{O}_3}$  et  $C_{\textsc{VOC}}$  at the outlet of the column
- $\forall$  zeolite  $\forall$  VOC  $\rightarrow$  highly exothermic reaction  $\rightarrow$  formation of by-products : organic molecules + H<sub>2</sub>O + CO<sub>2</sub>  $\rightarrow$  no trace of O<sub>3</sub> detected at the outlet of the column oxidation on the zeolite surfaces

- → the more exothermic the reaction is
- $\rightarrow$  the more T 7
- → the more efficient the oxidation is



Concentration profiles inside the bed during ozonation of pristine and VOC-saturated zeolites

#### ♥ Zeolites regeneration



Concentration profile inside the bed during ozonation of pristine and VOC-saturated zeolites

- For the oxidation of TOL on SIL (▲) and FAU (△) → different thermal effect
   → higher temperature increase for FAU
  - $\Rightarrow \varnothing_{pores}$  FAU (~ 13 Å) >  $\varnothing_{pores}$  MFI (~ 5-6 Å): this favors the diffusion of reactants <u>and products</u>  $\Rightarrow V_{pores}$  FAU >  $V_{pores}$  MFI  $\Rightarrow$  FAU can adsorb a higher amount of TOL
- For the oxidation on silicalite (MFI) → lower T increase for MEC (●) than for TOL (▲)
   → incomplete oxidation and formation of stable by-products
- Detected by-products → TOL: oxalic, acetic, formic acids, formique and acetaldehyde → MEC: acetic acid, butan-2,3-dione

#### ♥ Reaction mechanisms (TOL)

#### 1st hypothesis – classical oxido-reduction mechanism

- → Adsorption of toluene onto the zeolite surface
- $\rightarrow$  O<sub>3</sub> = strong oxidizing gas  $\Rightarrow$  polluant's degradation by oxidation

#### 2<sup>nd</sup> hypothesis- Radical mechanism

 $\rightarrow$  Adsorption of O<sub>3</sub> onto the Lewis acid sites of the surface (s : aluminium)

$$O_3 + S = SO_3$$
 s = active site

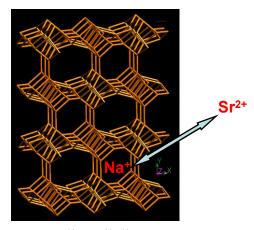
 $\rightarrow$  Decomposition into O<sub>2</sub> and atomic active oxygen : O •

$$sO_3 = sO \cdot + O_2$$

→ Decomposition of toluene by par atomic active oxygen

$$C_7H_8$$
 (TOL) + 18 O • = 7  $CO_2$  + 4  $H_2O$  (detected by GC-MS)

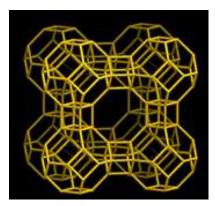
- ⇒ Possibility of in-situ regeneration of the zeolite
- ⇒ Zeolites can be used for continuous pollution control


#### **♦ Treatment of aqueous nuclear effluents**

- Removal of radioactive waste from nuclear power plant effluents before discharge

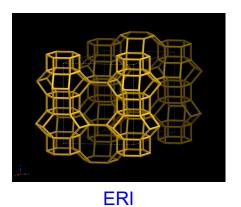
into the environment

- → retention of <sup>90</sup>Sr, <sup>137</sup>Cs, <sup>60</sup>Co, <sup>45</sup>Ca by ionic exchange with the zeolite cations (Na<sup>+</sup>, K<sup>+</sup>) ⇒ size match
- → use of clinoptilolites and mordenites (good resistance to soil acidity)
- → zeolites containing « non-harmful » waste are burried


- reduction of radioactive contamination
  - → Three Mile Island, 1979
  - → cleaning up after the Tchernobyl disaster, 1986 (> 500 000 t)
  - → Limiting the pollution of the marine environment, Fukushima, 2011

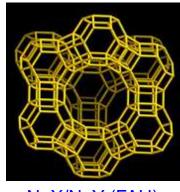


Clinoptilolite 10T et 8T (natural, synthetic)

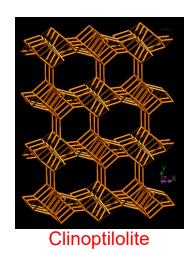



## **♦** Comparative adsorption of <sup>137</sup>Cs and <sup>90</sup>Sr on different zeolites



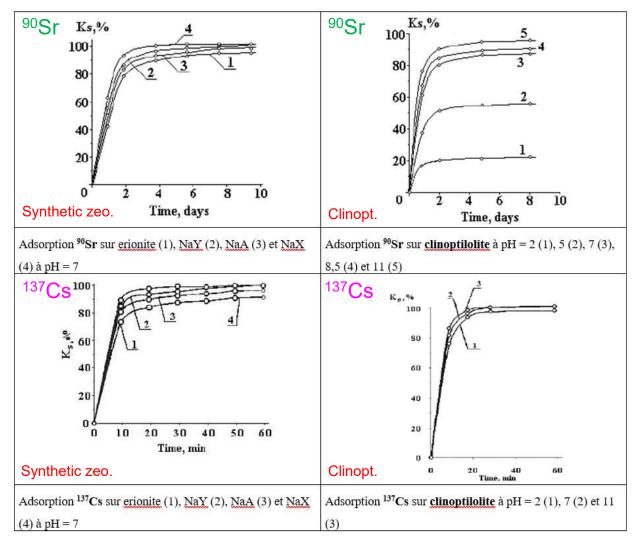

NaA (LTA)

| Zeolite        | Si/Al | Structure | Ouverture  |  |
|----------------|-------|-----------|------------|--|
| NaA            | 1     | LTA       | 8T         |  |
| NaX            | 1.25  | EALL      | 407        |  |
| NaY            | 2.4   | FAU       | 12T        |  |
| Erionite       | 3.5   | ERI       | 8T         |  |
| Clinoptilolite | > 4   | HEU       | 10T and 8T |  |




synthetic

natural

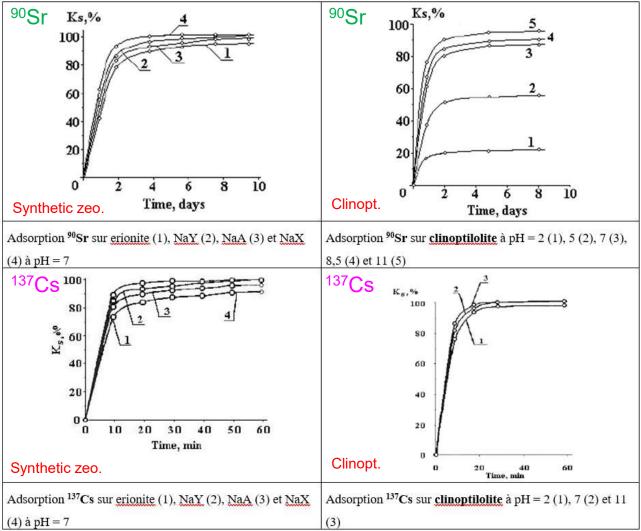



NaX/NaY (FAU)



26

#### **♦** Adsorption kinetics




 $\forall$  zeolite,  $\forall$  the pollutant  $\Rightarrow$  adsorption in 2 steps :

- $1^{st}$  step, very quick  $\rightarrow$  saturation of the sites by the polluant : fast diffusion due to accessible porosity
- $2^{\text{nd}}$  step, slower  $\rightarrow$  steric hindrance  $\Rightarrow$  decrease in diffusion speed

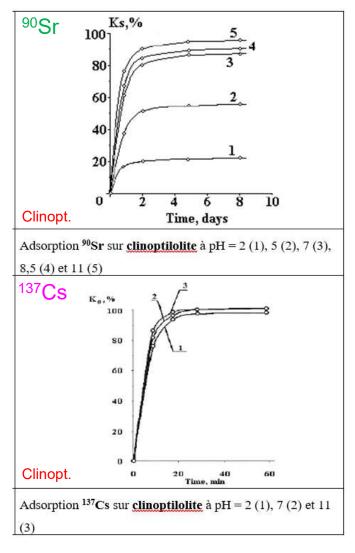
LR1

**♦** Adsorption kinetics



 $^{90}$ Sr: Adsorption equilibrium → 2 days for clinoptilolite (pH dependent)

 $\rightarrow$  4 days for the synthetic zeolites


137Cs: ≠ adsorption phenomena: adsorption equilibrium reached more quickly (< 20 min) ∀ zeolite

⇒ Adsorption of <sup>137</sup>Cs favored compared to <sup>90</sup>Sr

#### **Diapositive 28**

LR1 Laurence Reinert; 12/11/2024

#### **♦** Adsorption kinetics : effect of pH (clinoptilolite)



<sup>90</sup>Sr → adsorption highly dependent of the pH of the initial solution

→ Maximal adsorption from pH 7

<sup>137</sup>Cs : adsorption independent of the pH

⇒ adsorption sites different for Cs<sup>+</sup> and Sr<sup>2+</sup>

At acidic pH : competition between  $H^+$  and  $Cs^+\!/Sr^{2+}$ 

- ⇒ Protonation of the O⁻ groups of the framework
- $\Rightarrow$   $\vee$  of the negative charge of the framework
- $\Rightarrow$   $\checkmark$  of the adsorption capacities

#### **Adsorption mechanisms on clinoptilolite**

• Qads  $^{137}$ Cs > Qads  $^{90}$ Sr

Or 
$$rSr^{2+} \sim 127 \text{ pm}$$
 and  $rCs^{+} \sim 167 \text{ pm} \Rightarrow rCs^{+} > rSr^{2+}$ 

 $\Rightarrow$  Sr<sup>2+</sup> is probably adsorbed under an hydrated form  $\Rightarrow$  increase in ion size

 $(Sr^{2+}: small and highly charged \Rightarrow PP \nearrow \Rightarrow is easily surrounded by a hydration sphere)$ 

- ⇒ Cs<sup>+</sup> fits the 8T clinoptilolite cycle with the right size
- Clinoptilolite possesses a high Si/Al ratio
  - ⇒ low charge compensation required
  - ⇒ specific zeolite for low-charge cations



