

50 nm

Mesoporous oxides

Adsorption of pollutants in the liquid phase

boron (B) capture from aqueous effluents

- 2 main species :

$$H_{3}BO_{3} + H_{2}O$$
 \xrightarrow{Ka} $B(OH)_{4}^{-} + H^{+}$ pKa $(H_{3}BO_{3} / B(OH)_{4}^{-}) = 9.24$ at 20°C boric acid borate anions

- element widely used in fertilizers
- WHO (World Health Organisation) standard : [B] < 0.3 mg.L-1 in drinking water
- adsorption mechanism : complexation by polyols

♦ Use of mesoporous solids as solid supports for adsorption

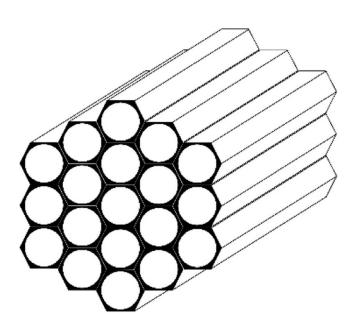
♦ Use of the mesoporosity for the grafting of polyols

♦ Mesoporous silica : MCM-41 and SBA-15

Hydrothermal synthesis

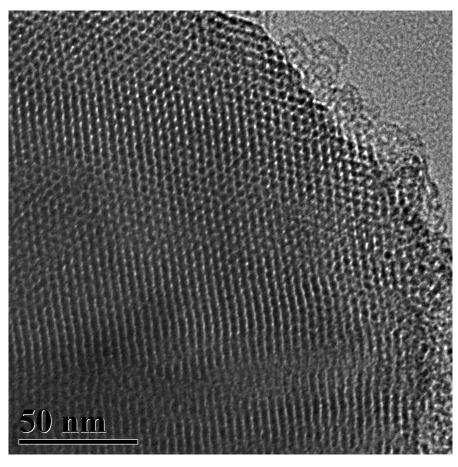
MCM-41 → ionic surfactant

CTMA⁺Br⁻, n = 16, hexadecyltrimethylammonium bromide $(C_{16}H_{31}N(CH_3)_3^+)$ = CetylTrimethyl Ammonium Bromide

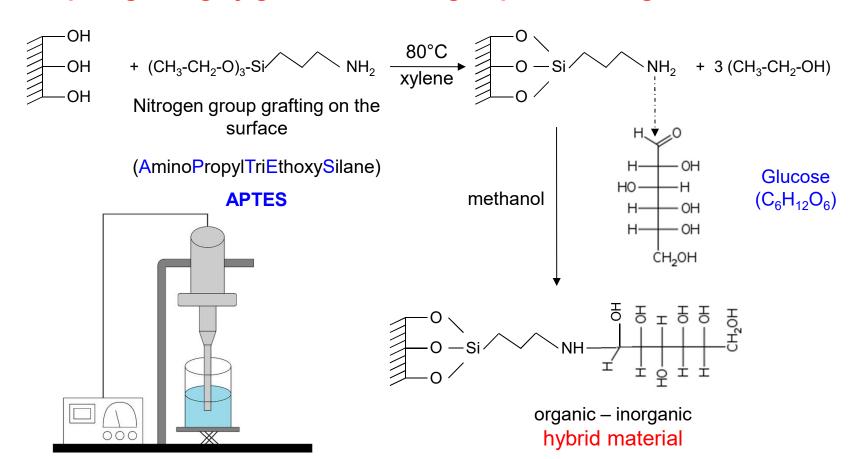

SBA-15 → non-ionic surfactant

Pluronic®: EO-PO-EO tribloc copolymer

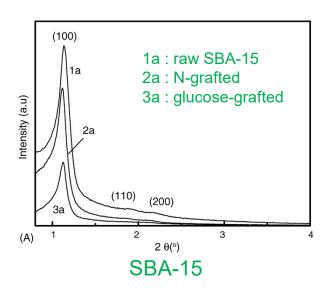
(PolyEthylene Oxide - PolyPropylene Oxide - PolyEthylene Oxide)

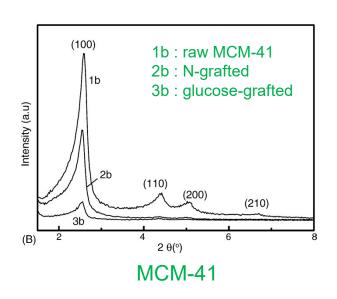

Poloxamer family (tri-bloc copolymers)

♦ Textural properties


Honeycomb porosity

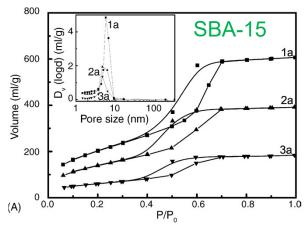
MCM-41


Pore $\varnothing \sim 5 \text{ nm}$


♦ Example : grafting by glucose for –OH groups increasing

⇒ increase of the number of complexing sites which are fixed on a <u>flexible</u> and <u>mobile</u> chain

♦ X-ray diffraction of MCM-41 and SBA-15 grafted materials


- peaks characteristic of the hexagonal symmetry
- ⇒ No shift of the peaks position after grafting
 ↓ the mineral framework is not modified
 - ☑ intensity of the peaks after the first step
 - - Ly signature of the presence of the amino group and of the glucose in the porosity
 - ☑ intensity more pronounced for MCM-41 ⇒ greater change in porosity
 (to be confirmed by BET surface area measurements)

1 : raw material

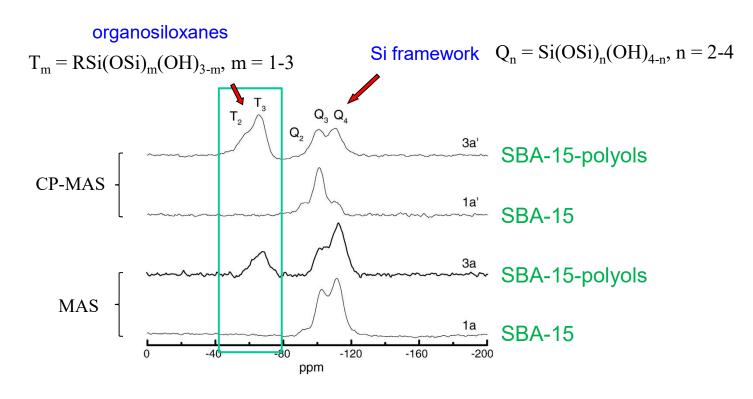
3: glucose-grafted

2: N-grafted

♦ N₂ adsorption-desorption @77K + pore size distribution (BJH ads.)

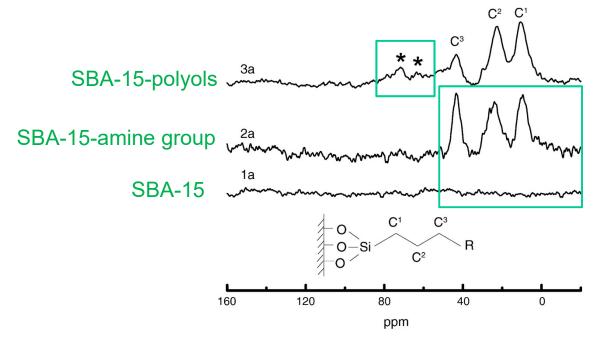
type IV, H1 hysteresis ⇒ large mesopores

600	MCM-41 1b
<u> </u>	(6)12 (6)12 (8) 1b
Volume (ml/g)	(6/Jw) (p60) 4 2b 3b
unjo 200 [1 10 100
•	Pore size (nm) 2b
(B) 0.0	0.2 0.4 0.6 0.8 1.0
(B) 0.0	P/P ₀


little hysteresis ⇒ few small mesopores

Sample		S_{BET}	V_p	$\varnothing_{\mathrm{pores}}$
		$(m^2.g^{-1})$	$(cm^3.g^{-1})$	(nm)
SBA-15	raw	755	0.94	5.6
	N-graf.	524	0.61	4.6
	Gluc-graf.	224	0.29	4.2
MCM-41	raw	1260	0.95	2.5
	N-graf.	457	0.21	1.7
	glucgraf.	69	0.056	< 1.5

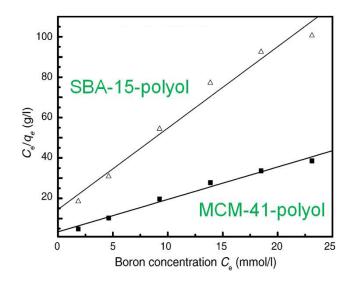
 \varnothing_{pores} : SBA-15 > MCM-41


- → S_{BET} after each grafting step
 - ⇒ clear signature of the presence of the organic matter inside the pores
- ☑ Much more pronounced for MCM-41
 - ⇒ Confirms XRD observations
- ☑ Porous volume
 - ~ 70% for SBA-15 / ~ 95% for MCM-41

♥ ²⁹Si NMR

- organosiloxanes ⇒ presence of organic matter <u>linked</u> to the mineral framework
- %silanols = $(2Q_2 + Q_3)/(2Q_2 + Q_3 + Q_4)*100$ %silanols \searrow from 42% to 34% after grafting
 - ⇒ Incomplete grafting (OH groups difficult to access for glucose)
 - ⇒ The material preserves its hydrophilic properties (presence of remaining OH groups)

♥ ¹³C NMR

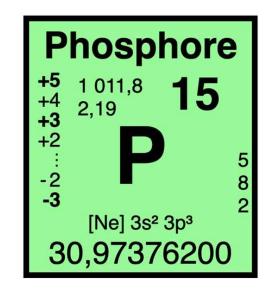


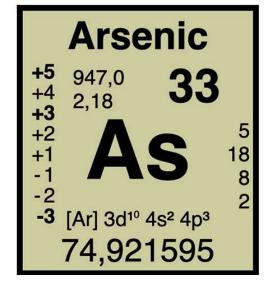
- Before grafting : no signal of the carbon
- After 1st step: 3 peaks characteristic of aminopropyl groups
- After 2nd step: appearance of 2 new peaks attributed to glucose carbon atoms

⇒ Presence of glucose confirmed

♦ Adsorption isotherms

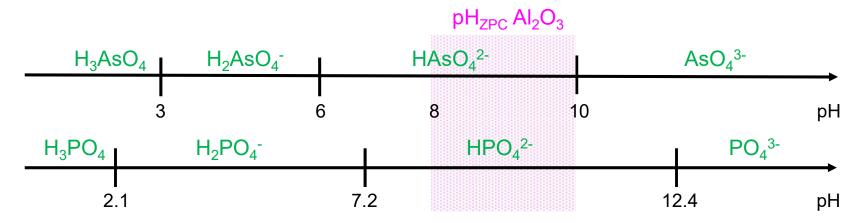
0.25 g ads., 10 mL H₃BO₃ 20-250 ppm, 30°C, 24h


Langmuir equation modelling


$\rightarrow \mathbf{Q}_{\text{ads}}$:

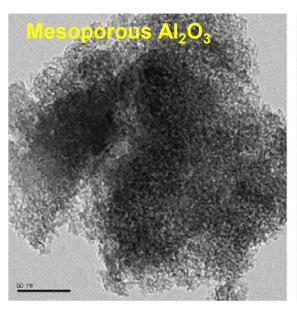
SBA15-polyol ~ 0.6 mmol.g⁻¹ > MCM41-polyol ~ 0.3 mmol. g⁻¹ > non-grafted silica ~ 0.1 mmol.g⁻¹

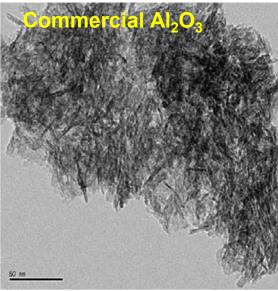
- porosity MCM41 < SBA-15 ⇒ the clogging of the pores hinders access to adsorption sites
- Other adsorbents : Q_{ads} (vermiculite) ~ 0.04 mmol.g⁻¹ Q_{ads} (polymeric resins) : < 0.9 mmol.g⁻¹
- Irreversible adsorption process: complexation = chemisorption



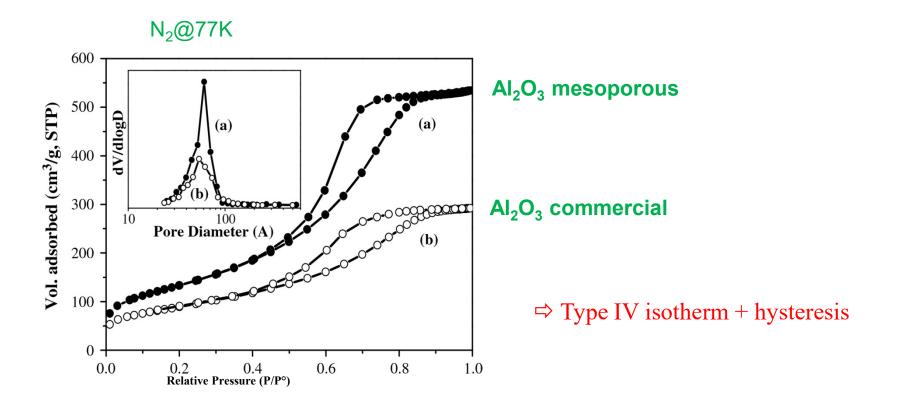
- In solution, « As » et « P » are associated to « O » ⇒ formation of anions
- « As » and « P » exist at different valences : +III, +V
- The speciation depends on the pH of the solution (arsenic acid, arsenates, ...)

- usual adsorbents \rightarrow alumina (Al $_2$ O $_3$) \rightarrow activated carbons \rightarrow goethite (FeO(OH)) \rightarrow gibbsite (Al(OH) $_3$)
- not retained by zeolites, neither clays (negatively charged frameworks)

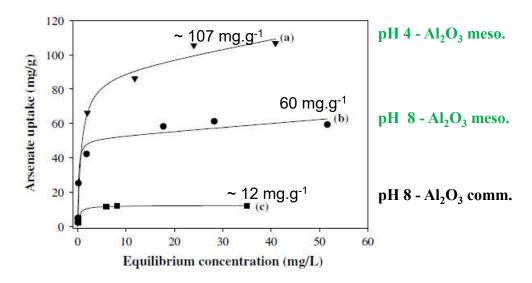

Synthesis of mesoporous Al₂O₃


Aluminum Tri-sec-butoxide

- Sol-gel route, hydrothermal synthesis (100°C, 24 h) + calcination 500°C, 4 h
 ⇒ Activated mesoporous Al₂O₃
- Comparison of the properties with a commercial alumina: pseudo boehmite


TEM

Vermicular texture

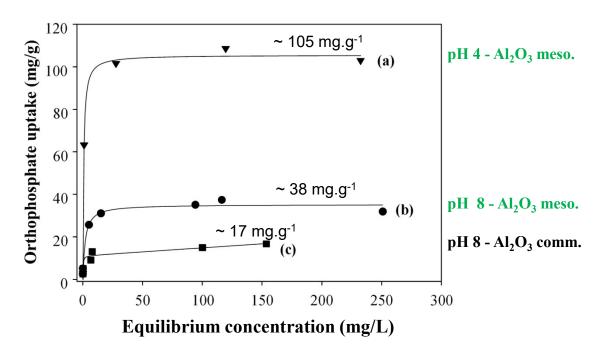

Fibrous texture

Adsorbent	S _{BET}		Vpores		Ø Pores
	(m^2/g)		(cm^3/g)		(nm, BJH*)
Al ₂ O ₃ meso.	483		0.82		4.9
		x 1.5		x 1.8	
Al ₂ O ₃ comm.	322		0.45		4.5

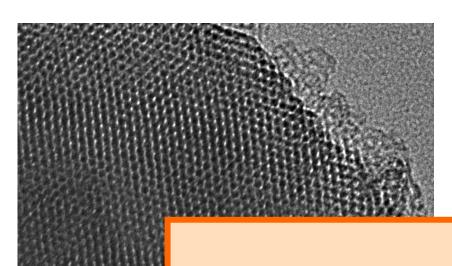
^{*} Barrett, Joyner, Halenda, 1951

 \diamondsuit Adsorption isotherms of arsenic ($C_0 = 10 \text{ to } 70 \text{ mg.L}^{-1}$)

 \Rightarrow Al₂O₃ meso : adsorption pH 4 > pH 8 (107 mg.g⁻¹ > 60 mg.g⁻¹)

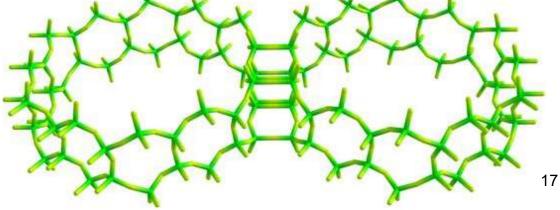

At pH 4, substrate/pollutant interactions are favored

- \rightarrow Surface of the adsorbent : positive : AIOH²⁺, AI(OH)₂+, AI₁₃O₄(OH)₂₄⁷⁺
- → Charge of the pollutant : negative : H₂AsO₄-


⇒ Coulombic interactions

- \Rightarrow At pH 8 : $Q_{ads}Al_2O_3$ meso. >>> $Q_{ads}Al_2O_3$ comm. \Rightarrow $Q_{ads}Al_2O_3$ meso. \sim **5** x $Q_{ads}Al_2O_3$ comm.
 - ⇒ increased interactions with the pollutant due to larger S_{BET} and V_{pores}

 \diamondsuit Adsorption isotherms of arsenic of phosphates ($C_0 = 10 \text{ to } 250 \text{ mg.L}^{-1}$)

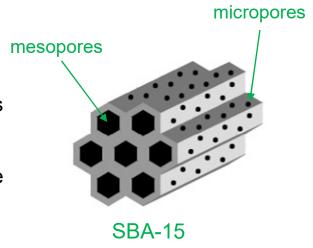

- \Rightarrow Al₂O₃ meso. : adsorption pH 4 > pH 8 (105 mg.g⁻¹ > 38 mg.g⁻¹)
 - \Rightarrow Coulombic interactions : AlOH²⁺, Al(OH)₂⁺, Al₁₃O₄(OH)₂₄⁷⁺ / H₂PO₄⁻
- \Rightarrow At pH 8 : $Q_{ads}Al_2O_3$ meso. > $Q_{ads}Al_2O_3$ comm. \Rightarrow $Q_{ads}Al_2O_3$ meso. ~ **2** x $Q_{ads}Al_2O_3$ comm.
 - ⇒ Good correlation of the values of S_{BET} and V_{pores} with adsorption capacities for both pollutants

50 nm

Mesoporous oxides

Adsorption of gaseous pollutants

- H₂S → spilled industrial off-gas (steel industry, oil refining plants...)
 - \rightarrow toxic gas (fatal in 30 min if [H₂S] > 500 ppm)
 - → responsible for pipeline oxidation if concentration is too high
 - → generates SO₂ and SO₃ by degradation (responsible for acid rains)
- conventional methods of decontamination : adsorption
 - → activated carbons
 - $\rightarrow \gamma$ -Al₂O₃
 - → zeolites
 - → Fe-containing clays (FeS precipitation)


⇒ Problems : low mechanical strength, dust generation, tortuous porosity rapidly inaccessible

- **♦ Development of a micro/meso porous silica (SBA-15)**
 - + deposition of ZnO nanoparticles on the surface

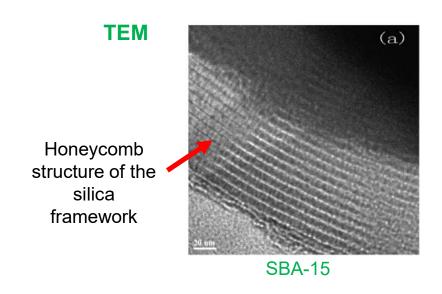
Aims \rightarrow decomposition of H₂S by reaction with ZnO leading to ZnS precipitation

$$ZnO + H_2S \rightarrow ZnS + H_2O$$

- SBA-15 ⇒ internal network of mesoporous channels interconnected by micropores
- Active sites ⇒ nanoparticles of ZnO deposited on the surface of SBA-15

- ⇒ use of the mesopores to transport the gas towards the active sites
- ⇒ chemical reactions inside the micropores and mesopore

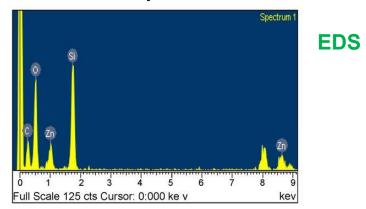
♦ Synthesis of a SBA-15 / ZnO composite


- → synthesis of SBA-15 by usual sol-gel route (hydrothermal, TEOS, Pluronic®)
- \rightarrow activation (550°C, 5h)
- \rightarrow dispersion of the silica into a Na₂CO₃ + Zn(NO₃)₂ solution, under ultrasons
- → precipitation and dispersion of the ZnCO₃ particles inside the mesoporous framework

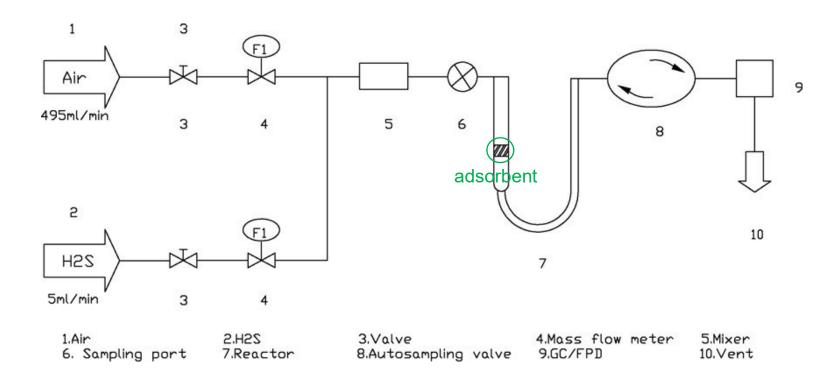
$$Na_2CO_3 + Zn(NO_3)_2 \rightarrow ZnCO_3 + 2 Na^+ + 2 NO_3^-$$

→ calcination and thermal decomposition of the carbonate (250°C)

$$ZnCO_3 \rightarrow ZnO + CO_2$$


♦ Characterisation of the SBA-15 / ZnO composite

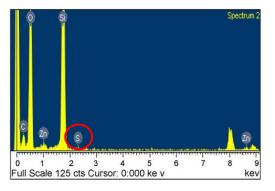
ZnO particles


SBA-15 + ZnO

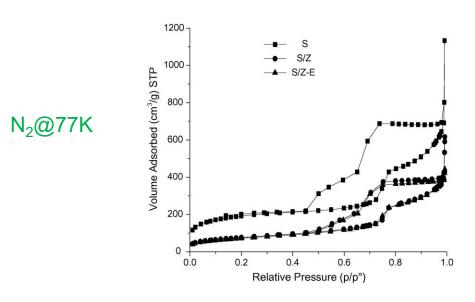
⇒ ZnO is occluded inside the micro and meso porosity ⇒ Qualitative analysis of the elements

♦ Desulfurisation experiments

298K, 1 atm, air flow/0.1% H₂S (500 mL.min⁻¹)



- Measure of the H₂S concentration at the outlet of the column (GC)
- The experiment is stopped when [H₂S]_{outlet} = 50 ppm


♦ Porosity characterisation after desulfurisation

TEM ZnS particules

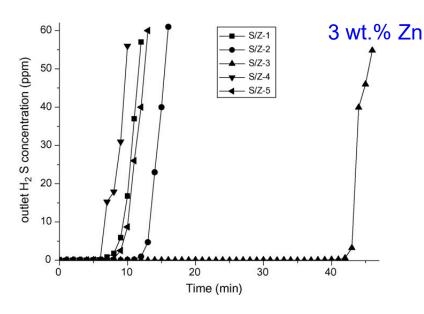
- \Rightarrow The honeycomb structure is preserved
- ⇒ Presence of nanoparticles (ZnS ?) inside the mesoporosity

♦ Porosity characterisation before/after desulfurisation

S:SiO₂ $S/Z : \overline{SiO_2}/ZnO$

 $S/Z-E : SiO_2/ZnO + H_2S$

E	3JH	
V_{meso}	>>	V_{micro}


Sample	S_{BET} V_{micro} (m^2/g) (cm^3/g)		V _{total} (cm ³ /g)
SiO ₂	\ \\\ 690	0.099	1.64
SiO ₂ /ZnO	270	0.007	0.96
SiO ₂ /ZnO + H ₂ S	260	0.007	0.70

 \searrow S_{BET} \Rightarrow presence of ZnO and ZnS particles inside the micro and macroporosity

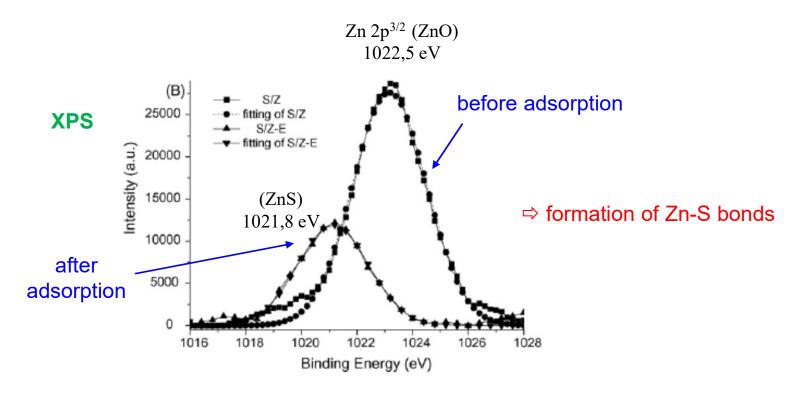
✓ V_{meso} by 40%
✓ V_{micro} by 92%

⇒ Almost complete blockage of micropores

♦ Breakthrough curves

Sample	Zn	Breakthrough	Q_{ads}	рН
	(wt. %)	time (min)	(mgH_2S/g)	material
S/Z-1	0.5	6	37 🕇	7.9
S/Z-2	1.2	10	95	8.2
S/Z-3	3	40	440 🗸	8.3
S/Z-4	4.5	7	50	8.4
S/Z-5	9	6	40	8.7

- Q_{ads} 7 as Zn wt.% 7 to 3 wt.%
- Above 3 wt.% Zn, Q_{ads} \(\square\)


An excess of ZnO limits the diffusion of H₂S towards the pores (blockage of the porosity)

- Best adsorbent : 3 wt. % Zn (breakthrough in 40 min vs 6-10 min) \Rightarrow Qads max = 440 mg H₂S/g
- 7 pH material as Zn wt.% 7
- Optimal pH $\sim 8.3 \Rightarrow$ pH which is favorable to the precipitation of ZnS

 \Rightarrow If the Zn content is too high \Rightarrow the porosity is partially blocked \Rightarrow the active sites are less accessible

♦ Adsorption mechanism

XPS reveals a new environment for Zn

$$ZnO + H_2S \longrightarrow ZnS + H_2O$$

Irreversible adsorption: chemisorption