50 nm # **Mesoporous oxides** Adsorption of pollutants in the liquid phase ### **boron** (B) capture from aqueous effluents - 2 main species : $$H_3BO_3 + H_2O$$ \longrightarrow $B(OH)_4^- + H^+$ pKa $(H_3BO_3 / B(OH)_4^-) = 9.24$ at $20^{\circ}C$ borate anions - element widely used in fertilizers - WHO (World Health Organisation) standard : [B] < 0.3 mg.L-1 in drinking water - adsorption mechanism : complexation by polyols **♦** Use of mesoporous solids as solid supports for adsorption **♦** Use of the mesoporosity for the grafting of polyols ### ♦ Mesoporous silica: MCM-41 and SBA-15 Hydrothermal synthesis MCM-41 → ionic surfactant CTMA⁺Br⁻, n = 16, hexadecyltrimethylammonium bromide $(C_{16}H_{31}N(CH_3)_3^+)$ = CetylTrimethyl Ammonium Bromide SBA-15 → non-ionic surfactant Pluronic®: EO-PO-EO tribloc copolymer (PolyEthylene Oxide - PolyPropylene Oxide - PolyEthylene Oxide) HO $$-\left(\text{CH}_2\text{CH}_2\text{O}\right)_{n/2}\left(\text{CH}_2\text{CH}_0\right)_{m}\left(\text{CH}_2\text{CH}_2\text{O}\right)_{n/2}$$ $+ \text{CH}_2\text{CH}_2\text{O}$ \text{$ Poloxamer family (tri-bloc copolymers) # **♦ Textural properties** Honeycomb porosity MCM-41 Pore $\varnothing \sim 5 \text{ nm}$ ### **♦ Example : grafting by glucose for –OH groups increasing** ⇒ increase of the number of complexing sites which are fixed on a <u>flexible</u> and <u>mobile</u> chain ### **♦ X-ray diffraction of MCM-41 and SBA-15 grafted materials** - ⇒ peaks characteristic of the hexagonal symmetry - No shift of the peaks position after grafting ↓ the mineral framework is not modified - ☑ intensity of the peaks after the first step - - Ly signature of the presence of the amino group and of the glucose in the porosity - ☑ intensity more pronounced for MCM-41 ⇒ greater change in porosity (to be confirmed by BET surface area measurements) 1 : raw material 3: glucose-grafted 2: N-grafted ### ♦ N₂ adsorption-desorption @77K + pore size distribution (BJH ads.) type IV, H1 hysteresis ⇒ large mesopores | 600 - 1 | /ICM-4 | | | 1b | |--------------------|--------------|----------------------------|----------------|-----| | er
ed | 7 | (B) 12 | 1b | | | © 400 | 1 | E 8. | <u>1</u> | | | <u>E</u> | | (g/lm) (pgol) ^Q | 1 L | | | Volume (ml/g) | | ے کے | 2b .
3b : | | | > ₂₀₀ - | | 08 | 1 10 | 100 | | 0.000.0000000 | | | Pore size (nm) | 2b, | | · · | | | | 3b_ | | 0 L- | | - 7 - 7 | 7-7-7 | · | | (B) 0.0 | 0.2 | 0.4
P/P | 0.6 0.8 | 1.0 | little hysteresis ⇒ few small mesopores | Sample | | S_{BET} | V_p | $\varnothing_{\mathrm{pores}}$ | |--------|------------|----------------|-----------------|--------------------------------| | | | $(m^2.g^{-1})$ | $(cm^3.g^{-1})$ | (nm) | | SBA-15 | raw | 755 | 0.94 | 5.6 | | | N-graf. | 524 | 0.61 | 4.6 | | | Gluc-graf. | 224 | 0.29 | 4.2 | | MCM-41 | raw | 1260 | 0.95 | 2.5 | | | N-graf. | 457 | 0.21 | 1.7 | | | glucgraf. | 69 | 0.056 | < 1.5 | - → S_{BET} after each grafting step - ⇒ clear signature of the presence of the organic matter inside the pores - ☑ Much more pronounced for MCM-41 - ⇒ Confirms XRD observations - ☑ Porous volume - ~ 70% for SBA-15 / ~ 95% for MCM-41 ### ♥ ²⁹Si NMR - organosiloxanes ⇒ presence of organic matter <u>linked</u> to the mineral framework - %silanols = $(2Q_2 + Q_3)/(2Q_2 + Q_3 + Q_4)*100$ %silanols \searrow from 42% to 34% after grafting - ⇒ Incomplete grafting (OH groups difficult to access for glucose) - ⇒ The material preserves its hydrophilic properties (presence of remaining OH groups) ### ♥ ¹³C NMR - Before grafting : no signal of the carbon - After 1st step: 3 peaks characteristic of aminopropyl groups - After 2nd step: appearance of 2 new peaks attributed to glucose carbon atoms ### ⇒ Presence of glucose confirmed ### **♦** Adsorption isotherms 0.25 g ads., 10 mL H₃BO₃ 20-250 ppm, 30°C, 24h Langmuir equation modelling # $\rightarrow \mathbf{Q}_{\text{ads}}$: SBA15-polyol ~ 0.6 mmol.g⁻¹ > MCM41-polyol ~ 0.3 mmol. g⁻¹ > non-grafted silica ~ 0.1 mmol.g⁻¹ - porosity MCM41 < SBA-15 ⇒ the clogging of the pores hinders access to adsorption sites - Other adsorbents : Q_{ads} (vermiculite) ~ 0.04 mmol.g⁻¹ Q_{ads} (polymeric resins) : < 0.9 mmol.g⁻¹ - Irreversible adsorption process: complexation = chemisorption - In solution, « As » et « P » are associated to « O » ⇒ formation of anions - « As » and « P » exist at different valences : +III, +V - The speciation depends on the pH of the solution (arsenic acid, arsenates, ...) - usual adsorbents \rightarrow alumina (Al $_2$ O $_3$) \rightarrow activated carbons \rightarrow goethite (FeO(OH)) \rightarrow gibbsite (Al(OH) $_3$) Low adsorption capacities Slow kinetic rates - not retained by zeolites, neither clays (negatively charged frameworks) ### Synthesis of mesoporous Al₂O₃ Aluminum Tri-sec-butoxide - Sol-gel route, hydrothermal synthesis (100°C, 24 h) + calcination 500°C, 4 h ⇒ Activated mesoporous Al₂O₃ - Comparison of the properties with a commercial alumina: pseudo boehmite #### **TEM** Vermicular texture Fibrous texture | Adsorbent | S _{BET} | | | ores | Ø Pores | |--------------------------------------|------------------|----------|------|-----------|------------| | | (1 | $m^2/g)$ | (cn | n^3/g) | (nm, BJH*) | | Al ₂ O ₃ meso. | 483 | | 0.82 | 4.0 | 4.9 | | | | x 1.5 | | x 1.8 | | | Al ₂ O ₃ comm. | 322 | | 0.45 | | 4.5 | ^{*} Barrett, Joyner, Halenda, 1951 \diamondsuit Adsorption isotherms of arsenic ($C_0 = 10 \text{ to } 70 \text{ mg.L}^{-1}$) - \Rightarrow Al₂O₃ meso : adsorption pH 4 > pH 8 (107 mg.g⁻¹ > 60 mg.g⁻¹) - At pH 4, substrate/pollutant interactions are favored - \rightarrow Surface of the adsorbent : positive : AIOH²⁺, AI(OH)₂+, AI₁₃O₄(OH)₂₄⁷⁺ - → Charge of the pollutant : negative : H₂AsO₄- - ⇒ Coulombic interactions - \Rightarrow At pH 8 : $Q_{ads}Al_2O_3$ meso. >>> $Q_{ads}Al_2O_3$ comm. \Rightarrow $Q_{ads}Al_2O_3$ meso. \sim **5** x $Q_{ads}Al_2O_3$ comm. - ⇒ increased interactions with the pollutant due to larger S_{BET} and V_{pores} \diamondsuit Adsorption isotherms of arsenic of phosphates ($C_0 = 10 \text{ to } 250 \text{ mg.L}^{-1}$) - \Rightarrow Al₂O₃ meso. : adsorption pH 4 > pH 8 (105 mg.g⁻¹ > 38 mg.g⁻¹) - \Rightarrow Coulombic interactions : AlOH²⁺, Al(OH)₂+, Al₁₃O₄(OH)₂₄⁷⁺ / H₂PO₄- - \Rightarrow At pH 8 : $Q_{ads}Al_2O_3$ meso. > $Q_{ads}Al_2O_3$ comm. \Rightarrow $Q_{ads}Al_2O_3$ meso. ~ **2** x $Q_{ads}Al_2O_3$ comm. - ⇒ Good correlation of the values of S_{BET} and V_{pores} with adsorption capacities for both pollutants 50 nm # **Mesoporous oxides** Adsorption of gaseous pollutants - H₂S → spilled industrial off-gas (steel industry, oil refining plants...) - \rightarrow toxic gas (fatal in 30 min if [H₂S] > 500 ppm) - → responsible for pipeline oxidation if concentration is too high - → generates SO₂ and SO₃ by degradation (responsible for acid rains) - conventional methods of decontamination : adsorption - → activated carbons - $\rightarrow \gamma$ -Al₂O₃ - → zeolites - → Fe-containing clays (FeS precipitation) ⇒ Problems : low mechanical strength, dust generation, tortuous porosity rapidly inaccessible - **♦ Development of a micro/meso porous silica (SBA-15)** - + deposition of ZnO nanoparticles on the surface Aims \rightarrow decomposition of H₂S by reaction with ZnO leading to ZnS precipitation $$ZnO + H_2S \rightarrow ZnS + H_2O$$ - SBA-15 ⇒ internal network of mesoporous channels interconnected by micropores - Active sites ⇒ nanoparticles of ZnO deposited on the surface of SBA-15 - ⇒ use of the mesopores to transport the gas towards the active sites - ⇒ chemical reactions inside the micropores and mesopore ### **♦ Synthesis of a SBA-15 / ZnO composite** - → synthesis of SBA-15 by usual sol-gel route (hydrothermal, TEOS, Pluronic®) - \rightarrow activation (550°C, 5h) - \rightarrow dispersion of the silica into a Na₂CO₃ + Zn(NO₃)₂ solution, under ultrasons - → precipitation and dispersion of the ZnCO₃ particles inside the mesoporous framework $$Na_2CO_3 + Zn(NO_3)_2 \rightarrow ZnCO_3 + 2 Na^+ + 2 NO_3^-$$ → calcination and thermal decomposition of the carbonate (250°C) $$ZnCO_3 \rightarrow ZnO + CO_2$$ ### **♦ Characterisation of the SBA-15 / ZnO composite** ZnO particles SBA-15 + ZnO ⇒ ZnO is occluded inside the micro and meso porosity ⇒ Qualitative analysis of the elements ### **♦** Desulfurisation experiments 298K, 1 atm, air flow/0.1% H₂S (500 mL.min⁻¹) - Measure of the H₂S concentration at the outlet of the column (GC) - The experiment is stopped when [H₂S]_{outlet} = 50 ppm ### **♦ Porosity characterisation after desulfurisation** TEM ZnS particules - \Rightarrow The honeycomb structure is preserved - ⇒ Presence of nanoparticles (ZnS ?) inside the mesoporosity ### **♦ Porosity characterisation before/after desulfurisation** S: SiO₂ $S/Z : \overline{SiO_2}/ZnO$ $S/Z-E : SiO_2/ZnO + H_2S$ | I | 3JH | ł | |------------|-----|--------------------| | V_{meso} | >> | V_{micro} | | Sample | S _{BET}
(m²/g) | V _{micro}
(cm³/g) | V _{total}
(cm ³ /g) | |--|----------------------------|-------------------------------|--| | SiO ₂ | % 690 | 0.099 | 1.64 | | SiO ₂ /ZnO | 270 | 0.007 | 0.96 | | SiO ₂ /ZnO + H ₂ S | 260 | 0.007 | 0.70 | \searrow S_{BET} \Rightarrow presence of ZnO and ZnS particles inside the micro and macroporosity ✓ V_{meso} by 40% ✓ V_{micro} by 92% ⇒ Almost complete blockage of micropores ### **♦** Breakthrough curves | Sample | Zn | Breakthrough | Q_{ads} | рН | |--------|---------|--------------|------------------------|----------| | | (wt. %) | time (min) | (mgH ₂ S/g) | material | | S/Z-1 | 0.5 | 6 | 37 🕇 | 7.9 | | S/Z-2 | 1.2 | 10 | 95 | 8.2 | | S/Z-3 | 3 | 40 | 440 🗸 | 8.3 | | S/Z-4 | 4.5 | 7 | 50 | 8.4 | | S/Z-5 | 9 | 6 | 40 | 8.7 | - Q_{ads} 7 as Zn wt.% 7 to 3 wt.% - Above 3 wt.% Zn, Q_{ads} \(\square\) An excess of ZnO limits the diffusion of H₂S towards the pores (blockage of the porosity) - Best adsorbent : 3 wt. % Zn (breakthrough in 40 min vs 6-10 min) \Rightarrow Qads max = 440 mg H₂S/g - 7 pH material as Zn wt.% 7 - Optimal pH $\sim 8.3 \Rightarrow$ pH which is favorable to the precipitation of ZnS \Rightarrow If the Zn content is too high \Rightarrow the porosity is partially blocked \Rightarrow the active sites are less accessible ### **♦** Adsorption mechanism XPS reveals a new environment for Zn $$ZnO + H_2S \longrightarrow ZnS + H_2O$$ Irreversible adsorption : chemisorption