

SPEC902a Matériaux pour la dépollution

4.5 h Courses

Knowledge required : SYNT802 & SYNT902 (Materials Chemistry)

Families of materials for depollution

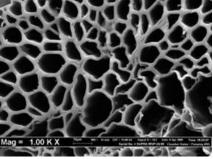
Solution by Different families : carbonaceous materials, (organic)polymers, oxides

Carbonaceous materials

- \rightarrow Activated carbons (powders, pellets, tissues) : C (S, N, P, O...)
- \rightarrow Functionalised activated carbons

(introduction of specific functional groups on the surface)

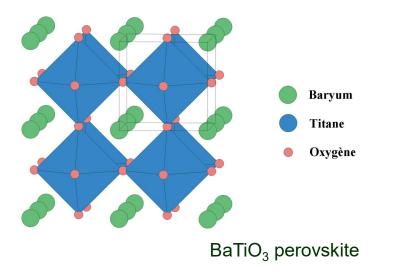
- → Activated carbons with supported metals (catalytical properties)
- → Carbons obtained by replication of three-dimensional aluminosilicates (hierarchical porosity)

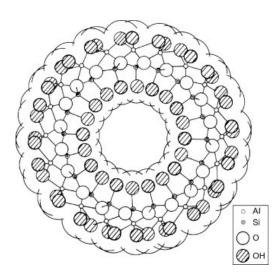

• Polymer materials

- → Synthetic resins : styrene/divinylbenzene compolymers, polystyrene
 - + anionic surface groups : $-SO_3^-$, $-CO_2^-$, $-PO_3^{2-}$,
 - + cationic surface groups : -NR₃⁺, -NR₂⁺
- \rightarrow Biopolymers and polymers prepared from natural ressources

(Functionalised cellulose, chitosan, alginate $... \Rightarrow$ adsorption of heavy metals)

styrene/divinylbenzene compolymer resin



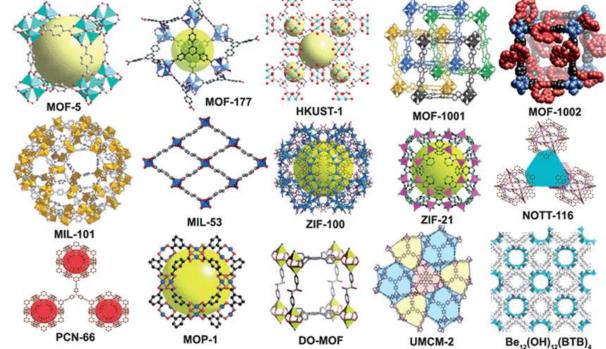

SEM image of an activated carbon

Families of materials for depollution

Oxides and related materials

- \rightarrow Dense oxides (non porous micro or nanometric Al₂O₃, SiO₂, TiO₂ for photocatalysis)
- \rightarrow Oxyhydroxides (AIO(OH), FeO(OH) : arsenate capture : AsO₄³⁻)
- \rightarrow Mixte Oxides of perovskite structure (A^{II}B^{IV}O₃ : catalytic decomposition of NO_x)
- → Clays (Si, Al, O, layered compounds)
- → Allophanes (Si, Al, O, hollow porous spheres)
- → Zeolites (Si, Al, O, three-dimensional hierarchical porosity, microporous material)
- \rightarrow Mesoporous solids (SiO₂, Al₂O₃, TiO₂)

Allophane (imogolite)


Families of materials for depollution

Oxides and related materials

- → Monoliths (dense ceramics with honeycomb porosity: catalytic oxidation of NOx for automotive exhaust gas pollution control)
- → Oxides (zeolites, mesoporous) with supported metals (Pt, Pd, Rh, Co) : catalysis
- \rightarrow Hybrid organic inorganic materials = grafted oxides grafting of molecules possessing specific surface groups \Rightarrow Combination of organic/inorganic properties

• Metal Organic Frameworks (MOFs) :

crystalline materials with ultrahigh porosity (up to 90% free volume), very high internal surface areas (> 2000 m²/g)

Required characteristics

- Stability in the environment to be depolluted (T, pH, chemical reactivity)
- Accessible porosity (open porosity)
- Solution Matching of porosity (micro/meso/macro) to contaminant size
- Matching of surface characteristics (charges, reactive sites dispersion) with targeted pollutants (favorable attractions)
- ♦ Selectivity
- Recyclability (reversibility of process)
- **Material availability**
- Seasonable manufacturing/sourcing costs

Objectives

- ⇒ Screening of various materials for depollution
 - Mesoporous solids
 - Organic/inorganic hybrid materials
 - Zeolites
 - Clays, allophanes

- ⇒ Main features (cf SYNT802/902) structure, composition, synthesis, properties....
- ⇒ Applications for pollution control study of different cases

