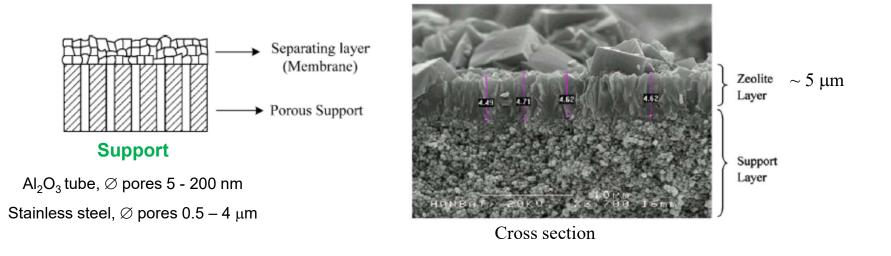


Zeolite membranes


Applications : separation using membranes

b development of selective zeolite membranes

Zeolite membrane specifications \Rightarrow pure phases

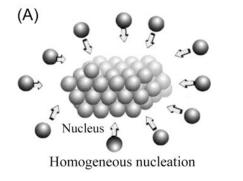
- \Rightarrow particles of small sizes
- \Rightarrow uniform size distribution of particles

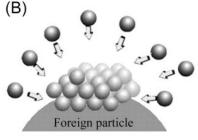
Most zeolite membranes are supported to 7 mechanical strength

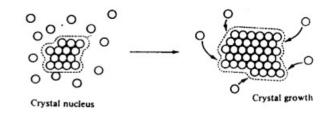
\rightarrow synthesis control difficult

- \downarrow the presence of impurities \checkmark the selectivity and the separative properties
- L an heterogeneous crystallite size creates meso/macroporosity (\Rightarrow induces leaks)

Applications : separation using membranes


Solution - Solution -


- Control of the nucleation (germination) step germination = formation of crystal nuclei = heterogeneous process
 - \Rightarrow The nuclei of the future crystalline phase form preferentially on the impurities of the system
 - \Rightarrow Support = impurity \Rightarrow the choice of the support is important

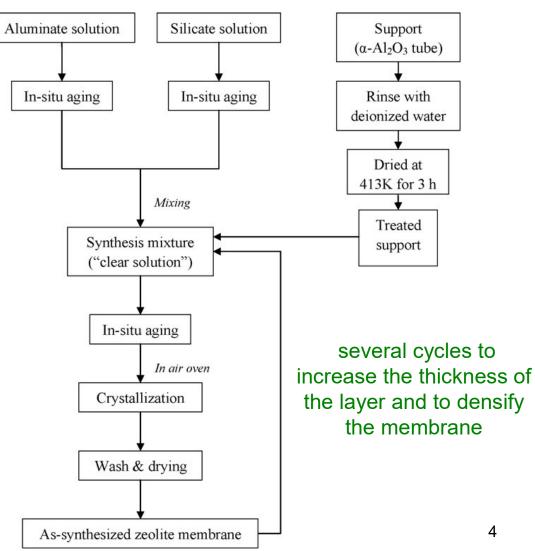

search for a continuous, homogeneous film

 \Rightarrow control of the deposition rate of reactive species on the substrate, T, H₂O content, [reagents]

Heterogeneous nucleation

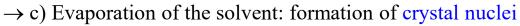
Crystal nucleus

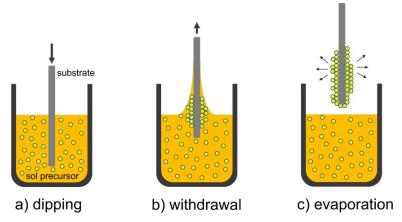
→ The presence of impurities
 >> the selectivity and the separation properties
 → A heterogeneous crystallite size creates meso and macroporosity


Sclassical hydrothermal synthesis route

⇒ hydrothermal synthesis in the presence of the support

Disadvantages

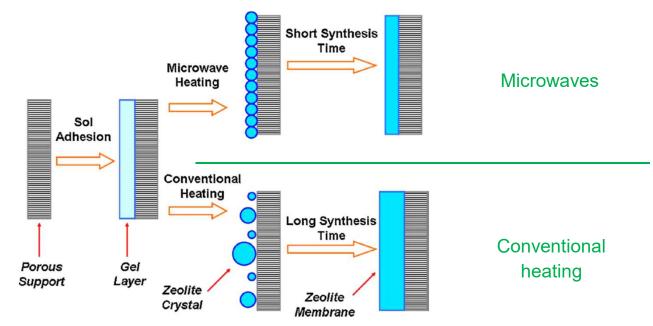

- Low density membranes
- Long time synthesis (days)
- Frequent formation of impurities (nucleation step difficult to control)
- \Rightarrow reduced separation properties
- Crystalite size control difficult



Secondary growth synthesis of the material

- 1) Deposition of zeolite seeds on the support prior to hydrothermal synthesis
- \Rightarrow Deposition by dip-coating \rightarrow a) Immersion of the substrate in a solution containing seeds

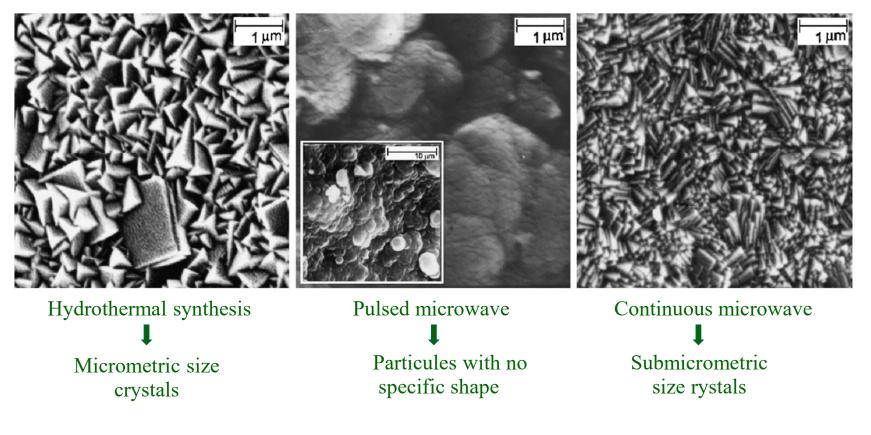
 \rightarrow b) Formation of a continuous film on the surface of the substrate



2) Hydrothermal synthesis on the support coated by the crystal nuclei

✤ Microwave assisted synthesis

Advantages microwave synthesis vs conventional heating


- Less time consuming (~ 10 min for crystallization) ⇒ no conduction or convection: direct transfer of microwave energy to the core of the material
- Formation of smaller crystallites which are better stacked on the surface of the support, because of a rapid crystallization ⇒ presence of fewer defects (凶 meso/macroporosity)
- Narrower pore size distribution \Rightarrow the thickness of the layer is well controlled
- High purity

\Rightarrow Improved selectivity

Membranes preparation

Solution Microwave assisted synthesis vs conventional heating

NaA membrane

 \rightarrow characterisation of the porosity by gas permeation (presence of defects ?)

 \rightarrow Measure of BET surface area (S_{BET}) : characterisation of the microporosity

b Efficiency criteria for membranes

⇒ Selectivity

It is expressed by a parameter called « retention » or by the « Separation Factor » : $\alpha_{A/B}$ (SF)

$$\alpha_{A/B} = \frac{\left(\frac{x_A}{x_B}\right)}{\left(\frac{x_A}{x_B}\right)} \text{ permeate} \qquad x_A, x_B : \text{ molar ratios}$$
alimentationfeed

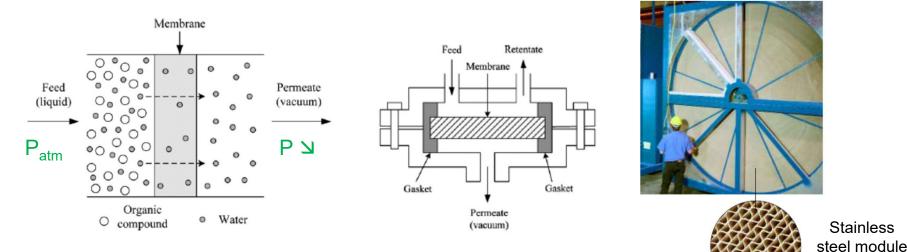
\Rightarrow The Separation Factor must be as high as possible

⇒ Productivity

It is expressed by a parameter called « flux »

It is the volume of fluid separated, per unit of membrane surface, per unit of time

 \rightarrow in L/m²/h


\Rightarrow The Productivity must be as high as possible

⇒ A good compromise must be found between the two factors

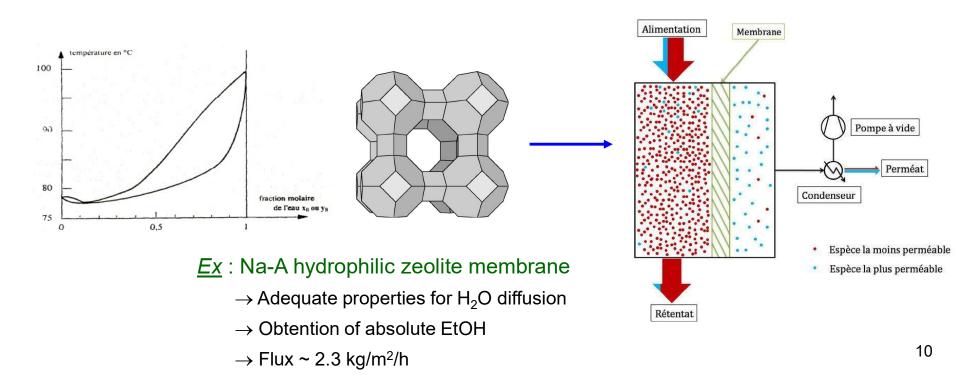
Application : separation on membranes

Pervaporation (= pervaporative separation)

= process for the separation of liquid mixtures by partial vaporization through a membrane

- Membrane = selective barrier between several phases
- A pressure difference (ΔP) is applied between both sides of the membrane
 - \rightarrow the phase able to pass through the membrane (size match) is vaporised, diffuses through the membrane and is recondensed into liquid phase ⇒ permeate
 - \rightarrow the mismatched phase remains in liquid form upstream
 - \Rightarrow transfer possible due to the difference in vapour pressure of the compounds

Ideal material: \Rightarrow good selectivity \Rightarrow high productivity (L/m²/h)


Stainless

+ 12m² Na-A

Application : separation on membranes

♥ Pervaporation : separation of water – ethanol mixtures

- Used in bio-ethanol production units
- Bioethanol production (by fermentation of sugars/starch) produces large amounts of aqueous ethanol solutions
- Absolute ethanol (99.9%) can be obtained by azeotropic distillation → long/difficult process (especially for constituentsif of close volatilities)
- \Rightarrow Possibility of separation by pervaporation on hydrophilic membranes

