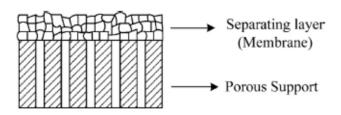
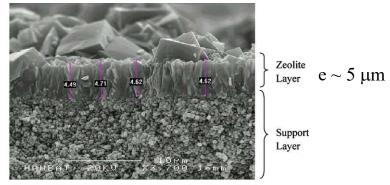
# Les membranes zéolithiques

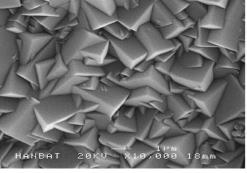

## **♦** élaboration de membranes zéolithiques sélectives

Spécifications membrane zéolithique ⇒ phases pures

⇒ petites tailles de particules

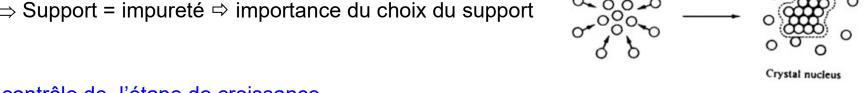
⇒ distribution uniforme


La majorité des membranes zéolithiques sont supportées pour 7 tenue mécanique

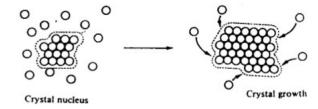


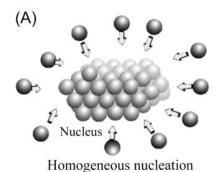

## **Support**

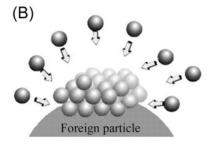
tube  $Al_2O_3$ ,  $\varnothing$  pores 5 - 200 nm acier inox,  $\varnothing$  pores 0,5 - 4  $\mu$ m


## coupe transversale







## Préparation des membranes


- contrôle de l'étape de nucléation nucléation = formation de germes cristallins = processus hétérogène
  - ⇒ Les germes de la future phase cristalline se forment préférentiellement sur les impuretés du système
  - ⇒ Support = impureté ⇒ importance du choix du support

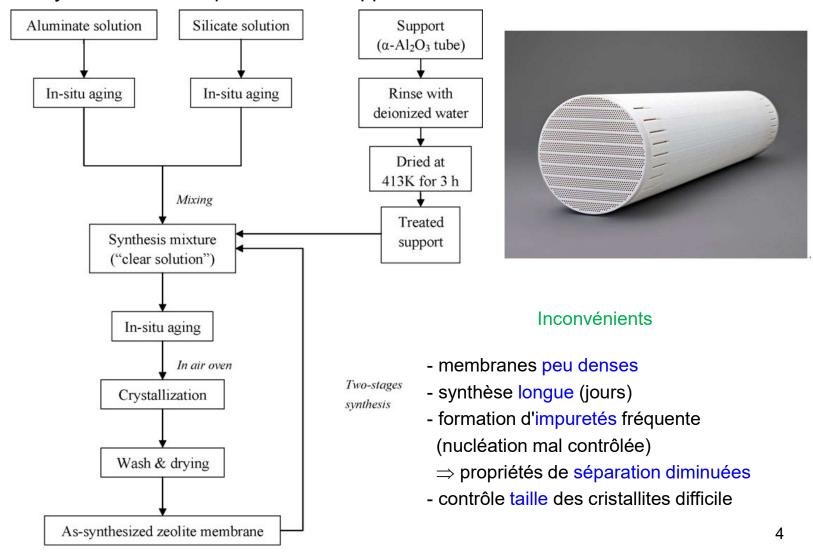


- contrôle de l'étape de croissance recherche d'un film continu et homogène
- ⇒ contrôle de la vitesse de dépôt des espèces réactives sur le support, T, teneur H<sub>2</sub>O, [réactifs]



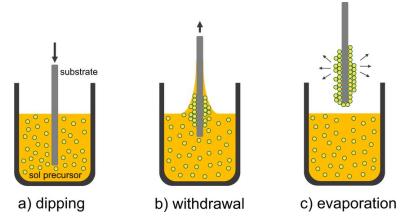





Heterogeneous nucleation

- → la présence d'impuretés ☐ la sélectivité et les propriétés de séparation
- → une taille de cristallites hétérogène créé de la méso et macroporosité

⇒ synthèse difficile

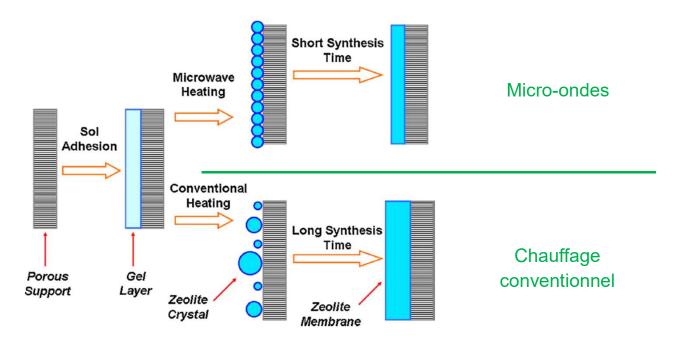

## **♦** synthèse par voie classique

⇒ synthèse hydrothermale en présence du support



## synthèse par croissance secondaire

- 1) Dépôt de germes de zéolithe sur le support avant la synthèse hydrothermale
- $\Rightarrow$  Dépôt par dip-coating  $\rightarrow$  a) Immersion du substrat dans la solution contenant les précurseurs
  - → b) Formation d'un film continu à la surface du substrat
  - $\rightarrow$  c) Evaporation du solvant : formation des germes cristallins




- 2) Synthèse hydrothermale sur support pré-enduit de germes cristallins
  - ⇒ Meilleur contrôle de la microstructure de la membrane (épaisseur et orientation des cristaux)

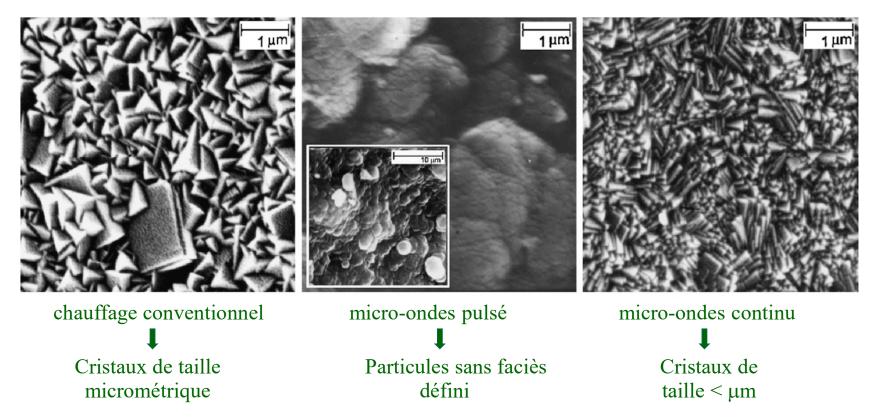
⇒ Meilleure reproducibilité

contrôle l'étape de nucléation = étape clé

## **\$ synthèse assistée par micro-ondes**



Avantages synthèse micro-ondes vs chauffage conventionnel


- Gain de temps (~ 10 min. pour cristallisation) ⇒ pas de phénomène de conduction, convection : transfert direct de l'énergie des micro-ondes au cœur du matériau
- Obtention de particules de taille + petite car cinétique de cristallisation + rapide
- Distribution en taille + restreinte Bon contrôle de l'épaisseur de la couche

• Bonne pureté

Agencement cristaux + régulier

## synthèse assistée par micro-ondes / chauffage conventionnel

#### Membrane NaA



- → caractérisation de la porosité par perméation gazeuse (présence de défauts ?)
- → mesure S<sub>BET</sub> : caractérisation de la microporosité

## **⇔** critères d'efficacité des membranes

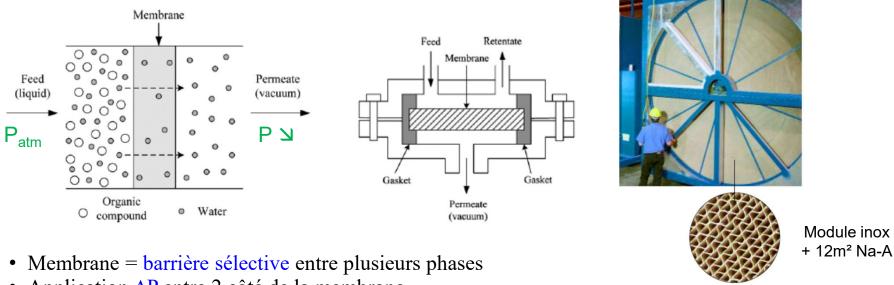
#### □ La sélectivité

Elle est exprimée par un paramètre appelé la « rétention » ou le « Facteur de Séparation » :  $\alpha_{A/B}$  (FS)

$$\alpha_{A/B} = \frac{\left(\frac{x_A}{x_B}\right)}{\left(\frac{x_A}{x_B}\right)}$$
 perméat  $x_A, x_B$ : fractions molaires Le facteur de séparation doit être le plus élevé possible.

⇒ Le facteur de séparation doit être le plus élevé possible

## □ La productivité


Elle est exprimée par un paramètre appelé le « flux »

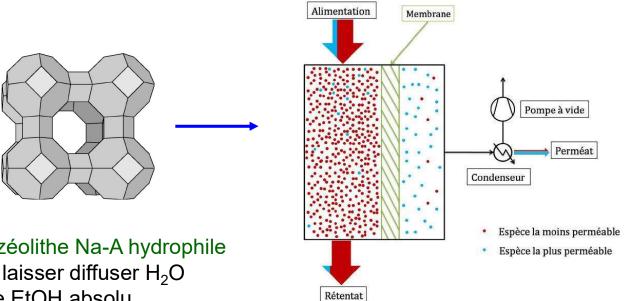
Elle est exprimée en volume de fluide séparé, par unité de surface de membrane, par unité de temps

- $\rightarrow$  en L/m<sup>2</sup>/h
  - ⇒ Recherche d'une productivité élevée
    - **⇒** Trouver le bon compromis entre les deux facteurs

## **b** pervaporation

= séparation des constituants d'un mélange liquide par vaporisation partielle à travers une membrane dense




- Application  $\triangle P$  entre 2 côté de la membrane
  - → la phase susceptible de traverser la membrane (adéquation de taille) est vaporisée, diffuse à travers la membrane, est recondensée en liquide phase ⇒ perméat
  - → la phase en inadéquation de taille reste sous forme liquide en amont
  - ⇒ transfert possible grâce à la différence de pression de vapeur des composés

Matériau idéal : ⇒ bonne sélectivité

⇒ productivité élevée (L/m²/h)

## by pervaporation : séparation mélanges eau-éthanol

- Application dans les unités de fabrication du bio-éthanol
- La production de bio éthanol (fermentation sucres, amidon) produit de solutions aqueuses d'éthanol
- L'alcool absolu (99.9%) peut être obtenu par distillation azéotropique → processus long, difficile (si volatilités constituants proches)
- Possibilité de séparation par pervaporation sur membranes hydrophiles



 $\underline{Ex}$ : membrane zéolithe Na-A hydrophile Affinité pour laisser diffuser  $H_2O$ Obtention de EtOH absolu Flux ~ 2,3 kg/m²/h

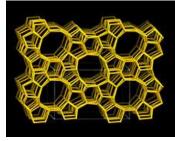
## www.membranes pour pervaporation

## Avantages

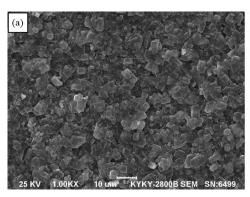
- faible consommation d'énergie par rapport à une distillation car seule la fraction du liquide extraite est vaporisée (10 à 150 kWh/m³)
- flexibilité et possibilité de compacité de l'installation (modulaire)
- pureté des produits obtenus et l'absence d'émissions polluantes
- simplicité de conduite et de contrôle

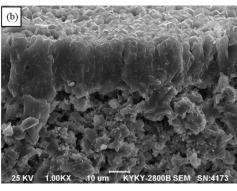
#### Inconvénients

- coût d'investissement qui peut être plus élevé que les techniques concurrentes (distillation, adsorption sur tamis moléculaire)
- choix de membranes industrielles encore insuffisant et ne couvrant pas tous les types de séparations
- nécessité d'entreprendre des essais préalablement à tout dimensionnement pour caractériser l'ensemble membrane / module / produit
- sensibilité des membranes à la variation de composition du liquide à traiter


# Séparation par pervaporation

## 🦴 mélange acide acétique / eau sur MFI substituée par Sn


- Séparation  $CH_3COOH/H_2O$  sur membranes hydrophobes polymériques  $\rightarrow$  performances insuffisantes : facteur de séparation  $\sim 2$ , flux :  $< 0.15 \text{ kg/m}^2/\text{h}$
- ⇒ Comparaison des propriétés d'une silicalite (MFI, Si/Al = ∞) et d'une MFI substituée Sn
- $\Rightarrow$  Elaboration de membranes MFI supportées sur des tubes α-Al<sub>2</sub>O<sub>3</sub> Voie hydrothermale : TEOS + SnCl<sub>4</sub>,5H<sub>2</sub>O + NaOH + TPABr (voie hydrothermale) Si/Sn =  $\infty$ , 100, 50, 30 et 25
- ⇒ La substitution de Si par Sn → hydrophobicité

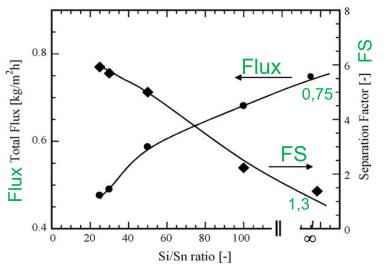

Mise en évidence substitution Si/Sn

- → FTIR : déplacement des bandes de vibration Sn-O par rapport à Si-O
- → DRX : augmentation du paramètre de maille suite à la substitution
- → MEB : forte densité de cristaux, pas de craquelures



**MFI** 





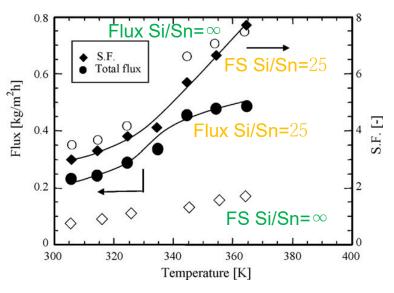

 $e \sim 15 \mu m$ 

# Séparation par pervaporation

## 🦴 mélange acide acétique / eau sur MFI substituée par Sn

• Pour la silicalite (Si/Al =  $\infty$ ) : FS  $\sim$  1,3, flux  $\sim$ 0,75 kg/m<sup>2</sup>h



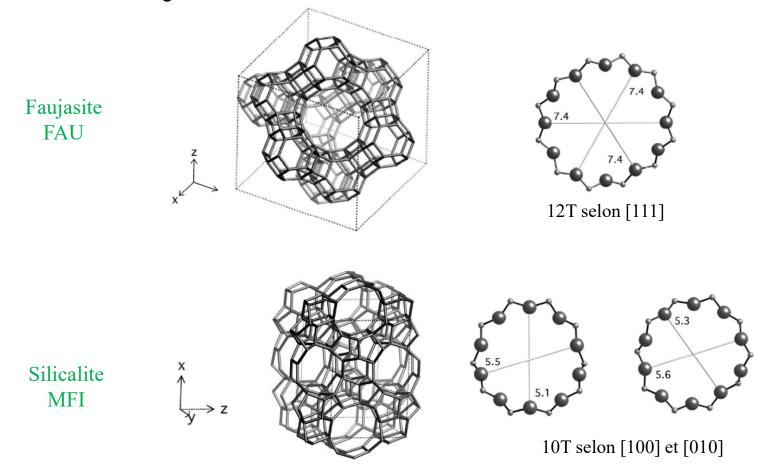

[CH<sub>3</sub>COOH] 5 wt.% 70°C

- Lorsque Si/Sn \(\sime\) de 100 à 25, SF \(\neq\) de 2,2 à 6,0
  - ⇒ plus il y a de Sn, meilleure est la séparation
  - ⇒ plus il y a de Sn, plus la zéolithe est hydrophobe
  - $\Rightarrow$  la zéolithe ne retient pas  $H_2O$
  - ⇒ H<sub>2</sub>O (perméat) est mieux séparée de l'acide
- Lorsque Si/Sn →, le flux total →
  - ⇒ plus il y a de Sn, plus la zéolithe est hydrophobe
  - ⇒ la zéolithe n'a pas d'affinité pour H<sub>2</sub>O
  - ⇒ l'eau la traverse doucement
  - ⇒ la séparation est lente

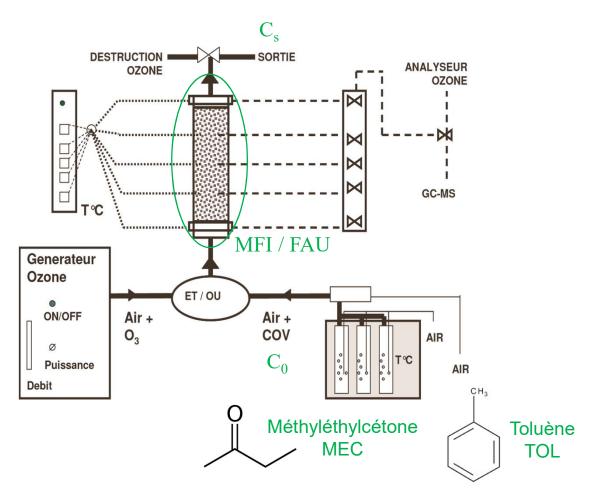
- ⇒ Si/Sn ↘, la séparation est meilleure mais la cinétique est plus lente
- ⇒ la teneur en Sn est limitée par la précipitation de SnO<sub>2</sub>

# Séparation par pervaporation

🤝 mélange acide acétique / eau sur MFI substituée par Sn : effet de T

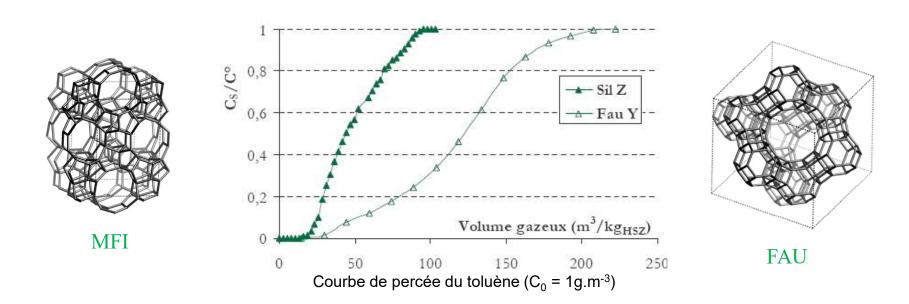



Comparaison Si/Sn =  $\infty$  et Si/Sn = 25 (MFI de FS le + élevé)


- Lorsque T 7, FS 7
  - ⇒ la vitesse de diffusion de H<sub>2</sub>O augmente plus que celle de CH<sub>3</sub>COOH
- Lorsque T 7, Flux 7
  - ⇒ II y a augmentation de la vitesse de diffusion de H<sub>2</sub>O et CH<sub>3</sub>COOH avec T
- $\Rightarrow$  pour Si/Sn = 25, pour un mélange 25wt.% CH<sub>3</sub>COOH/ 75 wt.% H<sub>2</sub>O, la MFI substituée est meilleure que la silicalite (Si/Sn =  $\infty$ ) et que les membranes polymériques classiques
- ⇒ Mais : les performances de la membrane צצ lorsque [CH₃COOH] オ
- ⇒ Limitation des applications

## ♦ Adsorption de COV et régénération in-situ de zéolithes par adsorption simultanée d'O<sub>3</sub>

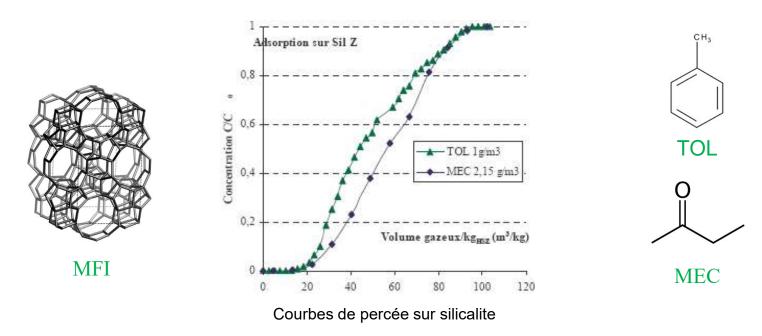
- Comparaison des propriétés d'adsorption d'une faujasite (FAU) et d'une silicalite (MFI)
- Adsorption du toluène (1 g.cm<sup>-3</sup>) et de la méthyléthylcétone (2,15 g.cm<sup>-3</sup>) contenus dans un effluent gazeux




## ♥ Banc expérimental



- ⇒ Saturation des zéolithes par l'effluent gazeux
- $\Rightarrow$  Etude des courbes de percée :  $C_s/C_0 = f(Volume gaz traité par unité de masse d'adsorbant)$


## ♥ Courbes de percée du toluène



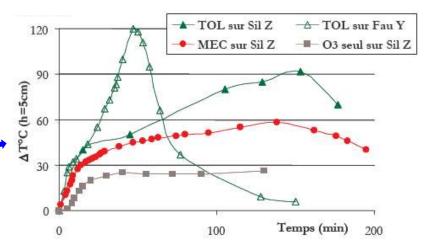
## ⇒ propriétés d'adsorption différentes pour les deux zéolithes

- La silicalite adsorbe plus rapidement le toluène (front de percée plus vertical)
- La silicalite est plus vite saturée ( $V_{gaz~\grave{a}~saturation} \sim 100~m^3.kg^{-1}~vs~225~m^3.kg^{-1}$  )
- Qads (FAU) > Qads (MFI)
  - ⇒ La cavité de FAU est + favorable à l'adsorption de TOL que les canaux de MFI
     ⇒ Adéquation de forme

## ☼ Courbes de percée de MEC et TOL sur silicalite

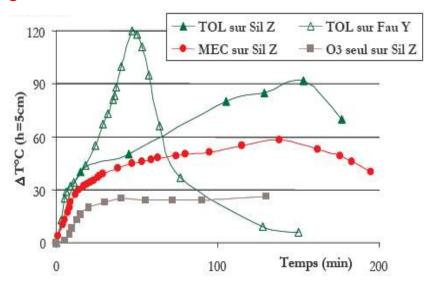


La silicalite adsorbe davantage de MEC


- → saturation obtenue pour un même volume gazeux mais avec un flux plus concentré (1 g.m<sup>-3</sup> pour TOL vs 2,15 g.m<sup>-3</sup> pour MEC)
  - ⇒ Les canaux de MFI sont + favorables à l'adsorption de MEC que les cavités de FAU
     ⇒ Adéquation de forme

## ♥ Régénération zéolithes

- → passage d'un courant air sec/O<sub>3</sub> (18 g.m<sup>-3</sup>) sur l'adsorbant saturé
- $\rightarrow$  mesure  $C_{O3}$  et  $C_{COV}$  en sortie
- $\forall$  zéolithe  $\forall$  COV  $\rightarrow$  réaction fortement exothermique  $\rightarrow$  formation de sous produits : organiques + H<sub>2</sub>O + CO<sub>2</sub>  $\rightarrow$  aucune trace d'O<sub>3</sub> détectée en sortie  $\rightarrow$  aucune trace d'O<sub>3</sub> détectée en sortie


Mesure de l' 7 de T au cours de la réaction d'ozonation

- + la réaction est exothermique
- + T 7
- + l'oxydation est importante



Profil de concentration à l'intérieur du lit lors de l'ozonation des zéolithes vierges et saturées en COV

## ♥ Régénération zéolithes



Profil de concentration à l'intérieur du lit lors de l'ozonation des zéolithes vierges et saturées en COV

- Pour l'oxydation de TOL sur SIL (▲) et FAU (△) → effet thermique différent
   → élévation de T + importante pour FAU
  - $\Rightarrow \varnothing_{pores}$  FAU (~ 13 Å) >  $\varnothing_{pores}$  MFI (~ 5-6 Å) ce qui favorise la diffusion des réactifs et produits  $\Rightarrow V_{poreux}$  FAU >  $V_{poreux}$  MFI  $\Rightarrow$  FAU peut adsorber une plus grande quantité de COV
- Sur la silicalite (MFI) → élévation de T plus faible pour MEC (●) que pour TOL (▲)
   → oxydation incomplète et formation de sous produits stables
- Sous produits détectés → TOL : acides oxalique, acétique, formique et acétaldéhyde → MEC : acide acétique, butan-2,3-dione

## Mécanismes de réaction (TOL)

## Hypothèse 1- Mécanisme classique d'oxydo-réduction

- → Adsorption du toluène sur la surface de la zéolithe
- $\rightarrow$  O<sub>3</sub> = gaz oxydant fort  $\Rightarrow$  dégradation du polluant par oxydation

## Hypothèse 2- Mécanisme radicalaire

→ Adsorption de l'ozone sur les sites acides de Lewis de la surface (s : aluminium)

$$O_3 + s = sO_3$$
  $s = site actif$ 

 $\rightarrow$  Décomposition en  $O_2$  et en oxygène atomique actif  $O^{\bullet}$ 

$$sO_3 = sO \cdot + O_2$$

→ Décomposition du toluène par l'oxygène atomique actif

$$C_7H_8$$
 (TOL) + 18 O • = 7  $CO_2$  + 4  $H_2O$  (détectés en sortie par GC-MS)

- ⇒ Possibilité de régénération in-situ de la zéolithe
- ⇒ Possibilité d'utilisation pour la dépollution en continu