Les solides mésoporeux

Adsorption de polluants en phase liquide

by piégeage du bore (B) des effluents aqueux

- 2 formes majoritaires :

$$H_3BO_3 + H_2O$$
 \rightarrow $B(OH)_4 + H^+$ pKa = 9,24 à 20 °C

- élément très largement utilisé dans les engrais
- norme WHO (World Health Organisation) : [B] < 0,3 mg.L⁻¹ dans les eaux potables
- mécanisme d'adsorption : complexation par des polyols

♦ utilisation des solides mésoporeux comme supports solides

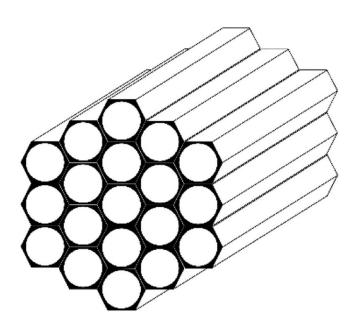
w utilisation de la mésoporosité pour greffer des polyols

♦ Silices mésoporeuses : MCM-41 et SBA-15

Synthèse hydrothermale

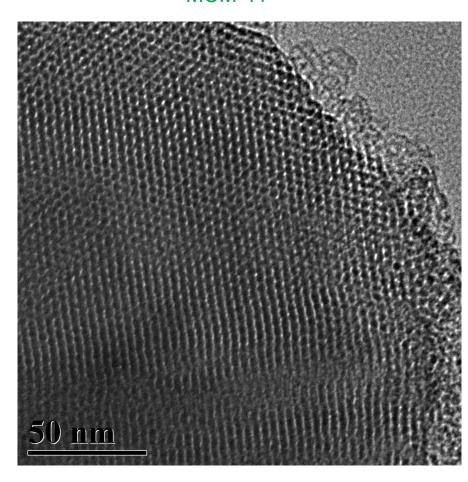
MCM-41 → tensioactif ionique

CTMA⁺Br⁻, n = 16, bromure d'héxadécyltriméthylammonium ($C_{16}H_{31}N(CH_3)_3^+$) = bromure de cétyltriméthyl ammonium

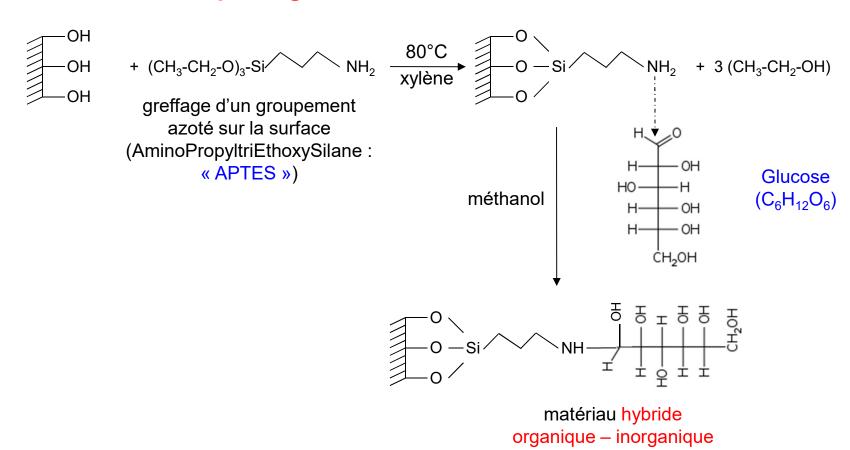


SBA-15 → tensioactif non ionique

Pluronic®: copolymère tribloc EO-PO-EO

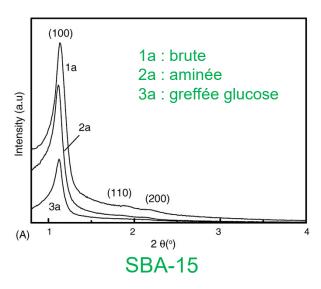

(Polyéthylène Oxyde - Polypropylène Oxyde - Polyéthylène Oxyde)

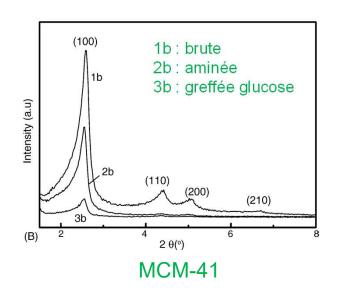
♦ propriétés texturales



Porosité en nid d'abeille

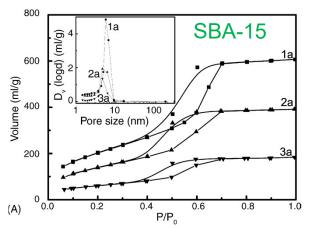
MCM-41




♦ fonctionnalisation par le glucose

7 nombre de sites complexants positionnés sur une chaîne flexible et mobile

∜diffraction des rayons X


- ⇒ pics caractéristiques de la symétrie hexagonale
- ⇒ pas de modification de la position des pics suite au greffage L charpente minérale non modifiée
 - ☑ intensité des pics, dès la première étape

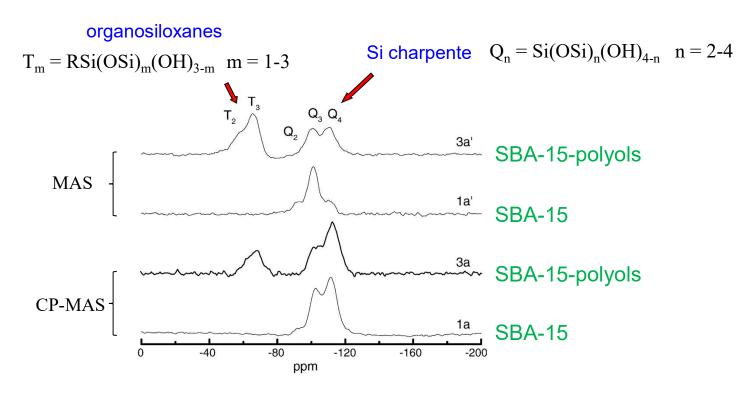
 - L signature de la présence du groupement aminé et du glucose dans la porosité

♦ adsorption-désorption N2@77K + distribution tailles de pores (BJH ads.)

3 : greffée glucose

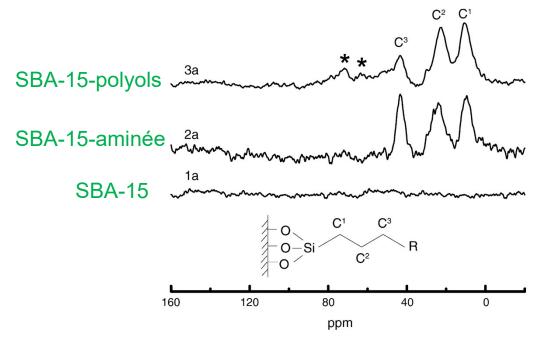
1 : brute 2 : aminée

type IV, hystérésis H1 ⇒ larges mésopores


600	MCM-41
(B) 400 -	(b/lw) (pbo)) A 2b 3h
Volume (ml/g)	ob 4 2b 2b 3b
200	1 10 100 Pore size (nm) 2b
	3b
(B) 0.0	0.2 0.4 0.6 0.8 1.0 P/P ₀

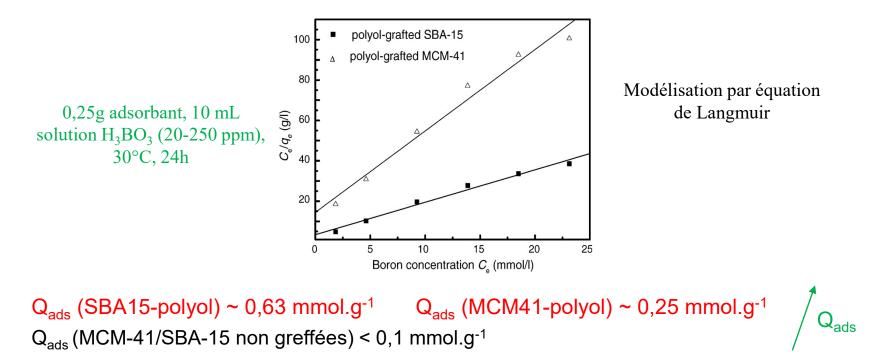
pas d'hystérésis ⇒ mésopores Ø < 4 nm

Echantillon		$S_{ m BET}$	V_p	$\varnothing_{\mathrm{pores}}$
		$(m^2.g^{-1})$	$(cm^3.g^{-1})$	(nm)
SBA-15	brute	755	0,94	5,6
	aminée	524	0,61	4,6
	glucose	224	0,29	4,2
MCM-41	brute	1260	0,95	2,5
	aminée	457	0,21	1,7
	glucose	69	0,056	< 1,5

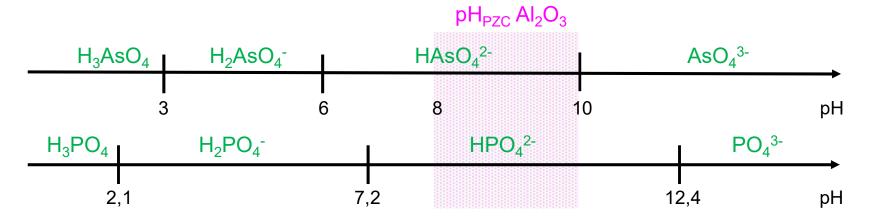

- → S_{BET} au cours des étapes de greffage
 - ⇒ signature de la présence de matière organique dans les pores
- Nettement plus marquée pour la MCM-41
 ⇒ confirme observation DRX
- V_{poreux} ~ 70% pour SBA-15 / ~ 95% pour MCM-41

♥ RMN ²⁹Si

- %silanols = (2Q₂ + Q₃)/(2Q₂ + Q₃ + Q₄)*100
 %silanols ≥ de 42% à 34% après fonctionnalisation
 - ⇒ fonctionnalisation incomplète (accessibilité des sites OH difficile pour le glucose)
 - ⇒ Le matériau conserve des propriétés hydrophiles (groupes OH résiduels)


♥ RMN ¹³C

- Avant greffage : pas de signal du carbone
- Après 1ère étape : 3 pics caractéristiques des groupes aminopropyl
- Après 2^{ème} étape : apparition de 2 nouveaux pics attribués aux atomes de carbone du glucose


⇒ Présence de glucose

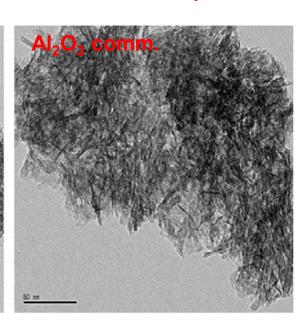
♦ isothermes d'adsorption

- porosité MCM41 < SBA-15 ⇒ l'obstruction des pores gêne l'accessibilité des sites d'adsorption
- SBA-15 : présence de micropores : adsorption dans les micropores ?
- Autres adsorbants : Q_{ads} (vermiculite) ~ 0,04 mmol.g⁻¹
 Q_{ads} (résines polymères) : jusqu'à 0,9 mmol.g⁻¹
- Adsorption irréversible complexation = chimisorption

- En solution, « As » et « P » sont combinés à « O » ⇒ formation d'anions
- « As » et « P » existent à différents d.o. : +III, +V
- Différentes spéciations selon le pH

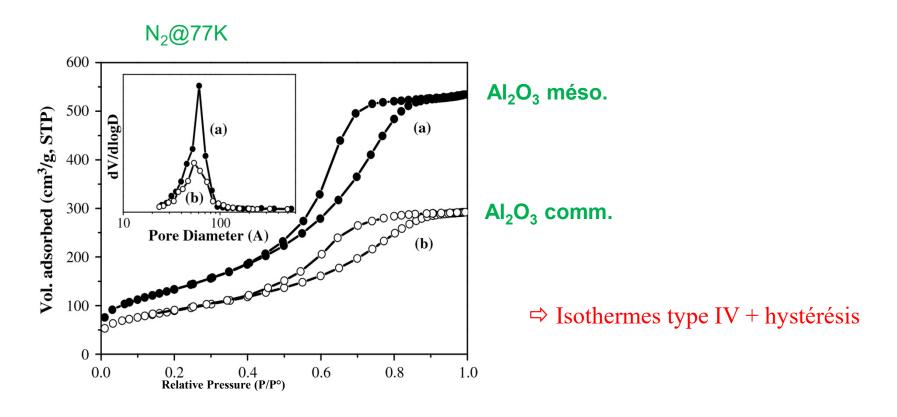
- adsorbants classiques \rightarrow alumine (Al₂O₃) \rightarrow charbons actifs \rightarrow goethite (FeO(OH)) \rightarrow gibbsite (Al(OH)₃)

 capacités d'adsorption faibles cinétiques lentes
- non retenus par les zéolithes ou argiles (charpente négative)

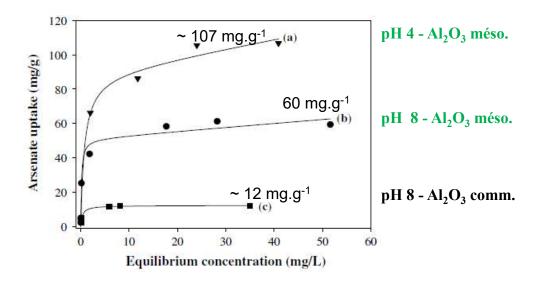

♦ Synthèse Al₂O₃ mésoporeuse

Aluminium tri-sec-butoxyde

Al₂O₃ méso


- Sol-gel,voie hydrothermale (100°C, 24 h) + calcination 500°C, 4 h
 ⇒ Al₂O₃ mésoporeuse activée
- Comparaison des propriétés avec une alumine commerciale : pseudo boehmite

MET


Texture fibreuse

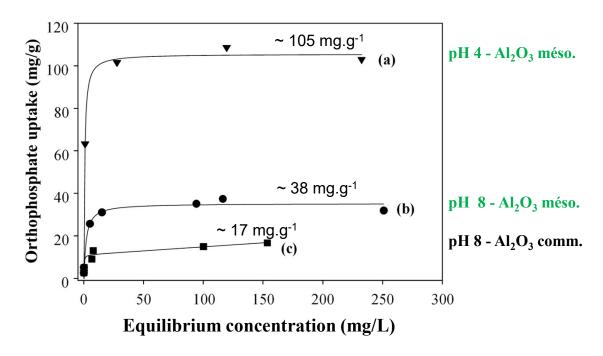
Texture vermiculaire

Adsorbant	S _{BET}		Vpores		Ø Pores
	(m^2/g)		(cm^3/g)		(nm, BJH)
Al ₂ O ₃ méso.	483		0,82		4,9
		x 1,5		x 1,8	
Al ₂ O ₃ comm.	322		0,45		4,5

\$\$ isothermes d'adsorption de l'arsenic ($C_0 = 10 \text{ à } 70 \text{ mg.L}^{-1}$)

 \Rightarrow Al₂O₃ méso : adsorption pH 4 > pH 8 (107 mg.g⁻¹ > 60 mg.g⁻¹)

A pH = 4, les interactions substrat / polluant sont favorisées


Surface matériau positive : sites AIOH²⁺, AI(OH)₂+, AI₁₃O₄(OH)₂₄⁷⁺ / polluant négatif : H₂AsO₄-

⇒ interactions coulombiennes

 \Rightarrow A pH 8 : $Q_{ads}Al_2O_3$ méso >>> $Q_{ads}Al_2O_3$ comm. \Rightarrow $Q_{ads}Al_2O_3$ méso \sim **5** x $Q_{ads}Al_2O_3$ comm.

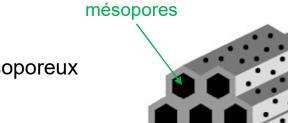
S_{BET} et V_{poreux} plus élevés ⇒ augmentation interactions avec le polluant

♦ isothermes d'adsorption des phosphates (C₀ = 10 à 250 mg.L⁻¹)

- \Rightarrow Al₂O₃ méso : adsorption pH 4 > pH 8 (105 mg.g⁻¹ > 38 mg.g⁻¹)
 - ⇒ interactions coulombiennes AlOH²⁺, Al(OH)₂+, Al₁₃O₄(OH)₂₄⁷⁺ / H₂PO₄-
- \Rightarrow A pH 8 : $Q_{ads}AI_2O_3$ méso > $Q_{ads}AI_2O_3$ comm. \Rightarrow $Q_{ads}AI_2O_3$ méso ~ **2** x $Q_{ads}AI_2O_3$ comm.
 - ⇒ Bonne corrélation des valeurs de S_{BET} et V_{poreux} avec les capacités d'adsorption pour les deux polluants

Les solides mésoporeux

Adsorption de polluants gazeux


- H₂S → effluent gazeux industriel répandu (sidérurgie, usines raffinage pétrole...)
 - \rightarrow gaz toxique (mortel en 30 min si [H₂S] > 500 ppm)
 - → responsable de l'oxydation des pipelines si concentration trop élevée
 - → génère SO₂ et SO₃ par dégradation (responsables des pluies acides)
- méthodes conventionnelles de dépollution : adsorption
 - → charbons actifs
 - $\rightarrow \gamma$ -Al₂O₃
 - → zéolithes
 - → argiles contenant du fer (précipitation FeS)

⇒ Problèmes de tenue mécanique, poussières, porosité tortueuse rapidement inaccessible

- **♦ Développement d'une silice micro/méso poreuse (SBA-15)**
 - + dépôt de nanoparticules de ZnO sur la surface

Objectifs \rightarrow dégradation de H₂S par réaction avec ZnO et précipitation de ZnS ZnO + H₂S \rightarrow ZnS + H₂O

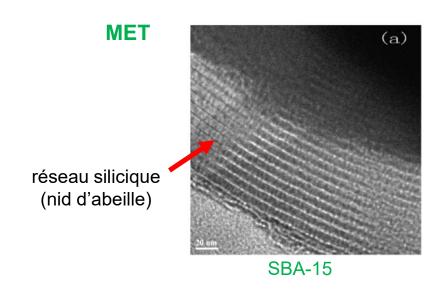
- SBA-15

 ⇒ réseau interne de canaux mésoporeux interconnectés par des micropores
- Sites actifs ⇒ nanoparticules de ZnO déposées sur la surface de SBA-15

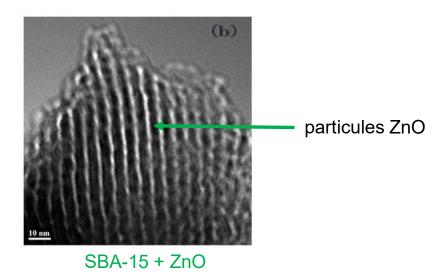
- **SBA-15**
- ⇒ utilisation des mésopores pour acheminer le gaz vers les sites actifs
- ⇒ réactions de piégeage dans les micropores et sur la surface des mésopores

micropores

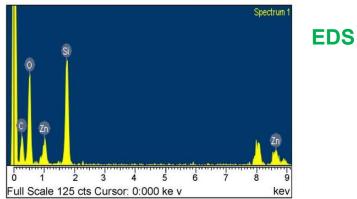
♦ Synthèse composite SBA-15 / ZnO


- → synthèse de SBA-15 par voie classique (hydrothermale, TEOS, Pluronic®)
- \rightarrow activation (550°C, 5h)
- \rightarrow dispersion du matériau dans une solution de Na₂CO₃ + Zn(NO₃)₂ sous ultrasons
- → précipitation et dispersion de particules de ZnCO₃ dans le réseau mésoporeux

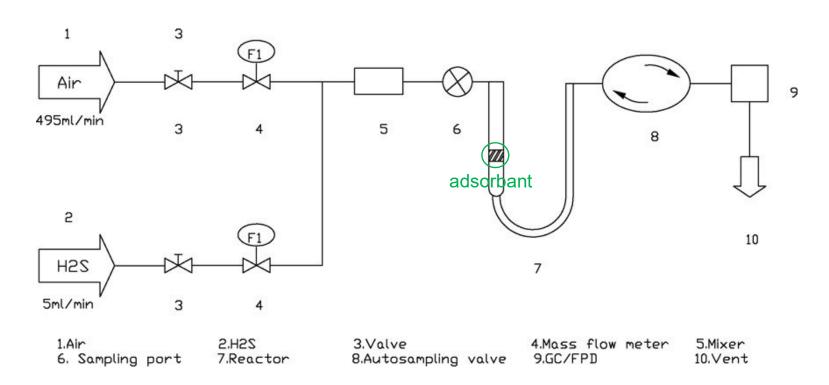
$$Na_2CO_3 + Zn(NO_3)_2 \rightarrow ZnCO_3 + 2 Na^+ + 2 NO_3^-$$


→ calcination et décomposition du carbonate (250°C)

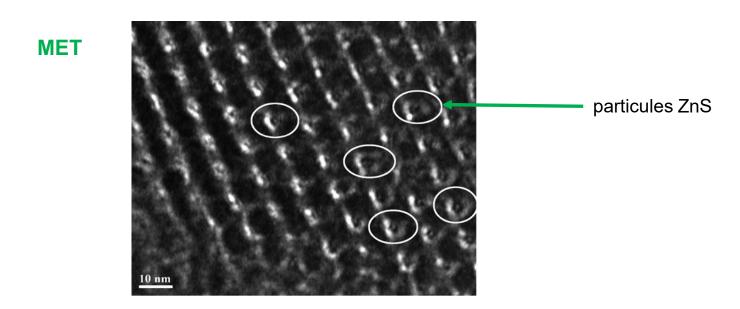
$$ZnCO_3 \rightarrow ZnO + CO_2$$


♦ Caractérisation composite SBA-15 / ZnO

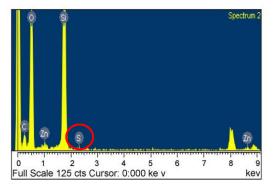
⇒ ZnO se loge dans la micro et méso porosité



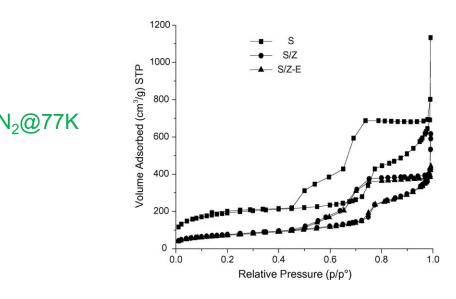
⇒ Analyse qualitative élémentaire


♦ Expérience de désulfuration

298K, 1atm, flux air/0,1% H₂S (500 mL.min⁻¹)



- Mesure de la concentration de H₂S en sortie par chromatographie gazeuse
- Arrêt de l'expérience si [H₂S]_{sortie} = 50 ppm


♦ Caractérisation composite après désulfuration

- ⇒ Préservation de la structure en nid d'abeille
- ⇒ Présence de nanoparticules (ZnS ?) dans la méso porosité

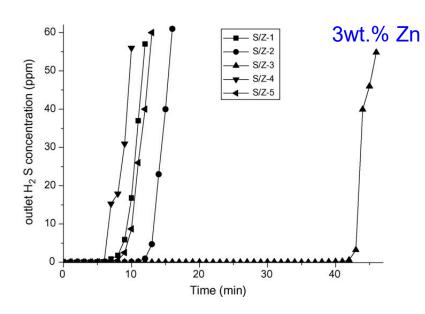
♦ Caractérisation porosité avant/après désulfuration

S:SiO₂

 $S/Z : \overline{SiO_2}/ZnO$

 $S/Z-E : SiO_2/ZnO + H_2S$

BJH				
$V_{\text{m\'eso}}$	>>	V_{micro}		


Echantillon	S _{BET} (m²/g)	V _{micro} (cm³/g)	V _{total} (cm³/g)
SiO ₂	\ \\ 690	0,099	1,64
SiO ₂ /ZnO	270	0,007	0,96
SiO ₂ /ZnO + H ₂ S	260	0,007	0,70

> S_{BET} ⇒ particules de ZnO et ZnS dans la micro et la macroporosité

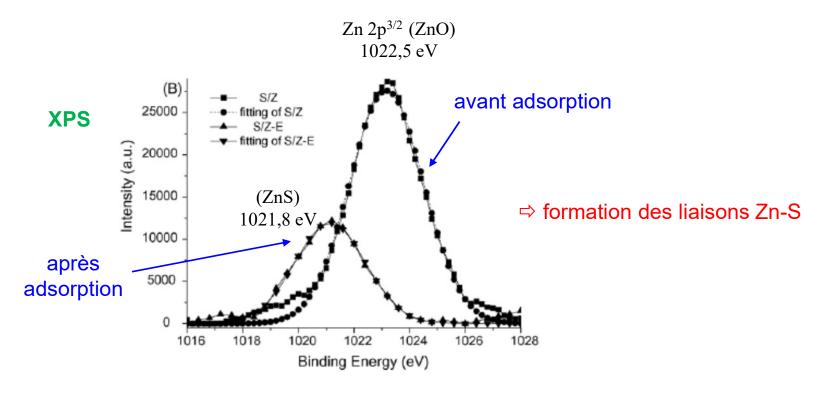
⇒ Obstruction quasi-totale des micropores

 $\stackrel{\searrow}{\mathbf{V}}$ $V_{\text{méso}}$ de 40% $\stackrel{\searrow}{\mathbf{V}}$ V_{micro} de 92%

♦ Courbes de percée

Ech.	Zn	Temps de	Q _{ads}	рН
	(wt. %)	percée (min)	(mgH ₂ S/g)	matériau
S/Z-1	0,5	6	37 🛉	7,9
S/Z-2	1,2	10	95	8,2
S/Z-3	3	40	440 🗸	8,3
S/Z-4	4,5	7	50	8,4
S/Z-5	9	6	40	8,7

- Q_{ads} 7 lorsque Zn wt.% 7 à 3 wt.%
- Au-delà de 3 wt.% Zn, Q_{ads} \searrow


l'excès de ZnO bloque l'accessibilité pour H₂S et limite la diffusion

- meilleur adsorbant : Zn = 3 wt. % (percée en 40 min vs 6-10 min) \Rightarrow Qads max = 440 mg H₂S/g
- 7 pH lorsque Zn wt.% 7
- pH optimal $\sim 8.3 \Rightarrow$ pH favorable à la précipitation de ZnS

⇒ Si Zn wt% trop élevé ⇒ porosité partiellement bouchée ⇒ sites moins accessibles

♦ Mécanisme d'adsorption

mise en évidence par XPS d'un nouvel environnements pour Zn

$$ZnO + H_2S \longrightarrow ZnS + H_2O$$

Adsorption irréversible : chimisorption