Bases de Données relaionnelles
e

SQL

lIham Alloui
o (Source principale : Vincent Couturier)

www.polytech.univ-savoie.fr

SQL — Langage d’Interrogation
de Données (LID)

.|—

- Rappels SQL

- Projection

- Restriction/sélection
- Jointures

- VWues

Langage de requéte : SQL

= Structured query language (SQL), ou /angage
structure de requétes, . pseudo-langage informatigue
(de type requéte) standard et normalise, destiné a
interroger ou a manipuler une
base de données relationnelle

= Une relation est définie par un ensemble d’attributs
dont les valeurs représentent des tuples

Patients
Id-P Nom Prénom Ville

luple <1 | Lebeau | Jacques | Paris —

2 Troger Zoe Evry
3 Doe John Paris
4 Perry Paule Valenton

Principes SQL

= |angage fondé sur la logique des prédicats et le
modele relationnel

= Langage non procédural

= permet de décrire le résultat sans spécifier I'ordre
d'exécution des différentes opérations

= Langage ensembliste

= Une requéte SQL est équivalente a une suite
d'opérations relationnelles (e.g. projection,
restriction, jointure)

= SQL est une norme depuis fin 1986

Selection/Restriction

Sélection

Patients

Patients
Id-P Nom Prénom Ville

.

Id-P Nom Prénom Ville

Lebeau | Jacques Paris

2 Troger Zoe Evry
moger Evry
3 | Doe John Paris -m
Perry = Paule | Valenton el hale N3enkon

Patients de la ville de Paris

Projection

Patients
Id-P Nom Prénom \Ville

Projection Patients

Id-P Nom Prénom Yille

Jacques | Paris Jacques A

2 | Troger Zoe Evry Z0e B0y

3 Doe John Paris

John pParis

Perry Paule | Valenton Paule N atenton

Nom et prénom des patients

Jointure

Jointure

Patients Visites
Id-P Nom Prénom Ville Id-D Id-P Id-V Date Prix
1 Lebeau | Jacques Paris 1 1 15 juin 250
2 | Troger Zoe Evry 1 2 12 ao(it | 180
3 Doe John Paris 2 3 13 juillet | 350
4 Perry Paule Valenton 2 4 1 mars 250

Id-P Nom Prénom Ville Id-D Id-P Id-V Date Prix

1 Lebeau | Jacques | Paris 1 1 2 12 aolt | 180

2 Troger Zoe Evry 1 2 15 juin 250

2 Troger Zoe Evry 2 2 3 13 juillet = 350

3 Doe John Paris 2 3 4 1 mars | 250

Patients et leurs visites

SQL LID : langage d’interrogation

= Expression d’'une requéte d’interrogation par un bloc :

SELECT <
FROM <
[WHERE <
GROUP BY <
HAVING <
ORDER BY <

iste G
iste ¢
iste G
iste ¢
iste ¢

iste ¢

es attributs projetés>

es relations touchées par la question>

es criteres de restriction>

es attributs d'agregation>

es criteres de restriction sur les groupes>
es attributs de tri du résultat>]

= SQL possede egalement un /angage de definition de
donneées (création et modification de schéma) et un /angage
de manipulation de données (insertion, suppression et mise
a jour de tuples)

8

Base de données exemple

= Schéma de la base de données EMPLOYEES (2
relations ou tables regroupant des informations sur
des départements et des employés) :

= DEPT(DEPTNO, DNAME, LOC)

= EMP(EMPNO, ENAME, JOB, #MGR, HIREDATE,
SAL, COMM, #DEPTNO)

indigque une clé étrangere : un attribut dont les valeurs sont
« importées » d’une autre relation (e.g. #DEPTNO défini
dans DEPT) ou de la relation elle-méme (e.g. #MGR qui
prend ses valeurs depuis EMPNO défini dans EMP)

Un attribut souligné est une clé primaire de la relation :
identifie de maniere unique un tuple de la relation

Projection

=

Clause SELECT

= | 'ordre minimal pour une interrogation est constituée
de deux parties : SELECT et FROM, appelées clauses,
toujours écrites dans cet ordre

= Recherche simple

= SELECT : expression des données requises en résultat
(attrlbuts de relations, fonctions, etc)

= FROM : provenance des données (tables, vues, ...)

= Exemple : Sélection de tous les attributs de la
relation des services

SELECT *
FROM DEPT

k" affiche toutes les données contenues dans la relation DEPT,
dans l'ordre des attributs défini a la création de la relation.
L'utilisation du * est cependant a déconseiller dans les
applications.

11

Clause SELECT (suite)

= Sélection d'attributs : projection

= Sélectionner des attributs dans une relation correspond a
'opération de PROJECTION : extraction d’ une partie des
attributs d'une relation

= |'ordre des noms d’attributs dans le SELECT détermine
'ordre des attributs dans le résultat

= Sélection d'un attribut de la relation des services
SELECT dname

FROM DEPT

= SQL n’élimine pas les doublons, pour les éliminer on utilise
DISTINCT

12

Clause SELECT DISTINCT

= Permet d’éliminer les doublons

Exemple sans distinct
SELECT job
FROM emp

ANALYST
PRESIDENT
SALESMAN
CLERK
CLERK

ANALYST
CLERK

= Exemple avec distinct
SELECT DISTINCT job
FROM emp

PRESIDENT
SALESMAN

13

Clause FROM

= Deécrit les objets (tables, vues...) utilisés par la
requéte :
= Nom de la table
SELECT deptno
FROM dept

= Nom du schéma (~base de données), nom de la table
SELECT deptno
FROM coursl .dept

= Création d'un alias
SELECT d.deptno
FROM dept d

14

Colonnes de SELECT

= Constante: 1
= Nom d’attribut d'une relation : deptno

= Expressions arithmétiques, sur chaines de caracteres,
ou sur dates : (sal*1.1) + 20

= Fonction simple appliquée a une expression :
power(expr,2)

= Fonction agissant sur les valeurs provenant de
plusieurs lignes : max(sal)

15

Constantes

Constantes numériques
-2

105.37

3.5E17
Constantes de type chaine
alphanumérique

'ROSS154"

'"Jaune plombé'’

'"Pluie d''étoiles en juillet
1992

Constante de type date
'21/07/91"
Constante NULL : valeur inconnue

Exemple NULL

SELECT 1,
NULL

FROM dept

16

En-tetes d’attributs

= Peuvent étre modifiés

= Un nom local peut étre donné a une colonne de résultat, en vue d'une
présentation particuliere des en-tétes de colonnes ou de la compréhension
de la requéte. Ce nom local de colonne ne peut apparaitre que dans la
clause SELECT

= Pour créer un nom de colonne comportant des blancs de séparation, ou des
caracteres speciaux (/, *, %, etc), il faut placer ce nom entre gunlemets

= Exemple OU autre écriture possible

SELECT deptno Service, SELECT deptno AS Service,
dname '"Nom service" dname AS "Nom service"

FROM dept FROM dept

Service Nom service

10 ACCOUNTING
20 RESEARCH
30 SALES
40 OPERATIONS
17

Expressions arithmeétiques

Opérateurs
+ Addition
- Soustraction
* Multiplication
/ Division

Utilisables pour tout attribut numérique
Priorité selon I'ordre arithmétique ou en fonction des parentheses
Exemple :

SELECT (sal*1l.l1l) + comm

FROM emp

(SAL*1.1)+COMM

18

Restriction / sélection

=

Clause ORDER BY

= Tri le résultat d'une requéte,
= Classement ascendant ASC (par défaut), ou descendant (DESC),
= Une seule clause ORDER BY toujours a la fin du SELECT

= Les éléments cités dans la clause ne figurent pas nécessairement dans
le SELECT

= Les valeurs nulles se trouvent en fin de résultat si option ASC, en téte
si option DESC

= Les éléments de la clause peuvent étre le nom des colonnes, le numéro
des colonnes, une expression

= Exemples :
SELECT ename, SELECT ename,
sal, sal,
deptno deptno
FROM emp FROM emp
ORDER BY deptno, sal ORDER BY 3, 2, 1
ENAME SAL DEPTNO ENAME SAL DEPTNO
MILLER 1300 10 MILLER 1300 10
CLARK 2450 10 CLARK 2450 10

Clause WHERE

m La clause WHERE réduit le nombre de lignes concernées par la
recherche
= Exemple : Sélection des employés du service 10

SELECT ename, sal
FROM emp
WHERE deptno = 10

ENAME SAL
CLARK 2450
KING 5000
MILLER 1300

= Les conditions de recherche sont des expressions logiques vraies ou
fausses en fonction des lignes passées en revue

= Une condition est aussi appelée prédicat. Elle est toujours composée
de trois membres : deux expressions encadrant un opérateur de

comparaison

Prédicat = Expression OPERATEUR DE COMPARAISON Expression
=> Prédicat = attribut OPERATEUR DE COMPARATISON valeur
Prédicat = attribut OPERATEUR DE COMPARATISON attribut 21

Opérateurs de comparaison

= QOpérateurs permettant de construire les prédicats :
Comparaison : =, |=, <>, >, >=, <, <=

Intervalles : BETWEEN

Concordance de caracteres : LIKE avec jokers : _,%

Gestion des colonnes "NULL" : IS NULL

Enumération : IN

Négation : NOT IN, NOT LIKE, NOT BETWEEN, IS NOT NULL

= Exemple : employés possédant une commission et un salaire supérieur

a 900
SELECT ename,
job,
sal,
comm

FROM emp
WHERE sal > 900
AND comm IS NOT NULL

22

Opérateur de comparaison =

= Exemple : Nom des employes, et numero de service
des employes qui sont vendeurs

SELECT ename,

deptno
FROM emp
WHERE Jjob = 'SALESMAN'
ENAME DEPTNO
ALLEN 30
WARD 30
MARTIN 30

23

Opérateurs de comparaison : >,<

La relation d'ordre utilisée dépend du type de données :
= numérique,
= alphabétique,
= chronologique

= Exemple avec les dates : > signifie postérieur, < signifie antérieur
SELECT ename, hiredate

FROM emp
WHERE hiredate < '1981-01-01' -- format de la date dépend du SGBD

= Pour les comparaisons de chaines : les lettres majuscules et minuscules sont
supérieures aux nombres et les maJuscuIes et minuscules ont parfois une importance

(dépend des options du SGBD)

= Exemple du supérieur avec des chaines de caracteres : SELECT ename
FROM emp

SELECT ename WHERE ename > 'MARTIN'
FROM emp ORDER BY ename DESC;
WHERE ename > 'martin' ENAME

WARD
TURNER
no rows selected SMITH
SCOTT
MILLER

ORDER BY ename ASC

24

Opérateur de comparaison LIKE

= Exemple avec jokers _ (remplace une lettre) et %
(toute chaine de caracteres)

= Nom des employés ayant AR dans leur nom a partir de la
deuxieme lettre

SELECT ename
FROM emp
WHERE ename LIKE (' AR%')

25

Opérateur de comparaison IN

= Exemple : Employés travaillant dans les services 10 et 20

SELECT ename,
deptno
FROM emp
WHERE deptno IN (10,20)

ENAME DEPTNO
SMITH 20
JONES 20
CLARK 10
SCOTT 20
KING 10
ADAMS 20
FORD 20
MILLER 10

= Exemple avec IN et des chaines de caractéres

SELECT deptno,
dname
FROM dept
WHERE loc IN ('DALLAS', 'CHICAGO')

26

Cﬁérateur de comparaison NOT IN

= Exemple : Nom des employés ne travaillant pas dans les
services 10 et 20

SELECT ename,
deptno
FROM emp
WHERE deptno NOT IN (10, 20)

ENAME DEPTNO
ALLEN 30
WARD 30
MARTIN 30
BLAKE 30
TURNER 30

27

Opérateurs de comparaison
BETWEEN / NOT BETWEEN

= Opérateur BETWEEN : Les bornes sont prises en compte lors de la
recherche

= Exemple : employés ayant un salaire compris entre 2450 et 3000

SELECT ename,
sal
FROM emp
WHERE sal BETWEEN 2450 AND 3000

ENAME SAL
JONES 2975
BLAKE 2850
CLARK 2450
SCOTT 3000
FORD 3000

28

Opérateurs de comparaison
IS NULL

Une valeur NULL est une valeur inconnue
= NULL<>O0
= NULL = non renseigné
= test par IS NULL et non = NULL
= Exemple : employés n'étant pas commissionnés

SELECT ename,
deptno

FROM emp

WHERE comm IS NULL

ENAME DEPTNO
SMITH 20
JONES 20
BLAKE 30
CLARK 10

29

Opérateurs de comparaison
IS NULL (suite)

. Remarques :
= |'utilisation d'une colonne "NULL" dans un calcul nécessite I'utilisation d'une fonction IFNULL (c.f fonctions)
= Exemple:

SELECT ename,

sal,

comm,

sal + comm,

sal + IFNULL(comm,0) -- Pour Oracle : NVL(), SQL Server : ISNULL()
FROM emp
ENAME SAL COMM SAL+COMM SAL+IFNULL (COMM, 0)
SMITH 800 800
ALLEN 1600 300 1900 1900
WARD 1250 500 1750 1750
JONES 2975 2975
MARTIN 1250 1400 2650 2650
BLAKE 2850 2850
CLARK 2450 2450
SCOTT 3000 3000
KING 5000 5000
TURNER 1500 0 1500 1500
ADAMS 1100 1100

JAMES 950 950

Opérateurs logiques : liaisons
de conditions AND

= Les opérateurs logiques permettent de construire des prédicats
composes en reliant des prédicats simples

= Plusieurs opérateurs logiques peuvent étre utilises {NOT, AND, OR}, ils
sont par defaut evalues dans cet ordre

=]| est conseillé d'utiliser les parenthéses pour imposer I'ordre
d'évaluation ou éviter toute ambiguité
= Liaison par AND
= relie deux conditions ou prédicats
" ne renvoie des résultats que lorsque toutes les conditions sont vraies
= Exemple : nom des employés, numéro de service et salaire pour les

employes travaillant dans le service 10, n'ayant pas de commission, et
ayant un salaire supérieur a 1000

SELECT ename,

deptno,

sal
FROM emp
WHERE deptno = 10
AND sal > 1000
AND comm IS NULL

31

Opérateurs logiques : liaisons
de conditions OR

= Liaison par OR
= relie deux conditions

= renvoie des résultats lorsque I'une des conditions
est vrale

= Exemple : nom des employés, et salaire pour
les employes n'ayant pas de commission, ou
ayant un salaire inférieur a 1000
SELECT ename,
sal
FROM emp
WHERE comm IS NULL
OR sal < 1000

32

Méemento

= De méme que pour l'arithmétique, le résultat d'une
opération portant sur des nombres est un nombre, le
résultat d'un SELECT est une relation
SELECT ...
FROM
WHERE ...

construit une relation

= On pourra donc utiliser le résultat d'un SELECT dans
d'autres requétes SQL
= sous-sélections,
= jointures,
= UNION ...

33

Jointures

=

Produit cartésien

= Produit cartésien
= Opération entre relations qui combine toutes les occurrences (tuples)

= Le nombre de lignes résultant est égal a la multiplication des nombres de lignes de chacune
des relations

= Exemple :

SELECT ¥*
FROM dept, emp

EMPNO ENAME JoB MGR HIREDATE SAL COMM DEPTNO DEPTNO DNAME LOoC
7369 SMITH CLERK 7902 17-DEC-80 800 20 10 ACCOUNTING NEW YORK
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30 10 ACCOUNTING NEW YORK
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30 10 ACCOUNTING NEW YORK
7566 JONES MANAGER 7839 02-APR-81 2975 20 10 ACCOUNTING NEW YORK
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30 10 ACCOUNTING NEW YORK
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30 10 ACCOUNTING NEW YORK
7782 CLARK MANAGER 7839 09-JUN-81 2450 10 10 ACCOUNTING NEW YORK
7788 SCOTT ANALYST 7566 09-DEC-82 3000 20 10 ACCOUNTING NEW YORK
7839 KING PRESIDENT 17-NOv-81 5000 10 10 ACCOUNTING NEW YORK
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30 10 ACCOUNTING NEW YORK
7876 ADAMS CLERK 7788 12-JAN-83 1100 20 10 ACCOUNTING NEW YORK
7900 JAMES CLERK 7698 03-DEC-81 950 30 10 ACCOUNTING NEW YORK
7902 FORD ANALYST 7566 03-DEC-81 3000 20 10 ACCOUNTING NEW YORK
7934 MILLER CLERK 7782 23-JAN-82 1300 10 10 ACCOUNTING NEW YORK
7369 SMITH CLERK 7902 17-DEC-80 800 20 20 RESEARCH DALLAS
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30 20 RESEARCH DALLAS
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30 20 RESEARCH DALLAS
7566 JONES MANAGER 7839 02-APR-81 2975 20 20 RESEARCH DALLAS
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30 20 RESEARCH DALLAS
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30 20 RESEARCH DALLAS
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30 20 RESEARCH DALLAS
7782 CLARK MANAGER 7839 09-JUN-81 2450 10 20 RESEARCH DALLAS
7788 SCOTT ANALYST 7566 09-DEC-82 3000 20 20 RESEARCH DALLAS
7839 KING PRESIDENT 17-Nov-81 5000 10 20 RESEARCH DALLAS
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30 20 RESEARCH DALLAS
7876 ADAMS CLERK 7788 12-JAN-83 1100 20 20 RESEARCH DALLAS
7900 JAMES CLERK 7698 03-DEC-81 950 30 20 RESEARCH DALLAS

56 rows Selected. 35

Les jointures

EMPNO ENAME DEPTNO
7369 SMITH 20
7499 ALLEN 30
7521 WARD 30

DEPTNO DNAME LOC
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO

Les jointures (suite)

= Exemple : Requéte ramenant le nom de I'employé, le numéro, le nom et la localité du service

SELECT d.deptno,

d.dname,

e.ename,

d.loc

FROM dept d, emp e
WHERE d.deptno = e.deptno
DEPTNO DNAME ENAME LOC

10 ACCOUNTING CLARK NEW YORK
10 ACCOUNTING KING NEW YORK
10 ACCOUNTING MILLER NEW YORK
20 RESEARCH SMITH DALLAS
20 RESEARCH JONES DALLAS
20 RESEARCH SCOTT DALLAS
20 RESEARCH ADAMS DALLAS
20 RESEARCH FORD DALLAS
30 SALES ALLEN CHICAGO
30 SALES WARD CHICAGO
30 SALES MARTIN CHICAGO
30 SALES BLAKE CHICAGO
30 SALES TURNER CHICAGO
30 SALES JAMES CHICAGO

37

Les jointures (suite)

= La jointure :
= Produit cartésien suivi d’une restriction et d’'une projection,
= recherche des données provenant d'au moins deux relations,

= combine les relations en faisant correspondre les valeurs
présentes dans chaque relation

= WHERE :

= au moins une partie de la condition de recherche doit étre
une clause de jointure valide,

" |les noms de colonnes qui figurent dans la jointure ne sont
pas necessairement les memes

= SELECT :

" les colonnes qui figurent dans la condition ne sont pas
obligatoires dans la clause SELECT

38

Jointure : Alias

= Un alias ou synonyme local :
= permet de renommer localement une relation
permet de faire référence aux relations de facon abrégée

= permet une lecture et une écriture aisées des requétes Recomman de (car Op timis e)

peut étre repris n'importe ou dans I'ordre SELECT

est nécessaire dans le cas des auto-jointures (SQL2)
SELECT a.deptno,
= Exemple (SQL1): b.ename,
SELECT a.deptno, b.sal,
b.ename, b.comm
b.sal, FROM dept a JOIN emp b
b.comm ON a.deptno = b.deptno
FROM dept a, emp b WHERE
WHERE a.deptno = b.deptno b.comm IS NOT NULL
AND b.comm IS NOT NULL
(SQL2)
= Reégle d'écriture a adopter : préférer des noms d’alias SELECT d.deptno,

= compréhensibles (1¢es |ettres,...) ! e.ename,

SELECT d.deptno, e.sal,
e.ename, e.comm
e.sal, FROM dept d JOIN emp e
€ .comm ON d.deptno = e.deptno

FROM dept d, emp e WHERE

WHERE d.deptno = e.deptno e.comm IS NOT NULL

AND e.comm IS NOT NULL

39

Auto-jointure

= |'auto-jointure :

= opération de jointure d'une relation a elle-méme

= il faut considérer que la provenance est différente, comme si on avait a
faire réellement a deux relations, bien que les données se trouvent
physiquement en un seul endroit

= |e synonyme (ou alias) de relation est indispensable
= elle peut étre utilisée des qu'une ligne fait référence a une autre ligne de la

méme relation

= Exemple : Nom et salaire des employés ayant le méme salaire que

'FORD'
SELECT e2.ename,

e2.sal
FROM emp el, emp e2
WHERE el.ename = 'FORD'
AND el.sal = e2.sal
ENAME SAL
SCOTT 3000
FORD 3000

(SQL2)

SELECT e2.ename, e2.sal

FROM emp el JOIN emp e2
ON el.sal = e2.sal
WHERE
el .ename = 'FORD'

40

Méemento

On utilisera une jointure si :
= |es colonnes résultats (select liste + clause group by + clause order
by) proviennent de plusieurs tables,
= ou si les lignes résultats sont plus nombreuses que les lignes des
tables origines
Exemple : Pour chaque employé, liste des employés embauchés avant lui
(SQL2)
SELECT el.empno, el.hiredate,
e2.empno, e2.hiredate
FROM emp el JOIN emp e2
ON el.hiredate > e2.hiredate

SELECT el.empno,
el .hiredate,
e2.empno,
e2 .hiredate

FROM emp el, emp e2

WHERE el . hiredate > e2.hiredate

= Dans les autres cas, on préfere d'autres modes d'écriture (sous-
selections) afin d'améliorer la lisibilite et la testabilité

= 2 relations=1 condition de jointure au minimum
= nrelations = n-1 conditions de jointure au minimum

41

Vues

owww.polytech.univ-savoie.fr

Intéret d'une vue

= Simplification de requétes pour des non

spécialistes : en masquant les jointures frequemment
utilisées

Création de résultats intermédiaires pour des
requétes complexes (beaucoup de colonnes,
beaucoup de lignes, ou des noms complexes)

= Mise en ceuvre de la confidentialité : en cachant aux
utilisateurs certaines colonnes ou certaines lignes

= "Sauvegarder" des requétes frequemment utilisées

Définition d’'une vue

= VUE : table virtuelle => aucune
implémentation physique de ses données
(résultat d’ un SELECT)

= Seule la définition de la vue est
enregistrée A chaque utilisation de la
vue : le SGBD réactive sa construction

= Vue mono-table
Créée a partir d’une table
Modifications possibles dans la vue

= Vue multi-tables
Créée a partir d’ une jointure
Aucune modification autorisée

44

."Création/Suppression des vues

= Create [or replace] [force | no force] view <nom-de-vue>
[(<liste-alias>)]
As <requéte-select>

[WITH [CASCADED | LOCAL] CHECK OPTION];

les options qui ne sont pas en gras sont liees a des aspects plus
avances

= Drop view <nom-de-vue> ;

45

Creation/Suppression des vues

= OR REPLACE

permet le remplacement de la description par la nouvelle requéte si la
vue existe déja

= WITH CHECK OPTION (vues actualisables)

vérifie, lors de l'insertion ou de la modification de lignes dans la vue,
que les lignes insérées ou modifiées sont visualisables dans cette vue

= LOCAL vérification de l'intégrité au niveau de la vue seule

= CASCADED vérification au niveau de la vue et des vues
dépendantes (option par défaut)

46

- Exemples de création de VUES

= \/ue mono-table 1

CREATE VIEW enseignant info AS
SELECT * FROM enseignant<: 1 Table
WHERE idDip IN
(SELECT idDip FROM diplome
WHERE UPPER (nomDiplome) LIKE 'S$INFOS%');

= \/ue mono-table 2

CREATE VIEW etudiant scol AS
SELECT idEtu,nomEtu,adrEtu,idDip FROM etudiant;

- Exemples de creation de VUES

= \/ue mono-table 3

CREATE VIEW etudiant_info
(numEtudiant, nomEtudiant,adrEtudiant,dip) AS
SELECT idEtu,nomEtu,adrEtu,idDip Tr
FROM etudiant
WHERE i dDip IN Nouveaux noms
(SELECT idDip FROM diplome
WHERE UPPER (nomDiplome) LIKE 'S$INFO%');

Exemples de création de VUES

= VVue mono-table avec colonnes virtuelles

CREATE VIEW employe salaire
(ne,nome,mensuel, annuel, journalier) AS

SELECT idEmp,nomEmp,sal;sal*l2,sal/22
FROM employe;
|

" Pas de modification sur les colonnes
virtuelles

= Modifications autorisées sur les colonnes
de base = mise a jour instantanée !

Vues multi-tables

= Simplification de requétes
= Pas de modifications possibles de ce type de vue
= Tables temporaires ‘virtuelles’ de travalil

= Transformation de la présentation des données
—->Schéma externe

CREATE VIEW emp ser (nom service, nom employe)

AS

SELECT s.noms,e.nome FROM emp e JOIN service s ON
e.idSer=s.idSer; A

2 Tables

Exemples de vues multi-tables

= Reconstitution des clients (UNION)

CREATE VIEW clients (idCli,nom,...,secteur) AS

SELECT ct.*,’'T’ FROM clients toulouse ct
UNION

SELECT cb.*,’B’ FROM clients bordeaux cb
UNION

SELECT cm.*,’'M’ FROM clients montpellier cm;

= Reconstitution des etudiants (JOINTURE)

CREATE VIEW etudiants (idEtu,nom, adresse,
nomstage,entrstage) AS

SELECT e.id,e.nom,e.adr,s.nomS,s.entrS
FROM etudiant e JOIN stage s ON e.id=s.id;

Langage de Manipulation de
Données (LMD)

=

= INSERT
= UPDATE
= DELETE

Principe

= Le Langage de Manipulation des Données :

= INSERT :insertion d'une ou plusieurs lignes dans une table existante
= DELETE : destruction d'une ou plusieurs lignes d'une table existante

= UPDATE : mise a jour d'une ou plusieurs lignes d'une table existante

= |'ordre SELECT avec toutes ses fonctionnalités (sauf ORDER BY)
peut étre utilisé dans les ordres LMD

53

INSERT

= Pour insérer des n-uplets :

INSERT INTO R(A,,A,,...,A) VALUES (v,, V, ... V)

= Donc on donne deux listes : celles des attributs (les A,

de la table et celle des valeurs respectives de chaque
attribut (les v)

Chaque A doit étre un attribut de R

Les attributs non indiqués restent a NULL ou a leur valeur par
défaut

On doit toujours indiquer une valeur pour un attribut déclaré
NOT NULL

54

INSERT (suite)

= Exemple sans nom des colonnes
INSERT INTO dept
VALUES (50, null, null)

1 row created.

= Exemple avec nom de colonne
INSERT INTO dept (deptno)
VALUES (50)

1 row created.

= Pour une meilleure évolutivité, il est préféerable de nommer les
colonnes utilisees

INSERT (suite)

= Exemples insert avec select (plusieurs lignes) :

INSERT INTO essai

SELECT *

FROM emp

14 rows created.

INSERT INTO essai2 (deptno)
SELECT DISTINCT deptno
FROM emp

3 rows created.

= Exemple d'insertion avec des chaines de caracteres :

INSERT INTO DEPT (deptno, dname)
VALUES (50, 'COURS')

56

UPDATE

= On modifie une table avec la commande UPDATE :
UPDATE R SET Al=vl,A2=v2,...,An=vn
WHERE condition
= Contrairement a INSERT, UPDATE s'applique a un
ensemble de lignes
= On énumere les attributs que I'on veut modifier
= On indique a chaque fois la nouvelle valeur

= La clause WHERE condiition permet de spécifier les lignes
auxquelles s'applique la mise a jour. Elle est identique au
WHERE du SELECT

= On ne peut pas violer les contraintes sur la table

Y

UPDATE (suite)

= Exemple sans WHERE : augmentation des salaires de 5 %

UPDATE emp
SET sal = sal * 1.05

14 rows updated.

= Exemple avec WHERE : augmentation du salaire des
vendeurs

UPDATE emp
SET sal
WHERE job

sal * 1.05
'SALESMAN'

4 rows updated.

58

UPDATE (suite)

= Exemple : sous-requéte synchronisée

UPDATE emp e
SET sal = (SELECT AVG(e2.sal)
FROM emp e2
WHERE e.deptno = e2.deptno)

= Exemple : jointure (sans alias, ne fait pas partie de la
norme)

UPDATE emp
SET Sal = Sal + 100
FROM emp
JOIN dept ON emp.deptno = dept.deptno

WHERE dept.loc = ‘NEW YORK’ o
5

DELETE

= On détruit une ou plusieurs lignes dans une table
avec la commande DELETE :

DELETE FROM R WHERE condition

= C'est la plus simple des commandes de mise-a-
jour puisque elle s'applique a des lignes et pas a
des attributs

= Comme precedemment, la clause WHERE
condjtion est identique au WHERE du SELECT
(=restriction des nombres de lignes impliquées)

60

DELETE (suite)

= Exemple sans WHERE : suppression de tous les
services

DELETE FROM dept
4 rows deleted

= Exemple avec WHERE : suppression des employés
ayant une commission a zero

DELETE FROM emp
WHERE comm = 0
1 row deleted

61

DELETE (suite)

= Exemple avec WHERE et SELECT : suppression des employés
travaillant a DALLAS

DELETE FROM emp
WHERE deptno =
(SELECT deptno
FROM dept
WHERE loc = 'DALLAS')
5 rows deleted.

comme pour les update, on peut utiliser la notion de jointure

62

Syntaxe simplifiee

INSERT INTO [schema.] { table | view }

[(colonne [, colonne] ...]
{ VALUES (expr [, expr] ...) | Ordre SELECT }
UPDATE [schema.] { table | view } [alias]
SET { (colonne [, colonne] ...) = (Ordre SELECT)
| colonne = {expr | (Ordre SELECT)}}
[,{ (colonne [, colonne] ...) = (Ordre SELECT)
| colonne = {expr | (Ordre SELECT)}}]...
[WHERE condition]
DELETE
FROM [schema.] {table | view} [alias]
[WHERE condition]

63

Langage de Définition de Données
(LDD)
=

= Objectifs LDD

= Création de tables

= Modlfication de tables
= Suppression de tables

Objectifs LDD

= (Obijectifs :
= CREATE (création) :

= Tables avec des colonnes de types différents et contraintes (CREATE
TABLE)

= ALTER (modification) :
= Tables et contraintes (ALTER TABLE)

" DROP (suppression) :
= Tables et contraintes (DROP TABLE)

65

Création de tables

= Syntaxe :

CREATE TABLE nom_table (nom_champl type champl,
nom_champ2 type_champ2,

nom_champn type_champn) ;
= Exemple : création de la table des services
CREATE TABLE DEPT

(

DEPTNO NUMERIC (2) NOT NULL,
DNAME VARCHAR (14) ,
LOC VARCHAR (13) DEFAULT 'PARIS'
)
el el Type de donnée Propricte Va(;eéggur;ar
colonne yp (défaut = NULL) (facultatif)
DEPTNO NUMERIC(2) NOT NULL
DNAME VARCHAR(14)
LOC VARCHAR(13) DEFAULT
'PARIS’

66

Création de tables

choix des champs

= Avant de créer une table, il faut choisir les champs que
I'on va utiliser. Pour chaque champ il faut choisir un
nom et un fype.

= Les champs peuvent étre des types suivants :
numerique (entier ou rationnel), date et heure chaine
de caracteres, texte, blob, enumere, ensemble.

= Types possibles :

MySQL : CHARSM), VARCHAR(M%, INT[(M)] ou INTEGER[(M)], FLOAT[[(M,D])],
DOUBLE[(M,D)] ou REAL [(M,D)], DECIMAL[(M[,D])] ou NUMERIC[(M[,D])],
DATE, TIME, DATETIME, TIMESTAMP[(M)], BLOB, ENUM, SET,...

Oracle : CHAR(M), VARCHAR2(M), NUMBER[(M[,D])], DATE, TIMESTAMP[(M)],
BLOB, CLOB,BFILE,..

SQL SERVER : BIT, CHAR(M) VARCHAR(M), TEXT, DECIMAL[(ME], FLOAT,
INT, MONEY, REAL DATETIME, SMALLDATETIME TIMESTAMP[(M)], IMAGE,
BINARY(M), UNIQUEIDENTIFIER

67

Création de tables

choix des champs

= Avant de créer une table, il faut choisir les champs que
I'on va utiliser. Pour chaque champ il faut choisir un
nom et un fype.

= Les champs peuvent étre des types suivants :
numerique (entier ou rationnel), date et heure chaine
de caracteres, texte, blob, enumere, ensemble.

= Types possibles :

MySQL : CHARSM), VARCHAR(M%, INT[(M)] ou INTEGER[(M)], FLOAT[[(M,D])],
DOUBLE[(M,D)] ou REAL [(M,D)], DECIMAL[(M[,D])] ou NUMERIC[(M[,D])],
DATE, TIME, DATETIME, TIMESTAMP[(M)], BLOB, ENUM, SET,...

Oracle : CHAR(M), VARCHAR2(M), NUMBER[(M[,D])], DATE, TIMESTAMP[(M)],
BLOB, CLOB,BFILE,..

SQL SERVER : BIT, CHAR(M) VARCHAR(M), TEXT, DECIMAL[(ME], FLOAT,
INT, MONEY, REAL DATETIME, SMALLDATETIME TIMESTAMP[(M)], IMAGE,
BINARY(M), UNIQUEIDENTIFIER

68

Creation de tables (suite)

" CREATE a l'aide de SELECT
= Exemple : création de la table dept_20. La structure de
cette table est identique a celle de la table DEPT
CREATE TABLE dept 20 AS
SELECT * FROM dept
WHERE deptno = 20

69

Création de contraintes
- d'intégrite (1)

= Moyen permettant de garantir que les modifications apportées a la base ne pourront en
aucun cas la rendre incohérente

= Différents types de contraintes d'intégrité :

= Définie lors de la création des tables
= |es contraintes de domaine

type de colonne, valeur par défaut, ensemble de valeurs, conditions qu'une valeur doit
remplir ; caractére obligatoire ou non des colonnes (NULL ou NOT NULL).

= les contraintes de clé unique
garantissent qu'une méme valeur ne peut se trouver sur plus d'une ligne.
= les contraintes de clé primaire

colonne ou groupe de colonnes choisis pour identifier de fagon unique chacune des
occurrences de tables, et référencable par une clé étrangere.

= les contraintes référentielles (clé étrangéere)
garantissent qu'une colonne ou un groupe de colonnes existe dans une autre entité.

= Définies par trigger (déclencheur)

= Contraintes temporelles : salaire ne peut pas baisser...

= Contraintes avec agrégats : ne porte pas sur un attribut ou un tuple, mais plusieurs tuples
ou méme toute la table :

Exemple : « Il doit y avoir autant de départements localisés a Paris que de départements a
Londres »

Cette contrainte ne peut étre vérifiée que lorsque « tous les départements sont insérés »

70

Création de contraintes
d'intégrite (2)

= Respect des contraintes d'intégritée :

= Lors de chaque acces en mise a jour (ajout,
modification, suppression), le SGBD doit verifier les
contraintes d’intégrité

= Elles sont en général définies lors de la création des
tables, en donnant des précisions sur les attributs
concernes

= Certaines font I'objet de procédures particulieres
appelées triggers (déclencheurs) qui sont exécutees
lors de I'acces en MAJ aux données

71

Création de contraintes :
Contraintes de domaine

Les types de données :
" CHAR, VARCHAR, NUMERIC, ...

Le caractere obligatoire ou facultatif d'une colonne :
" NULL ou NOT NULL

La clause DEFAULT

= valeur par défaut pour une colonne, cette valeur est utilisée en création
(iinsert) ou modification (update) si l'utilisateur ne renseigne pas cette
colonne,

= peut étre une fonction (EX. : CURRENT DATE).

La clause CHECK (ou contraintes de validation) :

= Controle de valeur effectué pour toute execution d'une commande update,
insert oOuUu delete sur chaque ligne de la table

= Sj contrble est négatif, ordre SQL annulé
= Contrainte sur colonne :
" CONSTRAINT Ck LIG CDE check (gte cdee > 0)
= Contrainte sur table (plusieurs colonnes impliquées) :
® CONSTRAINT CK LIG CDE check (gte cdee >= qgte livree)

72

Creation de contraintes :
Contraintes de domaine (suite)

= Exemple : contraintes déclaratives
CREATE TABLE empl

(

empno NUMERIC (4) NOT NULL,

ename VARCHAR (10),

Jjob VARCHAR (9) CHECK (job in ('SALESMAN', 'CLERK', '"MANAGER')),
mgr NUMERIC (4),

hiredate DATE DEFAULT CURRENT DATE,

sal NUMERIC(7,2) CHECK (sal > 300 AND sal < 9000),

comm NUMERIC(7,2) CHECK (comm IS NULL OR comm<=sal/2),

deptno NUMERIC (2) NOT NULL
) ;
= Remarque : il est conseillé de nommer les contraintes afin de
simplifier le décodage des messages d'erreurs, la gestion des
activations ou désactivations des contraintes. Dans ce cas, il est
d’'usage de les positionner a la fin du CREATE TABLE

73

Creation de contraintes :
Contraintes de domaine (suite)

= Exemple : contraintes déclaratives
CREATE TABLE empl
(

empno NUMERIC (4) NOT NULL,

ename VARCHAR (10),

job VARCHAR (9),

mgr NUMERIC (4),

hiredate DATE DEFAULT CURRENT DATE,
sal NUMERIC(7,2),

comm NUMERIC(7,2),

deptno NUMERIC (2) NOT NULL,

CONSTRAINT ck _empl job CHECK (job in
('SALESMAN', 'CLERK', 'MANAGER')),

CONSTRAINT ck_empl sal CHECK (sal > 300 AND sal < 9000),
CONSTRAINT ck_empl comm CHECK (comm IS NULL OR comm<=sal/2)

Creation de contraintes :
Contraintes de domaine (suite)

= Exemple : Insertion d'une ligne ne respectant pas la
contrainte sur la colonne JOB.

La contrainte portant sur la colonne job n'est pas nommee, le

SGBD génere automatiqguement un nom unique.

INSERT INTO empl

VALUES (7600, 'TOTO', 'INCONNU', 10, null, 0, O, 10)
ERROR at line 1:

check constraint (SYS C0011195) violated

= Exemple : Insertion d'une ligne ne respectant pas la

contrainte sur la colonne salaire (contrainte nommee)

INSERT INTO empl VALUES

(10, 'toto', 'CLERCK', null, null, 0, 0, 10)
ERROR at line 1:

check constraint (COURS1.CHK EMP1 SAL) violated

= Remarque : aucune erreur ne sera soulevee dans MySQL, car
ce SGBD ne gere pas les contraintes CHECK !!! 75

Creation de contraintes :
Contraintes de clé unique

= Les contraintes de clé unique (UNIQUE) :

= permettent d'assurer I'unicité d'une colonne ou d'un
groupe de colonnes,

= |es valeurs NULL sont autorisees,

= une clé unique ne peut pas étre référencee par une
clé étrangere

76

Creation de contraintes :
- Contraintes de clé unique (suite)

= Exemple :
CREATE TABLE empl
(

empno NUMERIC (4) NOT NULL,
ename VARCHAR (10) UNIQUE,
job VARCHAR (9),

mgr NUMERIC (4),

Hiredate DATE,

sal NUMERIC (7, 2),

comm NUMERIC (7, 2),

deptno NUMERIC (2) NOT NULL
) ; [

Création de contraintes :
- Contraintes de clé unique (suite)
= Exemple : OU MIEUX

CREATE TABLE empl
(

empno NUMERIC (4) NOT NULL,
ename VARCHAR (10),

job VARCHAR (9),

mgr NUMERIC (4),

Hiredate DATE,

sal NUMERIC (7, 2),

comm NUMERIC (7, 2),

deptno NUMERIC (2) NOT NULL,

CONSTRAINT ug empl ename UNIQUE (ename)
) ; 0

Creation de contraintes :
Contraintes de clé primaire

= Les contraintes de clé primaire (PRIMARY
KEY) :

toute table doit disposer d'une clé primaire (unique, mais
pouvant étre composée de plusieurs champs),

la norme SQL impose que toutes les colonnes d'une clé
primaire soient obligatoires (la ou les colonne(s) est/sont
forcée(s) a NOT NULL),

unicité des valeurs de la clé
clé généralement référencée par des clés étrangeres.

79

Creation de contraintes :
Contraintes de clé primaire (suite)

= Exemple :
CREATE TABLE empl
(

empno NUMERIC (4) NOT NULL PRIMARY
KEY,

ename VARCHAR (10),

job VARCHAR (9) ,

mgr NUMERIC (4),

hiredate DATE,

sal NUMERIC (7,2),

comm NUMERIC (7, 2),

deptno NUMERIC (2) NOT NULL
) 80

Creation de contraintes :
Contraintes de clé primaire (suite)

= Exemple : OU MIEUX

CREATE TABLE empl
(

empno NUMERIC (4) NOT NULL,
ename VARCHAR (10),

job VARCHAR (9),

mgr NUMERIC (4),

hiredate DATE,

sal NUMERIC(7,2),

comm NUMERIC (7, 2),

deptno NUMERIC (2) NOT NULL,

CONSTRAINT pk empl PRIMARY KEY (empno)

Creation de contraintes :
Contraintes de clé etrangere

= Les contraintes de clé étrangere (FOREIGN KEY) :

= une colonne ou un groupe de colonnes qui référencent
la clé primaire d'une autre table,
= |a valeur de la clé étrangere doit :

= exister dans la table référencée (valeur de la clé étrangéere
= une des valeurs de la clé primaire),

= ou bien étre NULL (sauf si elle est clé étrangere et clée
primaire a la fois !).

= une clé étrangere ne peut référencer une table d'une
base distante.

= Le type de la clé étrangere doit correspondre a
celui de la clé primaire

82

Creation de contraintes :
Contraintes de clé etrangere (suite)

Implique que DEPTNO soit clé

" Exemple : primaire dans DEPT et que la
CREATE TABLE empl table DEPT soit déja créée !

(

empno NUMERIC (4) T NULL,
ename VARCHAR (10) ,
job VARCHAR (9) ,

mgr NUMERIC (4) ,

hiredate DATE,

sal NUMERIC(/,2),

comm NUMERI(/(7,2),

deptno NUMERAC (2) NOT NULL,

CONSTRAINT pk #gmpl PRIMARY KEY (empno),

CONSTRAINT f}/ empl deptno FOREIGN KEY (deptno)
REFERENCES dept (deptno),

CONSTRAINT fk empl mgr FOREIGN KEY (mgr) REFERENCES

empl (empno)
) ; 83

Creation de contraintes :
Contraintes de clé etrangere (suite)

= Exemple : Insertion d'une ligne ne respectant pas la contrainte de
clé étrangere fk empl deptno
INSERT INTO empl

VALUES (10, 'EMPLOYE 1', '"MANAGER', null, now(), 8000, null, 70);

ERROR: insert or update on table "emp1" violates foreign key constraint
"fk_empl_deptno”

DETAIL: Key (deptno)=(70) is not present in table "dept".

= Exemple : Insertion d'une ligne ne respectant pas la contrainte de
clé étrangere fk empl mgr
INSERT INTO empl

VALUES (20, 'EMPLOYE 2', 'SALESMAN', 30, current date,
4000, null, 10);

ERROR. insert or update on table "empl” violates foreign key constraint
"tk empl_mgr”

DETAIL. Key (mgr)=(30) is not present in table "empl”.

84

Contrainte de cle étrangere : on
DELETE CASCADE, ON UPDATE CASCADE

= Exemple :

CREATE TABLE empl

(
empno NUMERIC (4) NOT NULL,
ename VARCHAR (10),
job VARCHAR (9),
mgr NUMERIC (4),
hiredate DATE,
sal NUMERIC(7,2),
comm NUMERIC(7,2),
deptno NUMERIC (2) NOT NULL,

CONSTRAINT pk empl PRIMARY KEY (empno),
CONSTRAINT fk empl deptno FOREIGN KEY (deptno)

REFERENCES dept (deptno) ON DELETE CASCADE ON UPDATE
CASCADE,

CONSTRAINT fk empl mgr FOREIGN KEY (mgr) REFERENCES
empl (empno)
) ;
=> Si on supprime un service, de la table DEPT, référencé dans le table

EMP, les lignes de table EMP référencant ce service sont aussi
supprwnees

85

Creation de contraintes :
Clé primaire et clé étrangere

Clé a@p

v

1B B OB || B

86

Création de contraintes :
Clé primaire et clé étrangere (suite)

= Lors d'une insertion :
= Unicité de la clé primaire et des clés uniques ;

= Pour chacune des clés étrangeres, existence d'une
occurrence correspondante dans la table
referencee ;

= Cohérence des valeurs avec leur type (NUMERIC,
VARCHAR,...), le caractere obligatoire ou non (NULL
ou NOT NULL), les conditions eventuelles.

= Lors d'une suppression :

= S'il n'existe pas de clé etrangere dans d'autres tables
dont la valeur correspond a I'une des cles primaires
supprimees, la suppression est effectuee ;
= Sinon,
= soit la suppression est rejetée (ON DELETE RESTRICT)

= Soit toutes les lignes referencant I'une des clés primaires supprimées sont
aussi supprimees (suppression en CASCADE => ON DELETE CASCADE).

= Soit les clés étrangeres sont mises a NULL (ON DELETE SET NULL) 87

Création de contraintes :
Clé primaire et clé étrangere (suite)

= Lors d'une mise a jour :

= Coherence des valeurs avec leur type (NUMERIC,
VARCHAR,...), le caractere obligatoire ou non (NULL
Ou NOT NULL), les conditions eventuelles.

= Pour les mises a jour de clés etrangeres, on devra
realiser le meme controle que lors d'une insertion ;

= Pour les mises a jour d'une clé primaire,

= S'il n'existe pas de clé étrangere dans d'autres
tables dont la valeur correspond a I'une des cles
primaires mises a jour, la mise a jour est
effectuee ;

= Sinon :
= Soit la mise a jour est rejetée (ON UPDATE RESTRICT : interdiction
Si cle utilisee)
= Soit la mise a jour est répercutée sur toutes les lignes référencgant la
cle primaire modifiee (ON UPDATE CASCADE).

= Soit les valeurs de la clé étrangere sont remplacées par NULL (oN 88
UPDATE SET NULL)

NULL et clé étrangere

= La contrainte de clé unique ne prend pas en compte les valeurs NULL
(NULL n’est pas consideree comme une valeur !)
= Clés étrangeres : la contrainte FOREIGN KEY n'est pas controlée pour

une clé étrangere comportant la valeur NULL, y compris dans le cas
d'une clé concatenee dont I'une des valeurs est NULL.

e@lfangére Col 1 Col 2 Col 3
(Colt,Col2)| X1 Y1
X2 Y2
X3 NULL Clé primaire (Col1,Col2)
NULL NULL Col 1 Col 2
NULL Y3 X1 Y1
Invalide X3 Y3 X2 Y2

89

Modification de table : ALTER
TABLE

= ALTER TABLE : permet de modifier la structure initiale d'une table
= Ajout de colonnes,
= Modification de la valeur par défaut,
= Ajout de contraintes,
= Activation, ou suppression de contraintes,

= Exemple : Changement de la définition de la colonne DNAME de DEPT

dept dname VARCHAR (20) ;
dept dname NOT NULL;
dept dname NOT NULL;

—-— Commande ALTER non normalisée (dépend du SGBD).
Ex. avec MySQL

dept dname
dname VARCHAR (20) NOT NULL;
= Exemple : ajout d’'une colonne a la table DEPT
dept
date creation DATE NULL

90

Modification de table : ALTER
TABLE (suite)

= Remarques .

= Toutes les maodifications de structure ne sont pas
possibles : il faut respecter le contenu des tables
et les contraintes existantes sur les tables (clés
étrangeres,...).

= Sur l'exemple de rajout d'une contrainte NOT
NULL sur la colonne DNAME : s'il y avait eu des
noms de service (DNAME) non renseignés, la
contrainte NOT NULL n'aurait pas été valide.

91

Modification de table : ALTER
TABLE (suite)

= Exemple : ajout d'une contrainte de clé primaire a la
table DEPT

dept
pk dept PRIMARY KEY (deptno);

= Exemple : ajout d'une contrainte de clé étrangere a
la table EMP

emp

fk emp deptno FOREIGN KEY
(deptno) REFERENCES dept (deptno) ;

= Exemple : ajout d'une contrainte CHECK salaire >
commission

emp
ck emp sal CHECK (SAL > COMM) ;

92

Modification de table : ALTER
TABLE (suite)

= Remarques :

=]I est préférable de créer les contraintes de clé étrangere avec la
commande ALTER TABLE, i.e. apres la création des tables, plutot
que d'utiliser les contraintes déclaratives dans les CREATE TABLE.
Si les clés étrangeres sont créées en fin de script, il ne sera pas
nécessaire de respecter |'ordre de création des tables.

= Si un enregistrement ne satisfait pas la contrainte de type CHECK,
celle-ci est rejetée.

ALTER TABLE emp
ADD CONSTRAINT ck emp sal
CHECK (SAL > COMM) ;

ERROR : CHECK (SAL > COMM)

*

= Dans certains SGBD, il est possible de rejeter les lignes ne
satisfaisant pas les contraintes dans une table d'exception (Oracle,

SQL Server) o5

Suppression de table : DROP
TABLE

= Exemple : suppression de la table DEPT
dept;
NOTICE: constraint fk_emp_deptno on table emp depends on table dept

ERROR: cannot drop table dept because other objects depend on 1t
HINT: Use DROP ... CASCADE to drop the dependent objects too.

=> Neécessité de supprimer les tables dans I'ordre adéquat
(inverse de leur création) afin de respecter les contraintes
clé primaire / clé étrangere (de méme pour les
enregistrements !)

Ou alors utiliser I'option qui supprime les clés étrangeres
dépendantes : dept ;

= Impossibilité de supprimer une contrainte avec un
DROP. Il faut utiliser ALTER TABLE .. DROP ..

= Exemple : emp
fk emp deptno;

94

