
Bases de Données relaionnelles

SQL

Ilham Alloui

SQL – Langage d’Interrogation
de Données (LID)

➢ Rappels SQL
➢ Projection
➢ Restriction/sélection
➢ Jointures
➢ Vues

3

Langage de requête : SQL
! Structured query language (SQL), ou langage

structuré de requêtes, : pseudo-langage informatique
(de type requête) standard et normalisé, destiné à
interroger ou à manipuler une
base de données relationnelle

! Une relation est définie par un ensemble d’attributs
dont les valeurs représentent des tuples

Patients
Id-P Nom Prénom Ville

1 Lebeau Jacques Paris

2 Troger Zoe Evry

3 Doe John Paris

4 Perry Paule Valenton

tuple

4

Principes SQL

! Langage fondé sur la logique des prédicats et le
modèle relationnel

! Langage non procédural
! permet de décrire le résultat sans spécifier l'ordre

d'exécution des différentes opérations
! Langage ensembliste
! Une requête SQL est équivalente à une suite

d'opérations relationnelles (e.g. projection,
restriction, jointure)

! SQL est une norme depuis fin 1986

5

Sélection/Restriction

Patients de la ville de Paris

Patients
Id-P Nom Prénom Ville

1 Lebeau Jacques Paris

2 Troger Zoe Evry

3 Doe John Paris

4 Perry Paule Valenton

Patients
Id-P Nom Prénom Ville

1 Lebea
u

Jacques Paris

2 Troger Zoe Evry

3 Doe John Paris

4 Perry Paule Valenton

Sélection

6

Projection

Patients
Id-P Nom Prénom Ville

1 Lebea
u

Jacques Paris

2 Troger Zoe Evry

3 Doe John Paris

4 Perry Paule Valenton

Nom et prénom des patients

Patients
Id-P Nom Prénom Ville

1 Lebeau Jacques Paris

2 Troger Zoe Evry

3 Doe John Paris

4 Perry Paule Valenton

Projection

7

Jointure

Patients
Id-P Nom Prénom Ville

1 Lebeau Jacques Paris

2 Troger Zoe Evry

3 Doe John Paris

4 Perry Paule Valenton

 Visites
Id-D Id-P Id-V Date Prix

1 2 1 15 juin 250

1 1 2 12 août 180

2 2 3 13 juillet 350

2 3 4 1 mars 250

Id-P Nom Prénom Ville Id-D Id-P Id-V Date Prix

1 Lebeau Jacques Paris 1 1 2 12 août 180

2 Troger Zoe Evry 1 2 1 15 juin 250

2 Troger Zoe Evry 2 2 3 13 juillet 350

3 Doe John Paris 2 3 4 1 mars 250

Patients et leurs visites

 Jointure

8

SQL LID : langage d’interrogation
! Expression d’une requête d’interrogation par un bloc :

SELECT <liste des attributs projetés>
FROM <liste des relations touchées par la question>
[WHERE <liste des critères de restriction>
GROUP BY <liste des attributs d'agrégation>
HAVING <liste des critères de restriction sur les groupes>
ORDER BY <liste des attributs de tri du résultat>]
! SQL possède également un langage de définition de

données (création et modification de schéma) et un langage
de manipulation de données (insertion, suppression et mise
à jour de tuples)

9

Base de données exemple
! Schéma de la base de données EMPLOYEES (2

relations ou tables regroupant des informations sur
des départements et des employés) :

! DEPT(DEPTNO, DNAME, LOC)
! EMP(EMPNO, ENAME, JOB, #MGR, HIREDATE,

SAL, COMM, #DEPTNO)

indique une clé étrangère : un attribut dont les valeurs sont
« importées » d’une autre relation (e.g. #DEPTNO défini
dans DEPT) ou de la relation elle-même (e.g. #MGR qui
prend ses valeurs depuis EMPNO défini dans EMP)

Un attribut souligné est une clé primaire de la relation :
identifie de manière unique un tuple de la relation

Projection

11

! L'ordre minimal pour une interrogation est constitué
de deux parties : SELECT et FROM, appelées clauses,
toujours écrites dans cet ordre

! Recherche simple
! SELECT : expression des données requises en résultat

(attributs de relations, fonctions, etc)
! FROM : provenance des données (tables, vues, ...)

! Exemple : Sélection de tous les attributs de la
relation des services
SELECT *
FROM DEPT

"*" affiche toutes les données contenues dans la relation DEPT,
dans l'ordre des attributs défini à la création de la relation.
L'utilisation du * est cependant à déconseiller dans les
applications.

Clause SELECT

12

! Sélection d’attributs : projection
! Sélectionner des attributs dans une relation correspond à

l'opération de PROJECTION : extraction d’ une partie des
attributs d'une relation

! L'ordre des noms d’attributs dans le SELECT détermine
l'ordre des attributs dans le résultat

! Sélection d'un attribut de la relation des services
SELECT dname
FROM DEPT
! SQL n’élimine pas les doublons, pour les éliminer on utilise

DISTINCT

Clause SELECT (suite)

13

! Permet d’éliminer les doublons

Clause SELECT DISTINCT

! Exemple sans distinct
SELECT job
FROM emp

JOB

CLERK
SALESMAN
SALESMAN
MANAGER
SALESMAN
MANAGER
MANAGER
ANALYST
PRESIDENT
SALESMAN
CLERK
CLERK
ANALYST
CLERK

! Exemple avec distinct
SELECT DISTINCT job
FROM emp

JOB

ANALYST
CLERK
MANAGER
PRESIDENT
SALESMAN

14

! Décrit les objets (tables, vues...) utilisés par la
requête :
! Nom de la table
SELECT deptno
FROM dept
! Nom du schéma (≃base de données), nom de la table
SELECT deptno
FROM cours1.dept

! Création d'un alias
SELECT d.deptno
FROM dept d

Clause FROM

15

! Constante : 1

! Nom d’attribut d'une relation : deptno

! Expressions arithmétiques, sur chaînes de caractères,
ou sur dates : (sal*1.1) + 20

! Fonction simple appliquée à une expression :
power(expr,2)

! Fonction agissant sur les valeurs provenant de
plusieurs lignes : max(sal)

Colonnes de SELECT

16

! Constantes numériques
 -2

105.37
3.5E17

! Constantes de type chaîne
alphanumérique

'ROSS154'
'Jaune plombé'
'Pluie d''étoiles en juillet
1992'

! Constante de type date
'21/07/91'

! Constante NULL : valeur inconnue

Constantes

! Exemple NULL
SELECT 1,
 NULL
FROM dept

--------- ----
 1 NULL
 1 NULL
 1 NULL
 1 NULL

17

! Peuvent être modifiés
! Un nom local peut être donné à une colonne de résultat, en vue d'une

présentation particulière des en-têtes de colonnes ou de la compréhension
de la requête. Ce nom local de colonne ne peut apparaître que dans la
clause SELECT

! Pour créer un nom de colonne comportant des blancs de séparation, ou des
caractères spéciaux (/, *, %, etc), il faut placer ce nom entre guillemets

! Exemple

SELECT deptno Service,
 dname "Nom service"
FROM dept

Service Nom service
----------- ---------------
 10 ACCOUNTING
 20 RESEARCH
 30 SALES
 40 OPERATIONS

En-têtes d’attributs

OU autre écriture possible

SELECT deptno AS Service,
 dname AS "Nom service"
FROM dept

18

! Opérateurs
+ Addition
- Soustraction
* Multiplication
/ Division

! Utilisables pour tout attribut numérique
! Priorité selon l'ordre arithmétique ou en fonction des parenthèses
! Exemple :

SELECT (sal*1.1) + comm
FROM emp

(SAL*1.1)+COMM

 2060
 1875

 NULL
 ...

Expressions arithmétiques

Restriction / sélection

20

! Tri le résultat d'une requête,
! Classement ascendant ASC (par défaut), ou descendant (DESC),

! Une seule clause ORDER BY toujours à la fin du SELECT
! Les éléments cités dans la clause ne figurent pas nécessairement dans

le SELECT
! Les valeurs nulles se trouvent en fin de résultat si option ASC, en tête

si option DESC
! Les éléments de la clause peuvent être le nom des colonnes, le numéro

des colonnes, une expression
! Exemples :

Clause ORDER BY

SELECT ename,
 sal,
 deptno
FROM emp
ORDER BY deptno, sal
ENAME SAL DEPTNO
---------- ---------- ----------
MILLER 1300 10
CLARK 2450 10
...

SELECT ename,
 sal,
 deptno
FROM emp
ORDER BY 3, 2, 1
ENAME SAL DEPTNO
---------- ---------- ----------
MILLER 1300 10
CLARK 2450 10
...

21

! La clause WHERE réduit le nombre de lignes concernées par la
recherche

! Exemple : Sélection des employés du service 10

SELECT ename, sal
FROM emp
WHERE deptno = 10

ENAME SAL
---------- ----------
CLARK 2450
KING 5000
MILLER 1300

! Les conditions de recherche sont des expressions logiques vraies ou
fausses en fonction des lignes passées en revue

! Une condition est aussi appelée prédicat. Elle est toujours composée
de trois membres : deux expressions encadrant un opérateur de
comparaison
Prédicat = Expression OPERATEUR DE COMPARAISON Expression
=> Prédicat = attribut OPERATEUR DE COMPARAISON valeur

Prédicat = attribut OPERATEUR DE COMPARAISON attribut

Clause WHERE

22

! Opérateurs permettant de construire les prédicats :
! Comparaison : =, !=, <>, >, >=, <, <=
! Intervalles : BETWEEN
! Concordance de caractères : LIKE avec jokers : _,%
! Gestion des colonnes "NULL" : IS NULL
! Enumération : IN
! Négation : NOT IN, NOT LIKE, NOT BETWEEN, IS NOT NULL

! Exemple : employés possédant une commission et un salaire supérieur
à 900
SELECT ename,
 job,
 sal,
 comm
FROM emp
WHERE sal > 900
 AND comm IS NOT NULL

Opérateurs de comparaison

23

! Exemple : Nom des employés, et numéro de service
des employés qui sont vendeurs

SELECT ename,
 deptno
FROM emp
WHERE job = 'SALESMAN'

ENAME DEPTNO
---------- ----------
ALLEN 30
WARD 30
MARTIN 30
TURNER 30

Opérateur de comparaison =

24

! La relation d'ordre utilisée dépend du type de données :
! numérique,
! alphabétique,
! chronologique

! Exemple avec les dates : > signifie postérieur, < signifie antérieur
 SELECT ename, hiredate
FROM emp
WHERE hiredate < '1981-01-01' -– format de la date dépend du SGBD

! Pour les comparaisons de chaînes : les lettres majuscules et minuscules sont
supérieures aux nombres et les majuscules et minuscules ont parfois une importance
(dépend des options du SGBD)

! Exemple du supérieur avec des chaînes de caractères :

Opérateurs de comparaison : >,<

SELECT ename
FROM emp
WHERE ename > 'martin'
ORDER BY ename ASC

no rows selected

SELECT ename
FROM emp
WHERE ename > 'MARTIN'
ORDER BY ename DESC;
ENAME

WARD
TURNER
SMITH
SCOTT
MILLER

25

! Exemple avec jokers _ (remplace une lettre) et %
(toute chaîne de caractères)
! Nom des employés ayant AR dans leur nom à partir de la

deuxième lettre

SELECT ename
FROM emp
WHERE ename LIKE ('_AR%')

ENAME

WARD
MARTIN

Opérateur de comparaison LIKE

26

! Exemple : Employés travaillant dans les services 10 et 20

SELECT ename,
 deptno
FROM emp
WHERE deptno IN (10,20)

ENAME DEPTNO
---------- ----------
SMITH 20
JONES 20
CLARK 10
SCOTT 20
KING 10
ADAMS 20
FORD 20
MILLER 10

! Exemple avec IN et des chaînes de caractères

SELECT deptno,
 dname
FROM dept
WHERE loc IN ('DALLAS', 'CHICAGO')

Opérateur de comparaison IN

27

! Exemple : Nom des employés ne travaillant pas dans les
services 10 et 20

SELECT ename,
 deptno
FROM emp
WHERE deptno NOT IN (10, 20)

ENAME DEPTNO
---------- ----------
ALLEN 30
WARD 30
MARTIN 30
BLAKE 30
TURNER 30
JAMES 30

Opérateur de comparaison NOT IN

28

! Opérateur BETWEEN : Les bornes sont prises en compte lors de la
recherche

! Exemple : employés ayant un salaire compris entre 2450 et 3000

SELECT ename,
 sal
FROM emp
WHERE sal BETWEEN 2450 AND 3000

ENAME SAL
---------- ----------
JONES 2975
BLAKE 2850
CLARK 2450
SCOTT 3000
FORD 3000

Opérateurs de comparaison
BETWEEN / NOT BETWEEN

29

! Une valeur NULL est une valeur inconnue
! NULL <> 0
! NULL = non renseigné
! test par IS NULL et non = NULL
! Exemple : employés n'étant pas commissionnés

SELECT ename,
 deptno
FROM emp
WHERE comm IS NULL

ENAME DEPTNO
---------- ----------
SMITH 20
JONES 20
BLAKE 30
CLARK 10
...

Opérateurs de comparaison
IS NULL

30

! Remarques :
! L'utilisation d'une colonne "NULL" dans un calcul nécessite l'utilisation d'une fonction IFNULL (c.f fonctions)
! Exemple :

SELECT ename,
sal,
comm,
sal + comm,
sal + IFNULL(comm,0) –- Pour Oracle : NVL(), SQL Server : ISNULL()

FROM emp

ENAME SAL COMM SAL+COMM SAL+IFNULL(COMM,0)
---------- ---------- ---------- ---------- ---------------
SMITH 800 800
ALLEN 1600 300 1900 1900
WARD 1250 500 1750 1750
JONES 2975 2975
MARTIN 1250 1400 2650 2650
BLAKE 2850 2850
CLARK 2450 2450
SCOTT 3000 3000
KING 5000 5000
TURNER 1500 0 1500 1500
ADAMS 1100 1100
JAMES 950 950
...

Opérateurs de comparaison
IS NULL (suite)

31

! Les opérateurs logiques permettent de construire des prédicats
composés en reliant des prédicats simples

! Plusieurs opérateurs logiques peuvent être utilisés {NOT, AND, OR}, ils
sont par défaut évalués dans cet ordre

! Il est conseillé d'utiliser les parenthèses pour imposer l'ordre
d'évaluation ou éviter toute ambiguïté

! Liaison par AND
! relie deux conditions ou prédicats
! ne renvoie des résultats que lorsque toutes les conditions sont vraies

! Exemple : nom des employés, numéro de service et salaire pour les
employés travaillant dans le service 10, n'ayant pas de commission, et
ayant un salaire supérieur à 1000
SELECT ename,
 deptno,
 sal
FROM emp
WHERE deptno = 10
AND sal > 1000
AND comm IS NULL

Opérateurs logiques : liaisons
de conditions AND

32

! Liaison par OR
! relie deux conditions
! renvoie des résultats lorsque l'une des conditions

est vraie
! Exemple : nom des employés, et salaire pour

les employés n'ayant pas de commission, ou
ayant un salaire inférieur à 1000
SELECT ename,
 sal
FROM emp
WHERE comm IS NULL
 OR sal < 1000

Opérateurs logiques : liaisons
de conditions OR

33

! De même que pour l'arithmétique, le résultat d'une
opération portant sur des nombres est un nombre, le
résultat d'un SELECT est une relation

SELECT ...
FROM
WHERE ...

construit une relation

! On pourra donc utiliser le résultat d'un SELECT dans
d'autres requêtes SQL
! sous-sélections,
! jointures,
! UNION ...

Mémento

Jointures

35

! Produit cartésien
! Opération entre relations qui combine toutes les occurrences (tuples)

! Le nombre de lignes résultant est égal à la multiplication des nombres de lignes de chacune
des relations

! Exemple :

SELECT *
FROM dept, emp

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO DEPTNO DNAME LOC
----- ---------- --------- ----- --------- ----- ----- ------ ------ -------------- -------------
 7369 SMITH CLERK 7902 17-DEC-80 800 20 10 ACCOUNTING NEW YORK
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30 10 ACCOUNTING NEW YORK
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30 10 ACCOUNTING NEW YORK
 7566 JONES MANAGER 7839 02-APR-81 2975 20 10 ACCOUNTING NEW YORK
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30 10 ACCOUNTING NEW YORK
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30 10 ACCOUNTING NEW YORK
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10 10 ACCOUNTING NEW YORK
 7788 SCOTT ANALYST 7566 09-DEC-82 3000 20 10 ACCOUNTING NEW YORK
 7839 KING PRESIDENT 17-NOV-81 5000 10 10 ACCOUNTING NEW YORK
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30 10 ACCOUNTING NEW YORK
 7876 ADAMS CLERK 7788 12-JAN-83 1100 20 10 ACCOUNTING NEW YORK
 7900 JAMES CLERK 7698 03-DEC-81 950 30 10 ACCOUNTING NEW YORK
 7902 FORD ANALYST 7566 03-DEC-81 3000 20 10 ACCOUNTING NEW YORK
 7934 MILLER CLERK 7782 23-JAN-82 1300 10 10 ACCOUNTING NEW YORK
 7369 SMITH CLERK 7902 17-DEC-80 800 20 20 RESEARCH DALLAS
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30 20 RESEARCH DALLAS
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30 20 RESEARCH DALLAS
 7566 JONES MANAGER 7839 02-APR-81 2975 20 20 RESEARCH DALLAS
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30 20 RESEARCH DALLAS
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30 20 RESEARCH DALLAS
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30 20 RESEARCH DALLAS
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10 20 RESEARCH DALLAS
 7788 SCOTT ANALYST 7566 09-DEC-82 3000 20 20 RESEARCH DALLAS
 7839 KING PRESIDENT 17-NOV-81 5000 10 20 RESEARCH DALLAS
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30 20 RESEARCH DALLAS
 7876 ADAMS CLERK 7788 12-JAN-83 1100 20 20 RESEARCH DALLAS
 7900 JAMES CLERK 7698 03-DEC-81 950 30 20 RESEARCH DALLAS
...

56 rows Selected.

Produit cartésien

36

Les jointures

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

EMPNO ENAME DEPTNO

7369 SMITH 20

7499 ALLEN 30

7521 WARD 30

37

! Exemple : Requête ramenant le nom de l'employé, le numéro, le nom et la localité du service

SELECT d.deptno,
d.dname,
e.ename,
d.loc

FROM dept d, emp e
WHERE d.deptno = e.deptno

 DEPTNO DNAME ENAME LOC
---------- -------------- ---------- -------------
 10 ACCOUNTING CLARK NEW YORK
 10 ACCOUNTING KING NEW YORK
 10 ACCOUNTING MILLER NEW YORK
 20 RESEARCH SMITH DALLAS
 20 RESEARCH JONES DALLAS
 20 RESEARCH SCOTT DALLAS
 20 RESEARCH ADAMS DALLAS
 20 RESEARCH FORD DALLAS
 30 SALES ALLEN CHICAGO
 30 SALES WARD CHICAGO
 30 SALES MARTIN CHICAGO
 30 SALES BLAKE CHICAGO
 30 SALES TURNER CHICAGO
 30 SALES JAMES CHICAGO

Les jointures (suite)

38

! La jointure :
! Produit cartésien suivi d’une restriction et d’une projection,
! recherche des données provenant d'au moins deux relations,
! combine les relations en faisant correspondre les valeurs

présentes dans chaque relation
! WHERE :

! au moins une partie de la condition de recherche doit être
une clause de jointure valide,

! les noms de colonnes qui figurent dans la jointure ne sont
pas nécessairement les mêmes

! SELECT :
! les colonnes qui figurent dans la condition ne sont pas

obligatoires dans la clause SELECT

Les jointures (suite)

39

! Un alias ou synonyme local :
! permet de renommer localement une relation
! permet de faire référence aux relations de façon abrégée
! permet une lecture et une écriture aisées des requêtes
! peut être repris n'importe où dans l'ordre SELECT
! est nécessaire dans le cas des auto-jointures

! Exemple (SQL1):
SELECT a.deptno,

b.ename,
b.sal,
b.comm

FROM dept a, emp b
WHERE a.deptno = b.deptno

AND b.comm IS NOT NULL

! Règle d'écriture à adopter : préférer des noms d’alias
! compréhensibles (1ères lettres,...) !

SELECT d.deptno,
e.ename,
e.sal,
e.comm

FROM dept d, emp e
WHERE d.deptno = e.deptno

AND e.comm IS NOT NULL

Jointure : Alias

(SQL2)
SELECT a.deptno,

 b.ename,
 b.sal,
 b.comm

 FROM dept a JOIN emp b
 ON a.deptno = b.deptno

WHERE
 b.comm IS NOT NULL

(SQL2)
SELECT d.deptno,

 e.ename,
 e.sal,
 e.comm

 FROM dept d JOIN emp e
 ON d.deptno = e.deptno

WHERE
 e.comm IS NOT NULL

Recommandé (car optimisé)

40

! L'auto-jointure :
! opération de jointure d'une relation à elle-même
! il faut considérer que la provenance est différente, comme si on avait à

faire réellement à deux relations, bien que les données se trouvent
physiquement en un seul endroit

! le synonyme (ou alias) de relation est indispensable
! elle peut être utilisée dès qu'une ligne fait référence à une autre ligne de la

même relation
! Exemple : Nom et salaire des employés ayant le même salaire que

'FORD'
SELECT e2.ename,

e2.sal
FROM emp e1, emp e2
WHERE e1.ename = 'FORD'
AND e1.sal = e2.sal

ENAME SAL
---------- ---------
SCOTT 3000
FORD 3000

Auto-jointure

(SQL2)
 SELECT e2.ename, e2.sal
 FROM emp e1 JOIN emp e2

 ON e1.sal = e2.sal
WHERE

 e1.ename = 'FORD'

41

! On utilisera une jointure si :
! les colonnes résultats (select liste + clause group by + clause order

by) proviennent de plusieurs tables,
! ou si les lignes résultats sont plus nombreuses que les lignes des

tables origines
Exemple : Pour chaque employé, liste des employés embauchés avant lui

 SELECT e1.empno,
e1.hiredate,
e2.empno,
e2.hiredate

 FROM emp e1, emp e2

 WHERE e1.hiredate > e2.hiredate
! Dans les autres cas, on préfère d'autres modes d'écriture (sous-

sélections) afin d'améliorer la lisibilité et la testabilité

! 2 relations= 1 condition de jointure au minimum
! n relations = n-1 conditions de jointure au minimum

Mémento

(SQL2)
 SELECT e1.empno, e1.hiredate,

 e2.empno, e2.hiredate
 FROM emp e1 JOIN emp e2

ON e1.hiredate > e2.hiredate

Vues

Intérêt d’une vue

! Simplification de requêtes pour des non
spécialistes : en masquant les jointures fréquemment
utilisées
 Création de résultats intermédiaires pour des
requêtes complexes (beaucoup de colonnes,
beaucoup de lignes, ou des noms complexes)
! Mise en œuvre de la confidentialité : en cachant aux
utilisateurs certaines colonnes ou certaines lignes
! "Sauvegarder" des requêtes fréquemment utilisées

44

Définition d’une vue

45

Création/Suppression des vues

! Create [or replace] [force | no force] view <nom-de-vue>
 [(<liste-alias>)]
 As <requête-select>

 [WITH [CASCADED | LOCAL] CHECK OPTION] ;
 # les options qui ne sont pas en gras sont liées à des aspects plus

avancés

! Drop view <nom-de-vue> ;

46

Création/Suppression des vues

! OR REPLACE
permet le remplacement de la description par la nouvelle requête si la
vue existe déjà

! WITH CHECK OPTION (vues actualisables)
vérifie, lors de l'insertion ou de la modification de lignes dans la vue,
que les lignes insérées ou modifiées sont visualisables dans cette vue

! LOCAL vérification de l'intégrité au niveau de la vue seule
! CASCADED vérification au niveau de la vue et des vues

dépendantes (option par défaut)

Exemples de création de VUES
! Vue mono-table 1

! Vue mono-table 2

Exemples de création de VUES

! Vue mono-table 3

Exemples de création de VUES

! Vue mono-table avec colonnes virtuelles

! Pas de modification sur les colonnes
virtuelles

! Modifications autorisées sur les colonnes
de base " mise à jour instantanée !

Vues multi-tables
! Simplification de requêtes
! Pas de modifications possibles de ce type de vue
! Tables temporaires ‘virtuelles’ de travail
! Transformation de la présentation des données
"Schéma externe

Exemples de vues multi-tables

! Reconstitution des clients (UNION)

! Reconstitution des étudiants (JOINTURE)

Langage de Manipulation de
Données (LMD)

! INSERT
! UPDATE
! DELETE

53

Principe

! Le Langage de Manipulation des Données :

! INSERT : insertion d'une ou plusieurs lignes dans une table existante

! DELETE : destruction d'une ou plusieurs lignes d'une table existante

! UPDATE : mise à jour d'une ou plusieurs lignes d'une table existante

! L'ordre SELECT avec toutes ses fonctionnalités (sauf ORDER BY)
peut être utilisé dans les ordres LMD

54

INSERT

! Pour insérer des n-uplets :

INSERT INTO R(A1,A2,...,An) VALUES (v1, v2,... vn)

! Donc on donne deux listes : celles des attributs (les Ai)
de la table et celle des valeurs respectives de chaque
attribut (les vi)
! Chaque Ai doit être un attribut de R
! Les attributs non indiqués restent à NULL ou à leur valeur par

défaut
! On doit toujours indiquer une valeur pour un attribut déclaré

NOT NULL

55

INSERT (suite)

! Exemple sans nom des colonnes
INSERT INTO dept
VALUES (50, null, null)

1 row created.

! Exemple avec nom de colonne
INSERT INTO dept (deptno)
VALUES (50)

1 row created.

! Pour une meilleure évolutivité, il est préférable de nommer les
colonnes utilisées

56

INSERT (suite)

! Exemples insert avec select (plusieurs lignes) :

INSERT INTO essai
SELECT *
FROM emp

14 rows created.

INSERT INTO essai2 (deptno)
SELECT DISTINCT deptno
FROM emp

3 rows created.

! Exemple d'insertion avec des chaînes de caractères :

INSERT INTO DEPT (deptno, dname)
VALUES (50, 'COURS')

57

UPDATE

! On modifie une table avec la commande UPDATE :
UPDATE R SET A1=v1,A2=v2,...,An=vn
WHERE condition

! Contrairement à INSERT, UPDATE s'applique à un
ensemble de lignes
! On énumère les attributs que l'on veut modifier
! On indique à chaque fois la nouvelle valeur
! La clause WHERE condition permet de spécifier les lignes

auxquelles s'applique la mise à jour. Elle est identique au
WHERE du SELECT

! On ne peut pas violer les contraintes sur la table

58

UPDATE (suite)

! Exemple sans WHERE : augmentation des salaires de 5 %

UPDATE emp
SET sal = sal * 1.05

14 rows updated.

! Exemple avec WHERE : augmentation du salaire des
vendeurs

UPDATE emp
SET sal = sal * 1.05
WHERE job = 'SALESMAN'

4 rows updated.

59

UPDATE (suite)

! Exemple : sous-requête synchronisée

UPDATE emp e
SET sal = (SELECT AVG(e2.sal)
 FROM emp e2

 WHERE e.deptno = e2.deptno)
! Exemple : jointure (sans alias, ne fait pas partie de la

norme)

UPDATE emp
SET Sal = Sal + 100
FROM emp
JOIN dept ON emp.deptno = dept.deptno

WHERE dept.loc = ‘NEW YORK’

60

DELETE

! On détruit une ou plusieurs lignes dans une table
avec la commande DELETE :
DELETE FROM R WHERE condition

! C'est la plus simple des commandes de mise-à-
jour puisque elle s'applique à des lignes et pas à
des attributs

! Comme précédemment, la clause WHERE
condition est identique au WHERE du SELECT
(=restriction des nombres de lignes impliquées)

61

DELETE (suite)

! Exemple sans WHERE : suppression de tous les
services

DELETE FROM dept
4 rows deleted

! Exemple avec WHERE : suppression des employés
ayant une commission à zéro

DELETE FROM emp
WHERE comm = 0
1 row deleted

62

DELETE (suite)

! Exemple avec WHERE et SELECT : suppression des employés
travaillant à DALLAS

DELETE FROM emp
WHERE deptno =

(SELECT deptno
 FROM dept
 WHERE loc = 'DALLAS')
5 rows deleted.

comme pour les update, on peut utiliser la notion de jointure

63

Syntaxe simplifiée

INSERT INTO [schema.] { table | view }
 [(colonne [, colonne] ...]
{ VALUES (expr [, expr] ...) | Ordre SELECT }

UPDATE [schema.] { table | view } [alias]
SET { (colonne [, colonne] ...) = (Ordre SELECT)

| colonne = {expr | (Ordre SELECT)}}
 [,{ (colonne [, colonne] ...) = (Ordre SELECT)

| colonne = {expr | (Ordre SELECT)}}]...
[WHERE condition]

DELETE
FROM [schema.]{table | view} [alias]
[WHERE condition]

Langage de Définition de Données
(LDD)

! Objectifs LDD
! Création de tables
! Modification de tables
! Suppression de tables

65

Objectifs LDD

! Objectifs :
! CREATE (création) :

! Tables avec des colonnes de types différents et contraintes (CREATE
TABLE)

! ALTER (modification) :
! Tables et contraintes (ALTER TABLE)

! DROP (suppression) :
! Tables et contraintes (DROP TABLE)

66

Création de tables

! Syntaxe :
CREATE TABLE nom_table (nom_champ1 type_champ1,
nom_champ2 type_champ2,
...
nom_champn type_champn) ;

! Exemple : création de la table des services
CREATE TABLE DEPT
(
 DEPTNO NUMERIC(2) NOT NULL,
 DNAME VARCHAR(14),
 LOC VARCHAR(13) DEFAULT 'PARIS'
);

Nom de
colonne

DEPTNO
DNAME
LOC

Type de donnée

NUMERIC(2)
VARCHAR(14)
VARCHAR(13)

Propriété
(défaut = NULL)

Valeur par
défaut

(facultatif)

NOT NULL

DEFAULT
'PARIS'

67

Création de tables :
choix des champs

! Avant de créer une table, il faut choisir les champs que
l’on va utiliser. Pour chaque champ il faut choisir un
nom et un type.

! Les champs peuvent être des types suivants :
numérique (entier ou rationnel), date et heure, chaîne
de caractères, texte, blob, énuméré, ensemble.

! Types possibles :
! MySQL : CHAR(M), VARCHAR(M), INT[(M)] ou INTEGER[(M)], FLOAT[(M,D)],

DOUBLE[(M,D)] ou REAL [(M,D)], DECIMAL[(M[,D])] ou NUMERIC[(M[,D])],
DATE, TIME, DATETIME, TIMESTAMP[(M)], BLOB, ENUM, SET,...

! Oracle : CHAR(M), VARCHAR2(M), NUMBER[(M[,D])], DATE, TIMESTAMP[(M)],
BLOB, CLOB,BFILE,...

! SQL SERVER : BIT, CHAR(M), VARCHAR(M), TEXT, DECIMAL[(M[,D])], FLOAT,
INT, MONEY, REAL, DATETIME, SMALLDATETIME, TIMESTAMP[(M)], IMAGE,
BINARY(M), UNIQUEIDENTIFIER,...

68

Création de tables :
choix des champs

! Avant de créer une table, il faut choisir les champs que
l’on va utiliser. Pour chaque champ il faut choisir un
nom et un type.

! Les champs peuvent être des types suivants :
numérique (entier ou rationnel), date et heure, chaîne
de caractères, texte, blob, énuméré, ensemble.

! Types possibles :
! MySQL : CHAR(M), VARCHAR(M), INT[(M)] ou INTEGER[(M)], FLOAT[(M,D)],

DOUBLE[(M,D)] ou REAL [(M,D)], DECIMAL[(M[,D])] ou NUMERIC[(M[,D])],
DATE, TIME, DATETIME, TIMESTAMP[(M)], BLOB, ENUM, SET,...

! Oracle : CHAR(M), VARCHAR2(M), NUMBER[(M[,D])], DATE, TIMESTAMP[(M)],
BLOB, CLOB,BFILE,...

! SQL SERVER : BIT, CHAR(M), VARCHAR(M), TEXT, DECIMAL[(M[,D])], FLOAT,
INT, MONEY, REAL, DATETIME, SMALLDATETIME, TIMESTAMP[(M)], IMAGE,
BINARY(M), UNIQUEIDENTIFIER,...

69

Création de tables (suite)

! CREATE à l'aide de SELECT
! Exemple : création de la table dept_20. La structure de

cette table est identique à celle de la table DEPT
CREATE TABLE dept_20 AS
SELECT * FROM dept
WHERE deptno = 20

70

Création de contraintes
d’intégrité (1)

! Moyen permettant de garantir que les modifications apportées à la base ne pourront en
aucun cas la rendre incohérente

! Différents types de contraintes d’intégrité :
! Définie lors de la création des tables

! les contraintes de domaine
! type de colonne, valeur par défaut, ensemble de valeurs, conditions qu'une valeur doit

remplir ; caractère obligatoire ou non des colonnes (NULL ou NOT NULL).
! les contraintes de clé unique

! garantissent qu'une même valeur ne peut se trouver sur plus d'une ligne.
! les contraintes de clé primaire

! colonne ou groupe de colonnes choisis pour identifier de façon unique chacune des
occurrences de tables, et référençable par une clé étrangère.

! les contraintes référentielles (clé étrangère)
! garantissent qu'une colonne ou un groupe de colonnes existe dans une autre entité.

! Définies par trigger (déclencheur)
! Contraintes temporelles : salaire ne peut pas baisser…
! Contraintes avec agrégats : ne porte pas sur un attribut ou un tuple, mais plusieurs tuples

ou même toute la table :
! Exemple : « Il doit y avoir autant de départements localisés à Paris que de départements à

Londres »
! Cette contrainte ne peut être vérifiée que lorsque « tous les départements sont insérés »

71

Création de contraintes
d’intégrité (2)

! Respect des contraintes d’intégrité :
! Lors de chaque accès en mise à jour (ajout,

modification, suppression), le SGBD doit vérifier les
contraintes d’intégrité

! Elles sont en général définies lors de la création des
tables, en donnant des précisions sur les attributs
concernés

! Certaines font l’objet de procédures particulières
appelées triggers (déclencheurs) qui sont exécutées
lors de l’accès en MAJ aux données

72

Création de contraintes :
Contraintes de domaine

! Les types de données :
! CHAR, VARCHAR, NUMERIC, ...

! Le caractère obligatoire ou facultatif d'une colonne :
! NULL ou NOT NULL

! La clause DEFAULT :
! valeur par défaut pour une colonne, cette valeur est utilisée en création

(insert) ou modification (update) si l'utilisateur ne renseigne pas cette
colonne,

! peut être une fonction (Ex. : CURRENT_DATE).
! La clause CHECK (ou contraintes de validation) :

! Contrôle de valeur effectué pour toute exécution d’une commande update,
insert ou delete sur chaque ligne de la table

! Si contrôle est négatif, ordre SQL annulé
! Contrainte sur colonne :

! CONSTRAINT Ck_LIG_CDE check (qte_cdee > 0)
! Contrainte sur table (plusieurs colonnes impliquées) :

! CONSTRAINT CK_LIG_CDE check (qte_cdee >= qte_livree)

73

Création de contraintes :
Contraintes de domaine (suite)

! Exemple : contraintes déclaratives
CREATE TABLE emp1

(

empno NUMERIC(4) NOT NULL,

ename VARCHAR(10),

job VARCHAR(9) CHECK (job in ('SALESMAN','CLERK','MANAGER')),

mgr NUMERIC(4),

hiredate DATE DEFAULT CURRENT_DATE,

sal NUMERIC(7,2) CHECK (sal > 300 AND sal < 9000),

comm NUMERIC(7,2) CHECK (comm IS NULL OR comm<=sal/2),

deptno NUMERIC(2) NOT NULL

);

! Remarque : il est conseillé de nommer les contraintes afin de
simplifier le décodage des messages d'erreurs, la gestion des
activations ou désactivations des contraintes. Dans ce cas, il est
d’usage de les positionner à la fin du CREATE TABLE

74

Création de contraintes :
Contraintes de domaine (suite)

! Exemple : contraintes déclaratives
CREATE TABLE emp1

(

empno NUMERIC(4) NOT NULL,

ename VARCHAR(10),

job VARCHAR(9),

mgr NUMERIC(4),

hiredate DATE DEFAULT CURRENT_DATE,

sal NUMERIC(7,2),

comm NUMERIC(7,2),

deptno NUMERIC(2) NOT NULL,

CONSTRAINT ck_emp1_job CHECK (job in
('SALESMAN','CLERK','MANAGER')),

CONSTRAINT ck_emp1_sal CHECK (sal > 300 AND sal < 9000),
CONSTRAINT ck_emp1_comm CHECK (comm IS NULL OR comm<=sal/2)

);

75

Création de contraintes :
Contraintes de domaine (suite)

! Exemple : Insertion d'une ligne ne respectant pas la
contrainte sur la colonne JOB.

La contrainte portant sur la colonne job n'est pas nommée, le
SGBD génère automatiquement un nom unique.

INSERT INTO emp1

VALUES (7600, 'TOTO', 'INCONNU', 10, null, 0, 0, 10)

ERROR at line 1:

check constraint (SYS_C0011195) violated

! Exemple : Insertion d'une ligne ne respectant pas la
contrainte sur la colonne salaire (contrainte nommée)

INSERT INTO emp1 VALUES

(10, 'toto', 'CLERCK', null, null, 0, 0, 10)

ERROR at line 1:

check constraint (COURS1.CHK_EMP1_SAL) violated

! Remarque : aucune erreur ne sera soulevée dans MySQL, car
ce SGBD ne gère pas les contraintes CHECK !!!

76

Création de contraintes :
Contraintes de clé unique

! Les contraintes de clé unique (UNIQUE) :
! permettent d'assurer l'unicité d'une colonne ou d'un

groupe de colonnes,
! les valeurs NULL sont autorisées,
! une clé unique ne peut pas être référencée par une

clé étrangère

77

Création de contraintes :
Contraintes de clé unique (suite)

! Exemple :
CREATE TABLE emp1

(

empno NUMERIC(4) NOT NULL,

ename VARCHAR(10) UNIQUE,

job VARCHAR(9),

mgr NUMERIC(4),

Hiredate DATE,

sal NUMERIC(7,2),

comm NUMERIC(7,2),

deptno NUMERIC(2) NOT NULL

);

78

Création de contraintes :
Contraintes de clé unique (suite)

! Exemple : OU MIEUX
CREATE TABLE emp1

(

empno NUMERIC(4) NOT NULL,

ename VARCHAR(10),

job VARCHAR(9),

mgr NUMERIC(4),

Hiredate DATE,

sal NUMERIC(7,2),

comm NUMERIC(7,2),

deptno NUMERIC(2) NOT NULL,

CONSTRAINT uq_emp1_ename UNIQUE(ename)

);

79

Création de contraintes :
Contraintes de clé primaire

! Les contraintes de clé primaire (PRIMARY
KEY) :
! toute table doit disposer d'une clé primaire (unique, mais

pouvant être composée de plusieurs champs),
! la norme SQL impose que toutes les colonnes d'une clé

primaire soient obligatoires (la ou les colonne(s) est/sont
forcée(s) à NOT NULL),

! unicité des valeurs de la clé
! clé généralement référencée par des clés étrangères.

80

Création de contraintes :
Contraintes de clé primaire (suite)

! Exemple :
CREATE TABLE emp1

(

empno NUMERIC(4) NOT NULL PRIMARY
KEY,

ename VARCHAR(10),

job VARCHAR(9),

mgr NUMERIC(4),

hiredate DATE,

sal NUMERIC(7,2),

comm NUMERIC(7,2),

deptno NUMERIC(2) NOT NULL

)

81

Création de contraintes :
Contraintes de clé primaire (suite)

! Exemple : OU MIEUX
CREATE TABLE emp1

(

empno NUMERIC(4) NOT NULL,

ename VARCHAR(10),

job VARCHAR(9),

mgr NUMERIC(4),

hiredate DATE,

sal NUMERIC(7,2),

comm NUMERIC(7,2),

deptno NUMERIC(2) NOT NULL,

CONSTRAINT pk_emp1 PRIMARY KEY (empno)

)

82

Création de contraintes :
Contraintes de clé étrangère

! Les contraintes de clé étrangère (FOREIGN KEY) :
! une colonne ou un groupe de colonnes qui référencent

la clé primaire d'une autre table,
! la valeur de la clé étrangère doit :

! exister dans la table référencée (valeur de la clé étrangère
= une des valeurs de la clé primaire),

! ou bien être NULL (sauf si elle est clé étrangère et clé
primaire à la fois !).

! une clé étrangère ne peut référencer une table d'une
base distante.

! Le type de la clé étrangère doit correspondre à
celui de la clé primaire

83

Création de contraintes :
Contraintes de clé étrangère (suite)

! Exemple :
CREATE TABLE emp1
(

empno NUMERIC(4) NOT NULL,
ename VARCHAR(10),
job VARCHAR(9),
mgr NUMERIC(4),
hiredate DATE,
sal NUMERIC(7,2),
comm NUMERIC(7,2),
deptno NUMERIC(2) NOT NULL,
CONSTRAINT pk_emp1 PRIMARY KEY (empno),
CONSTRAINT fk_emp1_deptno FOREIGN KEY(deptno)

REFERENCES dept(deptno),
CONSTRAINT fk_emp1_mgr FOREIGN KEY(mgr) REFERENCES

emp1(empno)
);

Implique que DEPTNO soit clé
primaire dans DEPT et que la
table DEPT soit déjà créée !

84

Création de contraintes :
Contraintes de clé étrangère (suite)

! Exemple : Insertion d'une ligne ne respectant pas la contrainte de
clé étrangère fk_emp1_deptno

INSERT INTO emp1

VALUES (10, 'EMPLOYE 1','MANAGER', null, now(), 8000, null, 70);
ERROR: insert or update on table "emp1" violates foreign key constraint

"fk_emp1_deptno"
DETAIL: Key (deptno)=(70) is not present in table "dept".
! Exemple : Insertion d'une ligne ne respectant pas la contrainte de

clé étrangère fk_emp1_mgr
INSERT INTO emp1

VALUES (20, 'EMPLOYE 2', 'SALESMAN', 30, current_date,
4000,null,10);

ERROR: insert or update on table "emp1" violates foreign key constraint
"fk_emp1_mgr"

DETAIL: Key (mgr)=(30) is not present in table "emp1".

85

Contrainte de clé étrangère : ON
DELETE CASCADE, ON UPDATE CASCADE

! Exemple :
CREATE TABLE emp1
(

empno NUMERIC(4) NOT NULL,
ename VARCHAR(10),
job VARCHAR(9),
mgr NUMERIC(4),
hiredate DATE,
sal NUMERIC(7,2),
comm NUMERIC(7,2),
deptno NUMERIC(2) NOT NULL,
CONSTRAINT pk_emp1 PRIMARY KEY (empno),
CONSTRAINT fk_emp1_deptno FOREIGN KEY(deptno)
REFERENCES dept(deptno) ON DELETE CASCADE ON UPDATE
CASCADE,

CONSTRAINT fk_emp1_mgr FOREIGN KEY(mgr) REFERENCES
emp1(empno)

);
=> Si on supprime un service, de la table DEPT, référencé dans le table

EMP, les lignes de table EMP référençant ce service sont aussi
supprimées.

86

Création de contraintes :
Clé primaire et clé étrangère

EMP Ename Deptno Job Sal

DEPT Deptno Dname

Clé étrangère

SMITH 20 CLERK 800

ALLEN 30 SALESMAN 1600

WARD 30 1250

10

20

ACCOUNTING

RESEARCH

30 SALES

....

....

Empno

7369

7499

7521

Clé primaire

Clé primaire

SALESMAN

87

Création de contraintes :
Clé primaire et clé étrangère (suite)

! Lors d'une insertion :
! Unicité de la clé primaire et des clés uniques ;
! Pour chacune des clés étrangères, existence d'une

occurrence correspondante dans la table
référencée ;

! Cohérence des valeurs avec leur type (NUMERIC,
VARCHAR,...), le caractère obligatoire ou non (NULL
ou NOT NULL), les conditions éventuelles.

! Lors d'une suppression :
! S'il n'existe pas de clé étrangère dans d'autres tables

dont la valeur correspond à l'une des clés primaires
supprimées, la suppression est effectuée ;

! Sinon,
! soit la suppression est rejetée (ON DELETE RESTRICT)
! Soit toutes les lignes référençant l'une des clés primaires supprimées sont

aussi supprimées (suppression en CASCADE => ON DELETE CASCADE).
! Soit les clés étrangères sont mises à NULL (ON DELETE SET NULL)

88

Création de contraintes :
Clé primaire et clé étrangère (suite)

! Lors d'une mise à jour :
! Cohérence des valeurs avec leur type (NUMERIC,
VARCHAR,...), le caractère obligatoire ou non (NULL
ou NOT NULL), les conditions éventuelles.

! Pour les mises à jour de clés étrangères, on devra
réaliser le même contrôle que lors d'une insertion ;

! Pour les mises à jour d'une clé primaire,
! S'il n'existe pas de clé étrangère dans d'autres

tables dont la valeur correspond à l'une des clés
primaires mises à jour, la mise à jour est
effectuée ;

! Sinon :
! Soit la mise à jour est rejetée (ON UPDATE RESTRICT : interdiction

si clé utilisée)
! Soit la mise à jour est répercutée sur toutes les lignes référençant la

clé primaire modifiée (ON UPDATE CASCADE).
! Soit les valeurs de la clé étrangère sont remplacées par NULL (ON
UPDATE SET NULL)

89

NULL et clé étrangère

! La contrainte de clé unique ne prend pas en compte les valeurs NULL
(NULL n’est pas considérée comme une valeur !)

! Clés étrangères : la contrainte FOREIGN KEY n'est pas contrôlée pour
une clé étrangère comportant la valeur NULL, y compris dans le cas
d'une clé concaténée dont l'une des valeurs est NULL.

Clé
étrangère
(Col1,Col2)

Col 1 Col 2 Col 3
X1 Y1
X2 Y2
X3 NULL

NULL NULL
NULL Y3
X3 Y3

Col 1 Col 2
X1 Y1
X2 Y2

Clé primaire (Col1,Col2)

Invalide

90

Modification de table : ALTER
TABLE

! ALTER TABLE : permet de modifier la structure initiale d'une table
! Ajout de colonnes,
! Modification de la valeur par défaut,
! Ajout de contraintes,
! Activation, ou suppression de contraintes,

! Exemple : Changement de la définition de la colonne DNAME de DEPT
ALTER TABLE dept ALTER dname TYPE VARCHAR(20);
ALTER TABLE dept ALTER dname SET NOT NULL;
ALTER TABLE dept ALTER dname DROP NOT NULL;
-- Commande ALTER non normalisée (dépend du SGBD).

Ex. avec MySQL :
ALTER TABLE dept CHANGE dname
dname VARCHAR(20) NOT NULL;

! Exemple : ajout d’une colonne à la table DEPT
ALTER TABLE dept
ADD COLUMN date_creation DATE NULL

91

Modification de table : ALTER
TABLE (suite)

! Remarques :
! Toutes les modifications de structure ne sont pas

possibles : il faut respecter le contenu des tables
et les contraintes existantes sur les tables (clés
étrangères,…).

! Sur l'exemple de rajout d'une contrainte NOT
NULL sur la colonne DNAME : s'il y avait eu des
noms de service (DNAME) non renseignés, la
contrainte NOT NULL n'aurait pas été valide.

92

Modification de table : ALTER
TABLE (suite)

! Exemple : ajout d'une contrainte de clé primaire à la
table DEPT
ALTER TABLE dept
ADD CONSTRAINT pk_dept PRIMARY KEY (deptno);

! Exemple : ajout d'une contrainte de clé étrangère à
la table EMP
ALTER TABLE emp
ADD CONSTRAINT fk_emp_deptno FOREIGN KEY
(deptno) REFERENCES dept(deptno);

! Exemple : ajout d'une contrainte CHECK salaire >
commission
ALTER TABLE emp
ADD CONSTRAINT ck_emp_sal CHECK (SAL > COMM);

93

Modification de table : ALTER
TABLE (suite)

! Remarques :
! Il est préférable de créer les contraintes de clé étrangère avec la

commande ALTER TABLE, i.e. après la création des tables, plutôt
que d'utiliser les contraintes déclaratives dans les CREATE TABLE.
Si les clés étrangères sont créées en fin de script, il ne sera pas
nécessaire de respecter l’ordre de création des tables.

! Si un enregistrement ne satisfait pas la contrainte de type CHECK,
celle-ci est rejetée.
ALTER TABLE emp

ADD CONSTRAINT ck_emp_sal
CHECK (SAL > COMM);

ERROR : CHECK (SAL > COMM)
 *

! Dans certains SGBD, il est possible de rejeter les lignes ne
satisfaisant pas les contraintes dans une table d'exception (Oracle,
SQL Server)

94

Suppression de table : DROP
TABLE

! Exemple : suppression de la table DEPT
DROP TABLE dept;
NOTICE: constraint fk_emp_deptno on table emp depends on table dept
ERROR: cannot drop table dept because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.
=> Nécessité de supprimer les tables dans l’ordre adéquat

(inverse de leur création) afin de respecter les contraintes
clé primaire / clé étrangère (de même pour les
enregistrements !)

Ou alors utiliser l’option CASCADE qui supprime les clés étrangères
dépendantes : DROP TABLE dept CASCADE;

! Impossibilité de supprimer une contrainte avec un
DROP. Il faut utiliser ALTER TABLE … DROP …
! Exemple : ALTER TABLE emp DROP CONSTRAINT

fk_emp_deptno;

