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Chapitre 1

Eléments du langage mathématique

L’utilisation du langage courant en mathématiques peut conduire & des ambiguités et de nombreux
paradoxes bien connus résultant d’une utilisation trop intuitive de la notion d’ensemble (« I’ensemble de
tous les ensembles » par exemple ...). D’un autre c6té, une formalisation compléte des mathématiques
conduirait & des énoncés illisibles et finalement a une pratique stérile. Nous proposons dans ce chapitre
de mettre en place les éléments de langage rigoureux utilisés par tous les mathématiciens et utilisateurs
des mathématiques, en évitant ces écueils. Leur appropriation et leur bon usage est une question de
pratique (guidée). Nous donnons ci-dessous quelques définitions concernant les énoncés mathématiques
et les ensembles, les relations entres ces objets avec leurs régles d’emploi.

1.1 Opérations logiques

Un énoncé mathématique est soit vrai soit faux (on parle de « principe du tiers exclu » et nous passons
sous silence la question de 'existence d’énoncés « indécidables » ).

e Assertion ou proposition : énoncé susceptible d’étre vrai (V) ou faux (F) sans ambiguiteé.

Notée A, B ou encore A(x) si elle dépend d’une variable x.

Exemples :

— A : «4 est un entier pair ». Cette assertion est vraie.
— A(n) : « tout entier n > 2 admet au moins un diviseur premier ». Cette assertion est vraie.

— B : «V/2 est un nombre rationnel » (c’est a dire peut s’écrire sous la forme P avec p et g entiers
q

naturels). Cette assertion est fausse : on dit que V2 est irrationnel. La preuve est faite plus bas
a titre d’exemple de démonstration par I'absurde.
— C : « pour tout entier n » n’est pas une assertion !

e Négation : (non A) est l'assertion qui est vraie quand A est fausse et fausse quand A est vraie.
On peut résumer cela sous forme d’une « table de vérité » :

A | non A
\% F
F \%

Exemple : (non B) est vraie.

e Conjonction : A et B. Cette assertion est vraie uniquement si les deux assertions A, B sont vraies.



e | IS I
o< S|
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Exemples :
« 9 est impair et 9 est multiple de 3 » : assertion vraie.
« 9 est pair et 9 est multiple de 3 » : assertion fausse.

e Disjonction : (A ouB). Cette assertion est vraie uniquement si 'une au moins des assertions A,
B est vraie. Il y a donc trois cas possibles :

— A vraie sans que B ne soit vraie,

— B vraie sans que A ne soit vraie,

— A et B sont vraies en méme temps (on dit que le connecteur logique « ou » est inclusif).

AouB

SIESIESIESIES
| <= <| @
| < <<

Exemples :
« 9 est impair ou 9 est multiple de 3 » : assertion vraie.
« 9 est pair ou 9 est multiple de 3 » : assertion vraie.

e Implication : 'assertion ((non A)ouB) se note A = B. On lit : « A implique B ».
A Daide des régles précédentes on peut construire sa table de vérité :

A B|lnomA|A—B
VIV F Vv
VI|IF F F
F |V \%4 \%4
F|F % \%4

Remarque 1.1.1. On voit que la seule contrainte porte sur le cas ou A est vraie : B doit alors
nécessairement étre vraie.

On dit que B est une condition nécessaire pour A, ou encore que A est une condition suffisante pour
B.

Exemple : «sia € R alors (a < —1 => a? > 1) » est une assertion vraie.

e Equivalence : on dit que les assertions A, B sont équivalentes si A = B ainsi que B = A sont
vraies. Ces deux derniéres assertions sont dites réciproques I'une de 'autre. On écrit alors A < B

Dans le langage courant on dit que A est une condition nécessaire et suffisante de B (et vice-versa),
ou encore que A est vraie si et seulement si B est vraie (« ssi » en abrégé pour « si et seulement si »).

A BlA<DB
VIV V
VIF F
v F
FF V




Exemple : les deux assertions suivantes sont équivalentes.
A:(a>1oua<-1) B:ad’>1
On écrit donc A <= B.

Remarque 1.1.2. On a de maniére immédiate les équivalences :
(AetB) < (BetA)

(AouB )<= (BouA)

et aussi les propriétés d’associativité et de distributivité :
(AouB)ouC <= Aou(BouC)

(AetB)etC <= Aet(BetC)

Aet(BouC) <= (AetB)ou(AetC)

Aou(BetC) <= (AouB)et(AouC)

Les résultats suivants se montrent facilement en construisant les tables de vérité (exercice) :

Proposition 1.1.1. Soient A, B deux assertions. Alors :
non (non A) <= A

non (A et B) <= ((non A) ou (non B))

non (A ouB) <= ((non A) et (non B))

non (A = B) <= (A et (nonB)).

En niant 'implication (quatriéme énoncé), on énonce en fait que B n’est plus une conséquence de A.
Attention : ce n’est pas (non A = non B) et pas davantage (A = non B) ...

e Contraposée : 'assertion non B = non A s’appelle la contraposée de A = B.
Le résultat qui suit, trés utile dans la pratique des démonstrations, énonce qu’une implication et sa
contraposée sont équivalentes.

Proposition 1.1.2. (A = B) <= (nonB = non A)

Preuve : en utilisant systématiquement la proposition 1.1.1 on a successivement :

nonB = non A <= (nonnonB)ou(non A))
non (non B et A)

non (A et nonB)

non (non (A = B))
(A = B)

1o

A noter également :

Proposition 1.1.3 (Transitivité). Soient A, B, C trois assertions. Alors :
(A=B)et (B=C)|]= (A= C)
(A<= B)et (B<=C)] = (A = C)

Remarque 1.1.3. Ces notions sont appliquées en électronique (portes logiques) et en informatique
(tests). On pourra consulter Wikipedia https://fr.wikipedia.org/wiki/Table de vérité et les liens qui
envoient vers ces notions.


https://fr.wikipedia.org/wiki/Table_de_verite

1.2 Quantificateurs
Considérons une assertion A(x) dépendant d’un objet x, par exemple (z € R et 22 = —1). On écrit :
dz, A(x)
pour exprimer que l’assertion est vraie pour au moins un x. Pour I'exemple ci-dessus on écrira plutét :
Jz e R, 2% = -1

On sait que cette assertion est fausse.
Le symbole 3 s’appelle le quantificateur existentiel.
De méme :

Vo, A(x)

exprime que A(x) est vraie pour tout z. Par exemple : Vx € R, 22 > 0 est une assertion vraie.
Le symbole V s’appelle le quantificateur universel.

Pour exprimer 'existence d’'un unique z pour lequel A(x) est vraie on écrit :
Az, A(x).

Exemple : Jlz, (x € R} et cosz = x), ou de fagon plus compacte : Iz > 0, cosz = x

Attention : une expression mathématique peut contenir plusieurs quantificateurs et on veillera a ne
pas intervertir 'ordre de deux quantificateurs de natures différentes. Ainsi :

A:VaeR, Fz R, In(x) >a

n’a pas le méme sens que
B : Jdx € R, Va € R, In(x) > a,

I'une étant trivialement vraie (laquelle ?) et I'autre fausse.
Il est indispensable de savoir écrire rapidement et correctement la négation d’une assertion telle que A
ci-dessus. Il suffit pour cela de se convaincre que 'on a :

’non (Fx, A(x)) < Vz, non A(X)‘

et aussi :

’non (Vz, A(x)) <= 3Jz, non A(x)‘

On procéde alors comme suit :

Etape 1 : A(x) est de la forme (Va € R, P(x)) out P(x) est I'assertion (3z € R, In(x) > a), on obtient
donc (non A(x)) sous la forme : Ja € R, non P(x),

Etape 2 : (nonP(x)) s’écrit : Vo € R, In(z) < a. On conclut donc que (non A(x)) est I'assertion :
Jda € R, Vz € R, In(z) < a.
En pratique on doit étre capable d’écrire directement le résultat : on remplace chaque quantificateur

existentiel par un quantificateur universel et inversement, puis ’expression finale (A(x) dans notre
exemple) par sa négation.
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1.3 Principe des démonstrations

On dispose d’un ensemble d’hypothéses H et on veut aboutir & un ensemble de conclusions C.

Pour le faire, on suit un raisonnement logique fait d’implications simples entre des assertions clairement
énoncées, en utilisant en général des résultats déja établis et des méthodes adaptées (la « boite a
outils » ).

e Pour montrer A = B on peut faire :
— une démonstration directe : on suppose que A est vraie (voir la remarque 1.1.1) et on cherche
a montrer que B est vraie,
— une démonstration par contraposée : on suppose que B est fausse et on prouve qu’alors A
est également fausse (non B = non A).

Exemple : soit  un nombre réel. On veut montrer I'implication suivante, d’usage fréquent en analyse
mathématique :
Ve>0, |z|<e)=2=0 (1.1)
——
A B

|z

Faisons I'’hypothése que non B est vraie, c’est a dire que x # 0. Soit ¢ = o on a évidemment € > 0

et |x| > ¢, donc on a montré : 3¢ > 0, |x| > ¢, c’est & dire que non A est vraie.
b) ) b q

e Démonstration par 1’absurde :
on veut montrer qu'une assertion A est vraie, on suppose qu’en fait A est fausse et on met en évidence
une certaine assertion B telle qu’on ait a la fois (non A = B) et (non A = non B).

Exemple : montrons par I'absurde que v/2 est irrationnel (c’est 'assertion A). On suppose que V2

est rationnel : on sait alors qu’il existe des entiers naturels p, ¢ premiers entre eux (c’est a dire sans

diviseur commun autre que 1) tels que V2 = P (c’est B). On a donc p? =24 et on en déduit que p
q

est pair : p= 2k avec k € N*.
La relation p? = 2¢? devient alors 4 k? = 242, c’est a dire 2k? = ¢?, de sorte que ¢ est pair. Ceci
montre que p et ¢ ne sont pas premiers entre eux, ce qui contredit B et termine la preuve.

e Démonstration par disjonction des cas. Cette méthode est basée sur la propriété suivante :
[(AouB)et (A= C)et(B= C)] = C.

Autrement dit (en langage courant) s’il y a deux cas possibles (A et B = non A) et si dans chacun de
ces cas on a C, alors C est vraie. Ceci s’étend a un nombre quelconque de cas recouvrant toutes les

1
éventualités. Exemple : montrons que pour tout entier naturel n on a M eN.
nn+1
— Si n est pair alors il existe un entier k tel que n = 2k et % =k(n+1)eN.
n(n+1)

— Sin est impair alors n+1 est pair : il existe un entier k tel que n+1 = 2k et =nk € N.

e Preuve par contre-exemple : pour montrer qu’une assertion du type Va, A(x) est fausse, il suffit
d’exhiber un contre-exemple, i.e. mettre en évidence un x particulier pour lequel A(x) est fausse.

Exemple : l'assertion A (x) : Vo € R, cosz > 1/2 est fausse car elle est mise en défaut pour z = 7/2.

11



1.4 Les Ensembles

1.4.1 Généralités

Intuitivement, un ensemble E est une collection d’objets mathématiques muni d’une relation d’appar-
tenance notée € : x € F signifie que = appartient a ’ensemble E, ou encore que x est un élément de
E.

Remarque : I'assertion non (z € E) s’écrit aussi z ¢ E.

Vocabulaire :
— égalité entre éléments d’un ensemble : a = b signifie que a et b sont « un méme objet »,
— égalité de deux ensembles : ¥ = F signifie que ces ensembles ont les mémes éléments,
— singleton : c’est un ensemble {a } & un seul élément,
— ensemble vide : ¢’est I’ensemble noté () ne contenant aucun élément (par exemple 'ensemble des
solutions de I'équation 2> = —1 dans R).

1.4.2 Relations et opérations entre les ensembles

e Inclusion : A C B si tout élément de A est un élément de B.
ie.Vx € A, z € B.
Ou encore A est une partie de B.

Meéthode : Pour prouver que A C B, on prend un élément quelconque de A et on démontre qu’il
appartient a B.

Pour prouver ’égalité de deux ensembles A = B, on doit montrer A C B et B C A.

e Ensemble des parties d’un ensemble : P(E) est 'ensemble des parties de E. Bien noter que :

(X €P(B) <= X C B

Exemple : soit E = {a,b,c}, alors : P(E) = {0, {a}, {b}, {c}, {a, b}, {a,c}, {b c}, E}. On a
{b,c} € P(E) et aussi {b, ¢} C E (les deux assertions sont équivalentes).

Dans l'ensemble P(E) on définit les opérations suivantes :

e Intersection : soient A C E et B C F, I'intersection de A et B est le sous-ensemble de F :

’AOB:{xGE;xeAethB}‘

Les éléments de AN B sont ceux qui sont & la fois dans A et dans B.

e Reéunion : soient A C F et B C E, la réunion de A et B est le sous-ensemble de E :

’AUB:{xEE;meruxEB}‘

Les éléments de A U B sont ceux qui sont dans A ou dans B. Il peuvent étre de trois types : ceux qui
sont dans A mais pas dans B, ceux qui sont dans B mais pas dans A mais aussi ceux qui sont a la fois
dans A et dans B.

e Complémentaire de B dans A : soient A C F et B C E, le complémentaire de B dans A est le
sous-ensemble de E :

’A\B:{er;xeAetng}‘

C’est ’ensemble des éléments de A qui ne sont pas dans B.

12



Le complémentaire de B dans ’ensemble de référence E est le sous-ensemble de E défini par :

’E\B:{er;x%B}etnotéaussch

de sorte que 'on a ’ A\B=ANB*

e Différence symétrique : la différence symétrique de A et B, notée AAB est 'ensemble des
éléments de E qui sont soit dans A soit dans B mais pas dans les deux & la fois. Plus précisément :

|AAB = (A\B)U(B\ A)=(AUB)\ (ANB)]

Exemple : dans la figure ci-dessous on a E = {a, b, ¢, d, e, f, g, h, 1, j, k}, A = {a, b, ¢, d, e} et
B={d,c, f, g} Alors :

AﬁB:{dve}? AUB:{a,b,c,d,e,f,g}
A\B ={a, b, ¢}, B\A=1{f, g}, AAB={a,b, ¢ f, g}

AC:{f7 g9, h7 i7 j? k}’ BC:{a7 b7 (& hu i) ju k}

FIGURE 1.1 — Opérations ensemblistes

e Produit cartésien : Soit A et B deux ensembles quelconques,
le produit cartésien de A et B est ’ensemble (de couples) suivant :

’AXB:{(a,b);aeAethB}‘

Ce n’est pas une partie de E mais de E' x E.
Exemple : RxR=R?*={ (z,y);z€Rety R }.

N. B. : (a,b) = (¢,d) <= a=c et b=d, (a,b) # (c,d) <= a # coub#d.
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1.4.3 Propriétés

Propriétés de l’intersection
(a) Commutativité : ANB=BNA
(b) Associativité : AN (BNC)=(AnB)NnC
(c) E est élément neutre : ANE=FENA=A

Propriétés de la réunion
(a) Commutativité : AUB=BUA
(b) Associativité : AU(BUC)=(AUuB)UC
(c) 0 est élément neutre : AU =QU A=A

Distributivité
(a) AU(BNC)=(AUB)N(AUC)
(b) (AnB)UC =(AuC)N(BUCQC)
(c) AN(BUC)=(ANB)U(ANCO)
(d) (AUB)NC=(AnC)u(BNQC)

Preuve : on démontre a) a titre d’exemple.

On a une double inclusion & démontrer :
AUBNC)C(AUB)N(AUuC) et (AUB)N(AUC)CAU(BNC)

AU(BQC)C(AUB)Q(AUC) (AUB)Q(AUC)CAU(BOC)
Soit 2 € AU(BNC), Soit z € (AUB)N (AU C),
z€AouzeBNC reAUB etz e AUC donc
:c'GAou[xEBetxeC] [t€ Aoux € Blet[ze Aouxe (]
SizeA, onazxe AUBetxe AUC Donc (z € A) ou (z € B et z € C)
donc z € (AUB)N(AUC) c’est-a-dire x € AU (BNC)

Size BNC,onaaussizx € AUBetx e AUC
doncz € (AUB)N(AUC)

La premiére inclusion est prouvée.

La seconde inclusion est prouvée.

Propriétés du complémentaire
(a) Idempotence : (A°)° = A
(b) Formules de De Morgan : (AN B)“ = A°UB et (AU B)° = A°N B“.

Remarque 1.4.1. Ces opérations d’intersection, réunion, complémentaire, sont en lien étroit avec,
respectivement, les connecteurs logiques « et », « ou» et la négation : il suffit d’observer les définitions
pour s’en convaincre. Les régles d’utilisation sont également en correspondance étroite.

Exemple : : (AU B) = A°N B° correspond a non (P ou Q) <= (nonP) et (non Q).
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1.5 Relations, fonctions, applications

Etant donnés deux ensembles quelconques E et F on peut avoir a définir des relations entre des éléments
de E et des éléments de F.

Exemple : si F = {1, x2, x3} et F' = {p1, p2, p3, pa} représentent deux ensembles de personnes, on
définit la relation R qui associe a chaque individu de E la ou les personnes, dans F', auxquels il envoie
un courrier. On peut en donner une représentation schématique, ot le correspondanr de x; est p; etc...
9, en particulier, n’écrit & personne.

E F
P1

"
| %

FIGURE 1.2 — Représentation schématique de la relation R

On peut aussi définir la relation sous la forme d’un ensemble de couples (x,p) ou p regoit un courrier
de x (on écrit alors xRp). La relation entre les ensembles E et F' équivaut ainsi & la donnée d’une
partie I' de £ x F' qu’on appelle le graphe de la relation :

tRp <= (z,p) € T

Cette régle étant posée, toute 'information est donc obtenue par la donnée du triplet (E, F,T").

Pour ’exemple précédent on obtient pour I' la partie de £ x F' formée des couples de couleur rouge :

F
E b1 b2 b3 yZ
T (x1,p1) | (x1,p2) | (21,p3) (96'17174)
T2 (x2,p1) | (z2,p2) | (z2,p3) | (w2, pa)
T3 (z3,p1) | (x3,p2) | (x3,p3) | (23,p4)

FIGURE 1.3 — Le graphe de la relation R

I'={(z1,p1), (z1,p3) (z3,p2) (x3,p3), (x3,p4)}.

Les fonctions, telles que vous les connaissez déja relévent de ce cadre : y = f(x) est une autre fagon
d’écrire que x est mis en relation avec y par f et le couple (z,y), élément du graphe, va pouvoir
éventuellement étre représenté par un point dans un repére (s’il s’agit de nombres réels). Toutefois,
dans le cas des fonctions, il y a une contrainte essentielle : un élément donné x de ’ensemble de départ
FE ne peut étre mis en relation qu’avec au plus un élément y de ’ensemble d’arrivée F' et on dit que y
est 'image de x par f. Ce n’est clairement pas le cas dans ’exemple précédent et on dit que le graphe
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n’est pas fonctionnel : il faudrait qu’il y ait au plus un élément en rouge par ligne dans le tableau de
la figure 1.3.

Définition 1.5.1. Une fonction f est un triplet (E, F,T") ou E est un ensemble appelé ensemble de
départ, F' est un ensemble appelé ensemble d’arrivée et I' C E x F un graphe par lequel tout élément
x de E est en relation avec au plus un élément y de F' noté (sl existe) f(z) et appelé image de = par
f et x est un antécédent de y (rien n’interdit qu’il y en ait plusieurs).

EFE — F
z — f(z)
il faut ensuite préciser ce que sont E, F et f(x). Il y a de nombreuses fagons de définir f : par son

R — R .
graphe, par une formule ... par exemple f : { r — VT sachant bien str que seuls les z > 0

Remarque 1.5.1. On introduit couramment une fonction sous la forme f : { ou

Ry — R .
+ n’est pas la méme que f car elle différe par
x — z

son ensemble de départ (il faut assumer le c6té précis d’une définition).

auront une image. La fonction g :

Exemple : avec les ensembles déja utilisés, voici la représentation schématique d’un exemple de
fonction :

FIGURE 1.4 — Un exemple de fonction

On a par exemple po = f(x3) et x2 n’a pas d’'image, py a deux antécédents x3 et x4, p1 et pg n’ont pas
d’antécédent, x2 n’a pas d’image.

Définition 1.5.2 (ensemble de définition). Soit f = (E, F,I") une fonction. On appelle ensemble (ou
domaine) de définition de f I'ensemble Dy = {x € E; Jy € F, y = f(x)} i.e. 'ensemble des éléments
de E qui ont une image par f.

Exemples : avec les fonctions introduites dans la remarque 1.5.1 on a Dy = D, = R.

Définition 1.5.3 (composition des fonctions). Soient f : { E = I et g : { F—= G

x — f(z) x — g(z)
des fonctions. La composée de f et g (dans cet ordre) est la fonction go f : x — (go f)(z) définie
par ¥z € B, (go f)(z) = glf(2)].

Son ensemble de définition est donné par : Dyor = {x € Dy; f(x) € Dy}.

Commentaire : le membre de droite de la relation de définition justifie que ’on écrive g o f plutdt
que fog, ce qu'on pourrait étre tenté de faire dans la mesure ot f « agit » en premier et g en second.
On aura intérét & mémoriser le petit diagramme suivant :
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sy ) (g0 D)) Y gl(f(@)] = 9(v)

gof

FIGURE 1.5 — Composition de deux fonctions
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Exemple 1 :

FIGURE 1.6 — Un exemple de composée de fonctions

.Alors go f

Exemple 2 : on considére les fonctions f : { 0,7} — R et g : { R — R

T > CcosZ r +— Inz
[0,7] — R
x  +— In(cosz)
On a Dy =1[0,7], Dg =R et Dyoy = {z € [0,7]; cosz >0} = [0,7/2[.
Que donnerait fog?

est la fonction : {

. R — R
Réponse : fog : { v — f(nz)
Alors : Vo € Dyog, (f 0 g)(x) = cos(lnx).

dont le domaine est Dyoq = {x > 0; Inz € [0,7]} = [1,€"].

Remarque 1.5.2. Il n’est pas intéressant de prendre R comme ensemble de départ pour la fonction
g alors qu’il est connu que Inz n’est défini que pour x > 0. Prendre ’ensemble de définition comme
ensemble de départ conduit & la notion d’application :

Définition 1.5.4 (applications). Une fonction f = (E, F,T') est une application si son ensemble de
définition est I'ensemble de départ : Dy = E.

Exemples : dans ’exemple 2 ci-dessus, f est une application, g n’est pas est une application.

Définition 1.5.5 (applications injectives). Une application f = (E, F,T') est dite injective (on dit
aussi que c’est une injection) si deux éléments distincts dans E ont des images distinctes dans F'.

R —
. ] . . . + . . .
Exemples : I'application In : { - Ina est injective.
. R — R )
Par contre la fonction h : . L2 he I'est pas car (contre-exemple) on a h(—1) = h(1) = 1.
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Définition 1.5.6 (applications surjectives). Une application f = (E, F,T") est dite surjective (on dit
aussi que c’est une surjection) si tout élément de F' a au moins un antécédent dans FE.

Exemples : 'application h : 2 — 2 n’est pas surjective car —1, par exemple, n’a pas d’antécédent.
R — R+

Par contre la fonction k : { 5 est surjective.
r —

Définition 1.5.7 (applications bijectives). Une application f = (E, F,I") est bijective (on dit aussi
que c’est une bijection) si elle est a la fois injective et surjective.
On définit alors la bijection réciproque de f, notée f~! par :

Y(a,b) e Ex F, f~Y(b)=a <= f(a)=0.

Voir la figure 1.7 pour un exemple (fy et fi ).

I Ry — R Ry — R o .
Exemples : les applications ¢ : { ; N \/g et m : { ; N x; sont bijectives. L’appli-

cation k ne l'est pas. Voici quelques exemples sous forme de diagrammes :

FIGURE 1.7 — Injections, surjections, bijections

L’application f; est ni injective ni surjective, fo est injective mais non surjective, f3 est surjective mais
non injective, enfin fy est bijective (on remarquera que les ensembles finis E et F' ont alors le méme
nombre d’éléments).

On retiendra les critéres pratiques suivants :

Proposition 1.5.1. Soit f : £ — F une application. Alors :

1. f est injective si et seulement si pour tout y € F' I'équation f(x) = y, d’inconnue z, admet
au plus une solution dans E (i.e. aucune ou bien une seule).

2. f est surjective si et seulement si pour tout y € F' I’équation f(x) =y, d’inconnue x, admet
au moins une solution dans F.

3. f est bijective si et seulement si pour tout y € F I'équation f(z) = y, d’inconnue x, admet
une solution et une seule dans E .
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Image directe et image réciproque d’une partie d’un ensemble par une fonction :

Soit f : B — F une fonction. Si A € P(FE) on pose, avec un abus d’écriture usuel,

JA)={yeF;Imecd y=[@)}

On a f(A) € P(F) et on définit ainsi une application « image directe » de P(FE) dans P(F') notée
encore f par un abus de notation usuel.

On définit également (méme si f : E — F n’est pas bijective!) une application « image réciproque »
notée (abusivement, une fois de plus) f~1 :

déf

= {P(F)%P(E)
| B=fY(B)= {z€E; f(z) € B}

On pourra, pour comprendre ces définitions, s’aider du diagramme suivant :

FIGURE 1.8 — Image et image réciproque d’une partie

On a enfin les propriétés suivantes, toutes trés simples & établir :

x VB e P(F), f(f *(B)) C B, égalité quand f est surjective.

* Si f est une application, VA € P(E) f1(f(A)) D A, égalité quand f est injective.
* VB,B' € P(F), f7{(BUB') = f"Y(B)uU f1(B).

* VB,B' € P(F), f/{(BnB)=f"YB)nf1(B).

* Si f est une application alors VB € P(F), f~1(B®) = (f~}(B))".
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Chapitre 2

Nombres entiers, nombres rationnels et
nombres réels

Ce chapitre consiste essentiellement en rappels, sauf le paragraphe 2.4.4 consacré aux notions nouvelles
et trés importantes de borne supérieure et de borne inférieure.

Les ensembles de nombres (entiers, rationnels, réels) ont été introduits et utilisés dans les classes de
lycée. Nous faisons un tour d’horizon avec quelques rappels.

2.1 Entiers naturels

Cet ensemble est noté N. Sa construction mathématique est hors programme.

On rappelle que N* = N\ {0}.

p et ¢ étant deux entiers tels que p < ¢, on note [p, q] 'ensemble des entiers compris entre p et g,
bornes comprises :

[p,ql ={neN;p<n<q}
Exemple : [2,7] = {2, 3, 4, 5, 6, 7}.
e Division euclidienne

Il s’agit du résultat suivant, connu depuis la classe de CM1 (mais non formalisé & ce niveau!) :

Proposition 2.1.1. Pour tout couple (a,b) d’entiers naturels tel que b # 0 il existe un unique couple
(q,r) d’entiers tel que a =bq+1r et r <b.

g et r sont respectivement appelés quotient et reste de la division euclidienne de a par b. Si r = 0 on
a a = bgq : on dit que b divise a ou que a est un multiple de b et on écrit b|a.

L’unicité du couple (¢,r) est assuré par la contrainte r < b : il ne faut donc pas oublier
celle-ci dans 1’énoncé.

e Décomposition en produit de nombres premiers

On rappelle qu’un entier est premier si ses seuls diviseurs sont lui méme et 1. Tout entier naturel n > 2
posséde au moins un diviseur premier et on a le résultat de décomposition suivant :

Proposition 2.1.2. Soit n un entier naturel, n > 2. Il existe une unique suite finie de nombres
. . ) T a1 o,
premiers py < - -+ < py et une unique suite finie d’entiers non nuls oy, - - - , oy, tels quen = pi™* ... p."~.

Exemple : 87318 = 2 x 3% x 72 x 11.
Onapi=2,p2=3,p3=7T,ps=11, 01 =1, a0 =4, ag =2 et agy = 1.
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I1 faut utiliser ce résultat (avec des sous-calculs effectués éventuellement) pour simplifier les fractions :

12 2
il n’est pas admissible de laisser le résultat final d’un calcul sous la forme 3 ou 1

e Principe de démonstration par récurrence

On cherche a prouver une assertion de la forme (Vn € N, P(n)) ou P(n) est une proposition qui dépend
de l'entier n, autrement dit que tous les entiers vérifient la propriété P.
On montre que :

P(0) est vraie (initialisation)

(Vn € N) (P(n) = P(n+1)) (hérédite)
On conclut : Vn € N, P(n) est vraie.

Commentaires : « P(0) vraie » est la partie la plus facile car il s’agit en général d’une simple
vérification, mais elle est indispensable.

La deuxiéme étape peut étre source d’erreur. Il faut la comprendre ainsi : « si la propriété est vraie
pour un entier n alors elle est vraie pour Uentier suivant », le (Vn € N) étant 14 pour signifier que cette
propriété de transmission (et non pas la propriété elle-méme) doit étre vraie pour tous les entiers. On
ne prend nullement comme hypothése que P(n) est vraie pour tout n, il n’y aurait alors plus rien a

prouver !
On pourra penser & I'analogie d’une course de relai : pour que le témoin passe par toute les mains, il
faut deux conditions
— le premier coureur doit partir avec le témoin dans la main,
— tout coureur qui a son témoin en main doit le transmettre au suivant,
faute de quoi il y a élimination.

Exemple : il s’agit de montrer que la propriété :

n(n+1)(2n+1)
6

Pn) : 0°+124+22+.. . +n? =

est vraie pour tout entier n.
00+1)(2x0+1
) P): 0= 20 )<6X +1)

1) Hypothése de récurrence : P(n) est vraie pour un certain entier n.

, donc P(0) est vraie,

On doit montrer alors que P(n + 1) est vraie (P(n+ 1) est obtenue en remplacant n par n + 1 dans
Pégalité)

n(n+1)(2n+1) n(n+1)2n+1)

0+ 14224 == = (0414224 4n)t(n+1)? = ——— =4 +1)°
N p (n+1). o ) .
hypothése de récurrence = 5 [2n“ +n + 6n + 6]
(n+ 1)

- T+ yen+ )+

Donc P(n + 1) est vraie.
En conclusion on a montré que P(n) est vraie pour tout entier n.

2.2 Entiers relatifs, nombres rationnels

Notations :

Z : entiers relatifs, Z* = Z\{0}
Q : rationnels, r = b avec p € Z et g € N*

q
Qt={reQ,r>0},Q ={reQ, r<0}
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e Division eulidienne dans Z :

Le résultat énoncé dans N s’étend ainsi :

Proposition 2.2.1. Pour tout couple (a,b) d’entiers relatifs tel que b # 0 il existe un unique couple
(q,r) d’entiers relatifs tel que a =bg +1r et 0 <r < |b|.

2.3 Symboles somme et produit, formule du biné6me

e Symbole factorielle. Pour n € N* :

n!difnx(n—l)x'--x2x1

C’est le produit des n premiers entiers non nuls. On pose 0! = 1, par convention.
Exemple : 5! =5 x4 x3x2x1=120

On a la relation de récurrence :

¥neN, (n+1)!=(n+1)n]

e Combinaisons de p éléments parmi n :

Définition 2.3.1. On appelle combinaison de p éléments d’un ensemble & n éléments toute partie & p

éléments de cet ensemble. Le nombre de ces combinaisons est noté ( .
b

Exemple : on veut choisir un groupe de 3 étudiants parmi 5

E

Iy abx4x3fagons de les désigner I'un(e) aprés l'autre, donc avec un ordre. Par exemple (a,d,b).
L’ordre ne doit pas intervenir, or on remarque qu’il y a 3 x 2 = 6 = 3! fagons de les ordonner. Dans
I’exemple précédent :

(a,b,d), (a,d,b), (bya,d), (b,d,a), (d,a,b), (d,b,a)

5x4x3

— =10.
Ix2x1

On conclut donc que le nombre de groupes est en fait

. hx4x3x2x1 5! . (5
On remarque que cela peut s’écrire = : ceci est noté .
Bx2x1)(2x1) 32! 3
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Remarque 2.3.1. C’est aussi le nombre de facons de choisir 2 étudiants parmi 5 : ceux qu’on écarte.

E

Plus généralement, le nombre de combinaisons de p éléments parmi n est :
(n) nx(n—1)x--x(n—-p-—1)

p

= : p facteurs au numérateur et au dénominateur

px(p—1)x---x2x1

nxnmn—1)x---xn—p+1)x(n—p)xn—p—1)x---x2x1
px(p—1)x---x2x1x(n—p) x(n—p—1)x---x2x1

n!
pl(n—p)!

Quelques cas particuliers et propriétés :

vn € N, Vp € [0,n], <Z> B (nﬁp>

¥n e N, Vp € [1,n], <Z> - (Z:D i (n; 1)

Prouvons cette derniére propriété

Dans un ensemble E & n éléments on doit choisir p éléments. On commence par en isoler un quelconque

que ’on note a.

Parmi les parties a p éléments il y a :

1. celles qui contiennent a. On les obtient en adjoignant & a p—1 éléments parmi les n— 1 restants :

-1
<n ) possibilités,
p—1

2. celles qui ne contiennent pas a. On les obtient en choisissant p éléments parmi les n—1 restants :

-1
(n ) possibilités.
p

n
Il reste a faire la somme car les deux cas s’excluent mutuellement. C’est < ) par définition.

24



Exemple : n =6, p = 3.

Choisir 3 parmi 6

Choisir 2 parmi 5 Choisir 3 parmi 5

e Triangle de Pascal : il est construit a partir de la propriété 2.4

n=0 1 <;> )
asz 12 1 80 e
a=8 13 31 W 00
\L <0) (1 * (f) (3) (4>
n=5 15 1010 5 I (E) (Z) @ (g) @ @ i
n=6 16 152 1561 @ @ @ G @

La propriété de symétrie observée dans chaque ligne correspond & la propriété 2.2.

e Symboles somme ¥ (Sigma) et produit II (Pi) :

n

n
> k=0+1+2+-4n, [[k=1x2x--xn=n

k=0 k=1
i1l 1

=k 102 n

8

>k =449416 + 25 + 36 + 49 + 64.
k=2

e Formule du binome :

(a+b)" = g::o (Z) "k b

Preuve : par récurrence sur n, en utilisant les propriétés 2.2 et 2.4.

Remarque : on a aussi

(a+b)" = Xn: (Z) ak bk

k=0

Les coeflicients se lisent sur la n-iéme ligne du triangle de Pascal.
Exemple : (a +b)° = a® 4 5a* b + 10a® b* 4 10a? b* + 5a b* 4 V°

que ’on peut aussi écrire dans ’ordre inverse.

25



2.4 Nombres réels

2.4.1 Opérations
R est muni de deux opérations, la somme et le produit, qui doivent étre vues comme des applications :
RxR — R RxR — R
+ et X :
(r,y) +— x4y (x,y) +— zy (ouz.youzXy)
Nous listons ci dessous leurs propriétés et le vocabulaire associé :
Propriétés de la somme :

— Commutativité : V(z,y) € R?, z+y=y+=x
— Associativité : V(z,y,2) € R}, (z4+y)+z=x+ (y+2)
— 0 est élément neutre : Vx € R, 24+0=0+z==x
— Tout élément est symétrisable : Vx e R, Jly e R, z4+y=y+z=0.
On note y sous la forme —z et la notation a — b représente a + (—b) (soustraction).

On résume ces propriétés en disant que (R, +) est un groupe commutatif.

Propriétés du produit :
— Commutativité : V(z,y) € R, zy=yz
— Associativité : V(z,y,2) € R3, (zy)z=x(y2)
— 1 est élément neutre : Ve e R, z.l=1lx==x
— Tout élément non nul est inversible : Vo € R*, Aly e R*, zy=yx =1.

Ces propriétés font que (R*, x) est un groupe commutatif.

1 a 1 T
On note y sous la forme — et la notation 3 représente a X 5 iona ainsi — = 1 (avec x # 0).
x x
— Distributivité sur la somme : ¥(z,y,2) € R®, z(y+2)=zy+z2
On dit finalement que (R, +, X) a une structure de corps commutatif.

Remarque 2.4.1. On retrouve avec ces seules régles d’autres propriétés usuelles, par exemple :
VreR, 0.z=0

en effet on a 0.2 = (04 0).x = 0.2 + 0.z et il suffit alors de soustraire 0.x & chaque membre.

Il en va de méme (= exercice) des régles suivantes (on omet les quantificateurs et on suppose tous les
dénominateurs non nuls) :

1 11
[ ) —(ab):(—a)b:a(—b), %:557
° ZXE_@ en articulierg—@ our k € R*
b d bva P b kb Y ’
1 b
[} 5277
b a
. g_i_giad—i-bc
b d  bd

Exposants : on pose, ' = z et, pour # 0, ¥ =1.

La relation de récurrence : Vn € N, 2" = z.2™ permet de définir 2™ pour tout z € R et tout entier
naturel n. La propriété d’associativité du produit permet alors d’obtenir les propriétés (avec n et p

dans N) :
2" = (z")P = (2P)", 2"tP = 3" o
n

et la convention ™" = — permet d’étendre la notion d’exposant aux exposants entiers relatifs avec
les mémes régles de calcul.
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Remarque 2.4.2.

Dans N, I’équation x+1 = 0 (par exemple) n’a pas de solution, c’est a dire que 1 n’est pas symétrisable
dans N, ainsi d’ailleurs que tous les entiers naturels non nuls. Ceci est a la base de la construction de
I’ensemble Z des entiers relatifs : —1 est alors la solution.

Dans Z, l'entier non nul a étant donné, I’équation x a = 1 n’a pas de solution, sauf pour a € {—1, 1} :
ce probléme est résolu par la construction de ’ensemble @Q des nombres rationnels. On notera que
(Q,+, x) a les mémes propriétés calculatoires que (R, +, x) : c’est aussi un corps commutatif.

Dans Q, Péquation 22 = 2 n’a pas de solution. Il y a aussi d’autres défauts, liés essentiellement a la
notion de borne supérieure (voir le paragraphe 2.4.4 ci-dessous) qui rendent nécessaire la construction
de l’ensemble (beaucoup) plus vaste des nombres réels.

2.4.2 Relation d’ordre et régles de base

Sur R, il existe une relation d’ordre < qui permet de comparer les réels entre eux :
r<y<=y—xecRy=]0,+o0]

La terminologie « relation d’ordre » est liée aux propriétés suivantes :
1. Vz € R, z < z (réflexivité),
2. V(z,y,2) €R®, (z <yety<z) = x < z (transitivité),
3. V(z,y) € R?, (x < yety<z) =z =y (antisymétrie).

Si z et y sont des réels, alors on a nécessairement x < y ou y < x : on dit que la relation d’ordre < est
totale.

Attention : la relation « < » définie par : x < y <= = < y et © # y n’est pas une relation d’ordre
(pourquoi 7).

Relation d’ordre et opérations :

e On peut ajouter ou soustraire un méme réel aux deux membres d’une inégalité :

r<y=z+a<y+ta

e On peut multiplier par un méme réel positif les deux membres d’une inégalité :

<y
- <
{aZO = ar < ay

On dit que la relation d’ordre « < » est compatible avec les opérations + et x.

e Si on multiplie par un méme réel négatif les deux membres d’une inégalité, cela change le sens
des inégalités :

a<0

<
{x_y = axr > ay

e On peut ajouter membre & membre des inégalités de méme sens :

¥

g — z4+a<y+b

INIA
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Attention : on ne peut pas les soustraire membre & membre.

Exemple :

r<y r<y N
) < _
{ag—l {:>{1§—a doutz+1<y—a

par contre on a pasx —a <y + 1.

e On peut multiplier membre & membre des inégalités de méme sens si tout les membres sont
positifs :

S
VARVAN
Sl

= ax < by

—
o O

VANVAN

e Inverse et division :

1 1
I<zrly<=0<-<—
y o

0 <b a _b . .
D’ou : Sas —> — < — en utilisant le produit membre & membre.
O0<z<y y oz

a
En fait, il faut toujours voir la division comme une multiplication par I'inverse (— = a—).
x x

2.4.3 Valeur absolue

Définition 2.4.1. La valeur absolue d’un nombre réel z est le réel positif noté |z| tel que :

r si x>0

[o] = max(-=z,z) = { -z si x<0

Propriétés :
o |—az|l=lx,

o |zy|=|z|lyl,

e Inégalités triangulaires : V(x,y) € R?, ||z| — |y|| < |z £y| < |z| + |y|

Remarque : |z — y| mesure la distance entre x et y sur l'axe réel :

|z =yl
R

f »

Soient z € R et a > 0. Alors on a :

’\a:|>a<:>m<—aoua:>a

’\az|§a<:>—a§x§a

la distance entre x et 0 est strictement supérieure

la distance entre x et 0 est inférieure a a R
da
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|z
-~ R

- >

—a T 0 a

[—a,a] = {IER |z] < a}

- » R

-

xI —a 0 a

] — 00, —a[Ula, +o0[= {z € R; |z| > a}

Remarque : soient zg € R, x € R et a > 0, alors :

|r — 29| <a <~ —a<z—-z0<a
<~ r9g—a<zxz<z9+a

r — Iy
- > R
k + + t >
Trg—a x o g+ a

[0 — a,zo + a] = {x € R; | — zo| < a}

2.4.4 Majorants, minorants, borne supérieure et borne inférieure
Dans tout ce paragraphe, A désigne une partie (i.e. un sous-ensemble) de R.

Définition 2.4.2 (Majorant, minorant).
On appelle majorant de A tout réel M tel que : Ve € A, x < M.
On appelle minorant de A tout réel m tel que : Vo € A, x > m.

Attention : ces éléments n’existent pas toujours ... S’il existe un majorant (resp. un minorant) on dit
que A est majorée (resp. minorée).
Un ensemble de réels a la fois majoré et minoré est dit borné. On retiendra que :

Proposition 2.4.1. A est borné si et seulement si il existe un réel M tel que : Vo € A, |z| < M‘

Preuve : en exercice.

Exemples :
— A =N : 0 est un minorant, -10 en est un autre, il n’y a pas de majorant.
— A =]0,1[ : -2 est un minorant, 1 est un majorant, m en est un autre.

Plus grand élément, plus petit élément : s’il existe un majorant M de A qui est élément de A,
alors il est unique. On l'appelle le plus grand élément de A. On écrit M = max(A).

De méme, si un réel m est un minorant de A et est élément de A, on 'appelle le plus petit élément de
A. On écrit M = min(A).

L unicité est trés simple & obtenir : si M et M’ sont des majorants de A et sont dans A, on a 4 la fois
M < M (M € A et M majorant) et M' < M (M' € A et M majorant), donc M = M.
Ces éléments n’existent pas toujours non plus ...
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Exemples :
— A =N:0 est le plus petit élément, il n’y a pas de plus grand élément.
— A =]0,1[ : ni plus petit ni plus grand élément.
— A =]0,1] : pas de plus petit élément, 1 est le plus grand élément. max(A) = 1.
— Toute partie non vide de N admet un plus petit élément (admis mais intuitif).
— Toute partie non vide et majorée de N admet un plus grand élément (idem).
— Toute partie non vide et minorée de Z admet un plus petit élément (idem).
— Toute partie non vide et majorée de Z admet un plus grand élément (idem).

Application : partie entiére d’un réel. Etant donné un réel x, ’ensemble non vide des entiers
relatifs n tels que n < z est majoré (par x), il admet donc un plus grand élément qu’on appelle sa
partie entiére notée |x] (ou [x] ou encoreE(x)) :

Définition 2.4.3. La partie entiére d’un réel = est 'unique entier |z] vérifiant || <z < |z] + 1. ‘

Exemples : 2| =2, |[7| =3, |—2.4] = —3 (attention : ce n’est pas —2).

Remarque 2.4.3. Si a est un entier relatif et b un entier naturel non nul, alors le quotient ¢ de la
a

division euclidienne de a par b n’est autre que la partie entiére du rationnel 7 On a en effet (voir la

%:q+%et0§g<1 (r est le reste).

Notions de borne supérieure et de borne inférieure :

proposition 2.2.1)

Soit. A une partie non vide et majorée de R. On admettra que ’ensemble des majorants de A posséde
un plus petit élément S : on I'appelle la borne supérieure de A (=« plus petit de tous les majorants
de A»).

S est donc unique et caractérisé par :

1. S est un majorant de A,

2. si M est un majorant quelconque de A alors M > S.

On écrit S = sup A.
De méme, si A est non vide et minorée, ’ensemble des minorants posséde un plus grand élément s
qu’on appelle borne inférieure de A et qu’on note s = inf A (=« plus grand de tous les minorants de

Ay):

1. s est un minorant de A,

2. si m est un minorant quelconque de A alors m < s.

Exemples :
— A =N : 0 est le plus petit élément et la borne inférieure. Pas de borne supérieure.
— A=]0,1[:infA=0,supA=1.
— A=]0,1] :inf A=0, supA = 1.

Remarque 2.4.4. Si A posséde un plus grand élément, c’est aussi la borne supérieure mais la réci-
proque est fausse : voir les exemples ci-dessus. Il faut donc bien faire la différence entre max(A) et
sup(A), en particulier :

| M = max(A) <= M = sup(A) et M € A

Remarque analogue pour la borne inférieure et le plus petit élément.
Si A est non vide et borné, si s =infAet S =supA,ona:Vre A s<z<S5 etcecestle plus
précis des encadrements communs a tous les éléments de A a l'aide d’inégalités larges.
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La caractérisation de la borne supérieure (resp. inférieure) donnée ci-dessus admet une formulation
n’utilisant pas le langage courant et beaucoup plus efficace dans les raisonnements mathématiques. Il
faut la connaitre et apprendre a l'utiliser. Une lecture attentive de la preuve devrait éclairer
cette formulation :

Proposition 2.4.2. Soient A un ensemble non vide, s et S des réels. Alors :

Vee A, =<8,
S =supd Ve >0, AN|S—¢e,5]#0
ou encore : Ve >0, dre A, S—e<z<8S.

Ve A, x2>s,
s=inf A <
Ve >0, AnNls,s+e[#0.

Preuve : nous allons traiter seulement le cas de la borne supérieure. L’autre cas est analogue. On va
voir que les deux propriétés demandées correspondent, dans le méme ordre, aux propriétés 1. et 2. de
la caractérisation donnée plus haut.

Remarque : on va étre amené a faire deux raisonnements par I’absurde (cf. chapitre 1).

Condition nécessaire (sens « = ») : on suppose que S est la borne supérieure de A. C’est donc
un majorant et on a bien (Vx € A, z <9).

Soit maintenant € un réel strictement positif (cette fagon d’écrire sous-entend qu'il est quelconque -
NDLR) et supposons que ’ensemble AN|S —¢, S| soit vide : alors il est clair (on 'espére!) que S —¢ est
un majorant de A (personne pour le dépasser), ce qui contredit le fait que S soit le plus petit majorant
(on a S —¢e<S). On adonc nécessairement : Ve >0, AN]S — ¢, 5] # 0.

Condition suffisante (sens « <= ») : on suppose maintenant que les deux conditions écrites aprés
I’accolade sont satisfaites et il s’agit de montrer que S = sup A.

La premiére est la formulation mathématique de « .S est un majorant de A ».

Soit S’ un autre majorant : on doit prouver que S’ > S car ceci montrera que S est le plus petit des
majorants.

Supposons au contraire que S’ < S : on peut écrire S’ = S — ¢ avec ¢ = S — S’ > 0 et on sait qu’alors,
par hypothése, AN]S — ¢, 5] # 0. Soit a un élément de cet ensemble : il vérifie a € A et S’ < a < S de
sorte que S’ n’est pas un majorant. Ceci est en contradiction avec I’hypothése et on a donc S’ > S, ce
qu’on voulait. [
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Chapitre 3

Polynomes

Ce chapitre a pour seul objectif de préciser certaines des propriétés des polyndémes qui seront utilisées
dans ce cours, & savoir essentiellement la factorisation des polynoémes a coefficients réels et la division
euclidienne. Il ne sera pas fait ici de théorie approfondie comme vous pouvez en trouver dans les ma-
nuels : ce sera l'objet de cours ultérieurs.

On ne considére ici que les polynémes a coefficients réels mais tout s’étend immédiatement aux poly-
noémes a coefficients complexes, excepté la liste des polynémes irréductibles sur lesquels on reviendra
dans le chapitre sur les nombres complexes.

3.1 Introduction

Les polynomes sont des objets mathématiques qui vous sont familiers et que vous manipulez cou-

ramment (somme, produit, produit par un réel). On dit que A = 2 — 3X + X3, par exemple, est un

polynoéme en une indéterminée X (que l'on peut noter aussi A(X)) : mais quel est au juste le statut

mathématique de ce « X » (qui n’est pas une variable ...) 7

Considérons deux polynémes A = ag + a1 X + a2X2 + a3X3 et B=by+bX + b2X2 oll on suppose

az # 0 et by # 0 : on dit que A est de degré 3 et B de degré 2.

Etant convenu d’ordonner les polynémes suivant les puissances croissantes de X, A est déterminé sans

ambiguité par la donnée de la liste de ses coefficients (ag, a1, az,as) et B par (bg, b1, b2).

La somme A + B correspond alors a la liste (ag + bg, a1 + b1, as + be, as + b3) en posant by = 0.

Le produit AB va fournir un polynéme de degré 5 qui commence par agbg + (agb1 + a1bg) X + (agbz +

a1by + agbp) X 2 4 .... Plus généralement on trouve facilement que le coefficient de XP, avec 0 < p < 5,
P

est ¢, = Z agbp_i.
k=0

Le produit kA, o k est un réel, correspond a (kaog, kai, kag, kas).

Il en résulte que les régles de calcul sur les polynémes sont en fait des régles de calcul sur les objets
mathématiques que sont les suites de réels nulles a partir d’un certain rang (les coefficients des monomes
qui ne figurent pas sont nuls. En pratique, bien stir, on ne les écrit pas).

La théorie des polynomes a coefficients réels (ou autres) considére en fait 'ensemble de ces suites, au
statut clair, muni de ces régles de calcul posées a priori comme des définitions. La lettre X désigne
alors le polynome associé a la suite (0,1,0, - - - ). Le produit X X, noté X2, fournit la suite (0,0, 1,0, )
(vérification facile) et ainsi de suite. Ceci donne un sens a X et justifie 'écriture usuellement adoptée
pour les polynémes. Enfin, ’égalité de deux polyndmes équivaut a I’égalité des deux suites de coefficients
qui les définissent.

Le degré d’'un polyndéme A défini par la suite nulle & partir d'un certain rang (ag,a,---) est par
définition le plus grand entier n tel que a,, # 0 et est noté deg(A). On rappelle les régles suivantes :

deg(A + B) < max(deg(A),deg(B)), si AB # 0, deg(AB) = deg(A) + deg(B)
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On note R[X] ’ensemble des polynémes a une indéterminée X et a coefficients réels.

3.2 Division euclidienne dans R[X]

Le résultat suivant est a rapprocher de la division euclidienne dans Z.

Proposition 3.2.1. Soient A et B deuzx polyndmes & coefficients réels avec B £ 0. Il existe un
unique couple (Q, R) de polynomes tels que A = BQ + R et deg(R) < deg(B).
Q et R s’appellent respectivement quotient et reste de la division euclidienne de A par B.

Preuve : on prouve séparément l'existence et 'unicité du couple (@, R).

Existence : si A = 0 il suffit de prendre Q = R = 0, sinon on procéde par récurrence sur
n = deg(A). Soit B = b,X? + --- 4+ ag (écrit suivant les puissances décroissantes) avec b, # 0
de sorte que deg(B) = p. Lorsque n < p on pose Q = 0 et R = A, sinon on suppose la
propriété vraie pour tous les polynomes A tels que deg(A) < n et on cherche a la prouver pour
A= an+1X”+1 + -+ ag avec anpt1 # 0.

%Xn-‘rl—p
le monéme de pllljls haut degré dans A. Par hypothése de récurrence on a ’existence d’un couple
(Q2, R2) tel que A1 = BQa+ Rz avec deg(Rg) < p. Onaalors A = A1+ BQ1 = B(Q1+Q2)+ R2
et il suffit de poser Q = Q1 + Q2 et R = Ro.

Unicité : supposons que I'on ait A = BQ+Ret A = B'Q+ R’ avec deg(R) < deg(B) et deg(R’) <
deg(B). En soustrayant membre & membre les deux égalités on obtient B(Q' — Q) = R' — R. Si
Q' — Q # 0, on a d'une part deg(B(Q' — Q)) = deg(B) + deg(Q’ — Q) > p = deg(B) et d’autre
part deg(B(Q' — Q)) = deg(R’ — R) < max(deg(R’),deg(R)) < p : cest contradictoire. Donc
Q" — Q = 0 et par conséquent R — R = 0.

Posons Q1 = : le polynéme A; = A — BQ1 est de degré au plus n car on a “tué"

| ]
Exemple :
X3 4+Xx? -1 X -1
X3 +Xx? X2 42X 42
2X2
—2X?% 49X
2X -1
—2X 42
+1

Consigne de rédaction : & l'issue du calcul on doit écrire la conclusion. Par exemple :

A=B(X?+2X +2)+1
Le quotient est X2 + 2X + 2 et le reste est 1.

Procédure : on ordonne chaque polynémes suivant les puissances décroissantes. On cherche un mo-
nome dont le produit par le terme dominant de B (ici X) donne le terme dominant de A (ici X3).
C’est clairement X 2. On effectue alors le produit X2B = X3 — X? que I’on retranche & A : on I'écrit
sous A en changeant les signes et en respectant 'ordre décroissant des exposants, quitte a laisser un
blanc lorsquun exposant est absent (noter l'espace laissé entre X 2 et —1 dans l’écriture de A). On
ajoute & A et on recommence alors avec le résultat obtenu.

Pour alléger, on peut se dispenser d’abaisser tous les mondémes de A & chaque étape : le —1, par
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exemple, est pris en compte seulement & la fin. On peut procéder autrement si 'on préfére, de méme
certains ne changent pas le signe mais retranchent... Dans tous les cas ce doit étre propre, lisible et
bien siir correct.

Remarque 3.2.1. On rappelle qu’un polynéme B divise un polyndéme A s’il existe un polynéme C'
tel que A = BC (on écrit B|A). Le reste de la division euclidienne de A par B est nul si et seulement
si B divise A.

3.3 Fonctions polynomiales, racines

n
A tout polynome a coefficients réels P = Z ap X" on associe la fonction réelle P définie sur R par
k=0
~ n
P(x) = Z arz® (on a remplacé 'indéterminée X par la variable ).
k=0
On dit que P est la fonction polynomiale associée & P. En pratique, pour simplifier, on notera P cette

fonction, plutét que P : le contexte évite les confusions.

Définition 3.3.1. Soit P un polynome a coefficients réels. On dit que le réel a est une racine de P si
P(a) = 0.

Dans cette définition on aurait da écrire P(a) = 0 mais on s’est permis, sans conséquence néfaste, la
simplification évoquée précédemment. On retiendra les résultats suivants, trés importants en pratique :

Proposition 3.3.1. Soient P un polynome et a un réel. a est une racine de P si et seulement si

X — a divise P.

Preuve : Si X — a divise P, il existe un polynéme P; tel que P = (X — a)P; et il est alors clair que
P(a) = 0. Réciproquement, supposons que a soit une racine de P et effectuons la division euclidienne
de Ppar X —a: P = (X —a)Q+ R avec deg(R) < 1 (R est donc une constante). Comme R(a) = P(a)
la, constante est nécessairement nulle et on a P = (X —a)Q@ i.e. X — a divise P. "

Conséquence pratique : si on observe que P(a) = 0 alors on sait que 1'on peut factoriser P par
X — a. Pour ce faire on dispose de deux méthodes :

- la division euclidienne : elle aboutira & P = (X — a)B (reste nul),

- les coefficients indéterminés : si deg(P) = n > 2 avec coefficient dominant a,, on sait qu’on
peut écrire P = (X —a) (b, X" ' +b, 1 X" 1 4.4+ by. On effectue alors ce produit, on regroupe
les termes de méme degré et on identifie les coefficients obtenus avec ceux de P. On remarque
tout de suite que b,, = a, et que aby = ag.

Exemple : P = X® —4X?%+ X +2. On observe que P(1) = 0 : on pourra donc écrire P sous la forme
(X —1)(aX? +bX + ¢). On voit immédiatement que I'on aura a = 1 et ¢ = —2 : on les remplace. En
identifiant alors les termes de degré 1 et 2 on obtient les égalités b— 1= —4 et —2 — b =1 : une seule
de ces deux égalités suffit piuisqu’on sait qu’il y a une solution, mais cela peut faire office de controle.
Finalement b= —3 et ona: X3 —4X? 4+ X +2= (X —1)(X? -3X —2).

On pourra retrouver ce résultat en effectuant la division euclidienne ...

Corollaire 3.3.1. Un polyndéme non nul de degré n > 0 posséde au plus n racines distinctes.

Preuve : nous prouvons ce résultat par récurrence sur n. Si n = 0 le polynéme est une constante
non nulle et ne posséde donc aucune racine.
Supposons le résultat vrai pour tous les polynémes de degré n, ou n est un entier fixé. Soit alors
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P un polynoéme de degré n + 1 possédant au moins n + 2 racines distinctes aq,--- , an42. D’aprés la
proposition 3.3.1 il existe un polynoéme @ tel que P = (X — a1)Q et, les racines étant distinctes, on a

Q(az) = - = Q(an42) =0 : Q posséde au moins n + 1 racines distinctes. Mais deg(Q) = n donc, par
hypothése de récurrence, il est nécessairement nul et on a ainsi P = 0. Ceci achéve la récurrence (on a
établi la contraposée). "

Corollaire 3.3.2. Soient P, Q des polynémes, alors P = Q < P = Q.

Il en résulte que deux fonctions polynomiales sont égales si et seulement si les coefficients des termes
de méme degré sont égaux.

Preuve : si P = @ alors la fonction polynomiale P — Q, associée au polynome P — Q, est nulle et
ainsi P — @ posséde une infinité de racines. Il est donc nul. [

+ + + 4+ + + + + ++4+ Pour aller plus loin : racines multiples ++ + + + + + + ++

Définition 3.3.2 (ordre d’une racine). On appelle ordre de multiplicité d’une racine a d’un polynéme
P le plus grand entier m tel que (X — a)™ divise P.

Lorsque m = 2 on parle de racine double et lorsque m = 3, de racine triple. Il y a un lien entre I'ordre
de multiplicité d’une racine et les racines des dérivées successives d’un polynéme, notion que nous
définissons ci-dessous :

n
Définition 3.3.3 (polynéme dérivé). Soit P = Z ar X", polynome de R[X] de degré inférieur ou égal
k=0

n
a n. On appelle polynéme dérivé de P le polynome P’ = Z kapXF1
k=1

La fonction polynomiale P’ est bien stir la dérivée de P et on définit de fagon naturelle les dérivées
successives de P avec les mémes notations que pour les fonctions. Nous n’irons pas plus loin dans cette
direction (importante) mais le lien entre ordre de multiplicité et polynémes dérivés sera abordé en TD
sur un cas particulier. Le résultat général est le suivant :

Proposition 3.3.2. Soient P un polynéme et a un réel. a est une racine de P de multiplicité m € N*

si et seulement st
P(a) = P'(a) =--- = P™ V(a) =0 et P™(a) # 0.

3.4 Polynémes irréductibles de R[X]

Définition 3.4.1. On dit qu’un polynéme P de R[X] est irréductible s’il est non-constant et si ses seuls
diviseurs sont les polynomes constants et les polynomes de la forme AP avec A € R* (ces polynomes
sont dits associés a P).

On admettra les résultats suivants. On reviendra sur les polynémes irréductibles de R[X]| dans le
prochain chapitre (nombres complexes).

Proposition 3.4.1. Tout polynéme non constant est un produit de facteurs irréductibles. La décom-
position est unique, & l'ordre prés des facteurs, sauf & changer certains facteurs en facteurs associés.
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Proposition 3.4.2. Les polynémes irréductibles de R[X] sont les polynomes de degré 1 et les poly-
nomes de degré 2 o discriminant strictement négatif.

Attention : il ne faut pas confondre irréductibilité et absence de racine : X* + X2 + 1, par exemple,
n’a pas de racine (dans R) mais n’est pas irréductible : X4+ X? +1 = (X2 + X +1)(X? - X + 1).
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Chapitre 4

Les nombres complexes

4.1 Introduction

L’idée des nombres complexes est due aux mathématiciens italiens de 'université de Bologne, Dal
Ferro, Tartaglia, Cardan : ils ont imaginé, vers 1550, une « racine carrée de -1 » pour résoudre les
équations du troisiéme degré. On sait d’ailleurs, & un niveau plus simple, que 1'équation z2 +1 = 0
n’a pas de solution dans R. Grace aux progrés de 1’Algébre, les nombres complexes ont acquis, depuis,
un statut mathématique précis. Leur construction n’est pas au programme de ce cours; mentionnons
seulement qu’il est possible de la faire a partir des couples (x,y) de réels (ceux-1a méme qui vont donner
x + 1y) pour lesquels on étend les notions de somme et de produit de fagon convenable :

(z.y)+ (@ y) = (@+2"y+y), (z.y) x(@y)= (' —yy 2y +2'y)
On peut vérifier que ces opérations ont les mémes propriétés que les opérations + et x habituelles dans

R : commutativité, associativité, distributivité de x par rapport a +.
Les réels correspondent alors aux couples de la forme (x,0) dont l’ensemble est stable par ces opéra-

tions : on note (z,0) plus simplement x et on introduit 1’élément Y (0 1) qui est tel que, i* = (—1,0)
c’est & dire —1 avec la convention précédente. Comme (z,y) = (z,0) + (0,y) = (x,0) + (y,0) x (0,1)
(le vérifier!), on obtient la notation usuelle x + iy.

Ce chapitre est essentiellement consacré & des rappels.

4.2 Représentation algébrique des nombres complexes

4.2.1 Introduction basique
Conformément a ce qui a été introduit ci-dessus, I’ensemble des nombres complexes est
C={z+iy;zeR, yeR}.

x s’appelle la partie réelle de z, notée x = Re(z)
y s’appelle la partie imaginaire de z, notée y = Im(z2).

L’écriture d’un nombre complexe z sous la forme x + iy avec x, y € R s’appelle la forme algébrique
de z.

OnaRcCet:

z =2 <= Re(z) =Re(7) et Im(z) = Im (7))
z€R<=1Im(z)=0
z2=0<=2=y=0<= Re(z) =Im(z) =0
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On munit C de deux opérations :

e Addition : siz=a+iyet 2 =2'+iy alors 2 + 2 =z + 2" +i(y + ).

e Multiplication : si z =z +iy et 2/ =2’ +iy alors 22’ = z2’ — yy' +i(xy + 2'y).
Cas particulier : si k € R et z = x + iy alors kz = kx + tky.
On ai¢=0+ 14 : en appliquant les régles ci-dessus on obtient i2=—1.

Ces régles, appliquées aux réels, redonnent les opérations usuelles. On peut formellement calculer
comme dans R, avec la particularité liée a 'utilisation de 1.

Plan complexe : grace au lien entre C et R? il est d’usage de représenter z = x + iy par le point
M(x,y) (ou par le vecteur U=zi+yj ) dans le plan rapporté a un repére orthonormal, qui prend
alors le nom de plan complexe. Précisons :

- =
Définition 4.2.1. Soient @ =z i + y j un vecteur et M(z,y) un point.

On appelle affixe de @ ou du point M le nombre complexe z = z + iy noté aussi aff(ﬁ) ou aff(M).
Inversement on dit que M(x,y) est le point image de z = x + iy. On le note aussi M (z).

On a alors le résultat trés simple :

Proposition 4.2.1. Soient A et B des points d’affixes respectifs z4 et zp alors :

aﬁ(ﬁ) =7p — 7ZA

L’axe Ox est 'ensemble des points M d’affixe zpy = x € R (axe réel),
Paxe Oy est 'ensemble des points M d’affixe zpy = iy, y € R ( axe des imaginaires purs)

M(kz) avec k >0

M(z+2")

HV

M(kz) avec k <0

FIGURE 4.1 — Somme et produit par un réel

4.2.2 Conjugaison, module

Définition 4.2.2. Soit z = x + iy un nombre complexe (avec z, y € R).
— On appelle conjugué de z, et on note z, le nombre complexe x — iy.
— On appelle module de z, et on note |z|, le réel positif \/z2 + y2.
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Ces deux quantités sont liées, en effet :

z?z(w—i—iy)(w—iy):xz—i-yQ:\z|2

Remarque : siz € Ronaz=x =Rezet donc |z] = V2 = |z|. Le module généralise donc la notion
de valeur absolue d’un réel. D’autre part, du point de vue géométrique :

Proposition 4.2.2. Soient A et B des points d’affizes respectifs za et zp et U un vecteur d’affize z,
alors :

| AB ||= |25 — zal, || T |= 2|

¥ A
K , M(z)
OK = Im(z) OM = |2|
A
J _ OH=Re(z) H .
i «

FIGURE 4.2 — Conjugué et module

e Propriétés de la conjugaison :

©zZ=2z
o zER<=Z==2
¢ z est imaginaire pur <z = —=z2

)=

o zz’z?z/,z—l—z’zf—l—z’,(

N\‘ N
||

o Re(z) = Z;Z, Im(z) = 22_2,2

e Propriétés du module :

0o z=0<=|2|=0
o [z = |4, "
o 1ol = 1ol 141 |2 = B
=l |55
o 2" = |2|" pour n € N
o inégalités triangulaires (voir figure 4.3 : inégalités dans le triangle OM (2) M (z + 2))

Iz = |2]| < |z + 2| < |z] + |2]

o

|[Rez| < |z|, |Imz| < |z| : inégalités dans le triangle OH M (z).
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y y !
M(z+ 2 M(z)
M) |2 (z+)
‘Z| OM = \z|
B +z’|"¥ HM=|Im(z)|
/ y
_* M (2 &
i (=) j I

Z—p > > »
i x o 7 OH=|Re(z)| x

FIGURE 4.3 — Inégalités triangulaires et module

e Calcul d’un inverse - Il est utile de savoir manipuler conjugaison et module pour calculer sans
avoir recours a la forme algébrique. Par exemple, pour I'inverse d’un nombre complexe z = z+ it # 0 :

1z zZ  x—y

z_zfzw_:ﬁ%—gﬂ
La premiére égalité est obtenue « en multipliant et divisant par le conjugué »...

e Calcul de |z + 2/|*:

lz+ 22 = (+2)=z+7)
(z+2)(z+7)
= 2Z4227427+7Z

|22+ 2P+ 22 + 22

|2+ 2|2 = |22+ |¢/|* + 2Re (z7))

Remarque 4.2.1. On a donc en particulier :

2> + |2]? + 2|2 2))|
|22 + |2 + 2 |2 2]
(I +2'])

|z + 2|2

VARRVANNVAN

d’ott |z + 2/| < |2| + |2/] : I'inégalité triangulaire est démontrée.
En remplacant 2z’ par —z’ on obtient :

|z — 2|2 = |22+ |Z/|> — 2Re (27))

Attention : ne pas confondre 22 et |z|* :

22 = 2% — 9 4 2izy tandis que |z|> = 22 + o

On vérifiera en exercice que 'égalité n’a lieu que pour les réels

4.3 Argument, forme trigonométrique

Cercle trigonométrique : c’est le cercle C(O, 1) de centre O et de rayon 1 dans le plan orienté (on
choisit par défaut l'orientation usuelle). C’est 'ensemble des points dont affixe est de module égal a
1. C’est I'image dans le plan complexe de I’ensemble

U={z€eC;|z|=1}
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e Siz € U, son point image M(z) est sur le cercle trigonométrique et on sait y associer un réel 6,

%
mesure de 'angle orienté de vecteurs ( i ,OM/(z)), définie modulo 27 c’est & dire a I'ajout prés d'un
nombre quelconque de la forme 2kw, k € Z : M(z) a pour coordonnées (cosf,sinf) et on a

z =cosf +isinf

z .
e SizeC* alorsu= ﬂ est dans U. On peut donc lui associer 6 tel que u = cosf +isinf et on a :
z

z =|z| (cos + isin9).

Définition 4.3.1. On appelle argument du nombre complexe non nul z tout réel 6 tel que
z =|z| (cos + isin0).

Si 6y est I'un d’eux, tous les autres sont de la forme 6 = 0y + 2k7, avec k € Z quelconque.

On écrit arg(z) = 0p [27] (ou méme arg(z) = Oy pour simplifier, s'il n’y a pas d’ambiguité).

Remarque : si z = 0 on a |z| = 0 mais 'argument n’est pas défini. Pour passer de la forme algébrique
a la forme trogonométrique on applique les formules :

|z| = /22 + 4?2, cosb =

sinf =

T Yy

D’un point de vue géométrique on a immédiatement :

Proposition 4.3.1. Soient A et B des points d’affizes respectifs z4 et zp et U un vecteur d’affize

—_—

z, alors : (?, W) = arg(z) [2n] et (ﬁ) = arg(zp — za) [27]

On a le résultat fondamental :

Proposition 4.3.2 (Argument d'un produit). Soient z, 2’ € C*, alors :

arg(zz') = arg(z) + arg(z') [27].

Preuve : si z = |z|(cos +isinf) et 2 = |2'| (cos# +isind) on a :

22 = |z||z| (cos@ + isinB)(cos b + isinf')
= 22| ((cosf@cos® —sinfsin@’) + i (cosOsinf + sinfcosf'))

= |22 (cos(0 +6') +isin(d +6"))

ce qui donne la relation annoncée. [

Cette propriété justifie, a cause de la simlilitude avec les propriétés des exposants, I'introduction de la
notation

0 dé ..
et et cosf +isin 6.

] o ) . L
Avec cette notation, elle s’écrit en effet simplement : €% ¢ = ¢(0+9"),

En fait, il y a 14 plus qu’une simple convention, mais ceci dépasse le cadre du cours.

Tout nombre complexe non nul s’écrit z = re®

avec r = |z| et § = arg(z) [27]
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i M(z)

FIGURE 4.4 — Forme trigonométrique

Remarque 4.3.1. Soient € R (pas de signe a priori), § € R et z = r e,

— Sir=0alors z =0 et |z] =7 =0 (pas d’argument défini),
— sir > 0 alors |z| = r et arg(z) = 0 [27],
— sir <0 alors |z| = —r et arg(z) = 0 + 7 [27].

On a en effet r e = (—r) HO0+™) o 0T — 1

Les propriétés calculatoires de la forme trigonométrique sont résumées dans la proposition suivante :

. . . ; 11 . , .
Proposition 4.3.3. Soient z =1, 2/ =" avec r, ' > 0 (forme trigonométrique) alors :

oz=72 <r=1r"et =027

. ’
o 22 = 00

o 5 — 561(9_9/), en particulier arg (;) = argz — argz' [27],
O Z = ’r‘eiw donc arg (Z) = —argz, [27T]7

o VzeZ, 2"=r"" doncarg(z") = nargz[2n]

o z€R <= argz =0 ouargz = 7 [27],

T T
¢ z imaginaire pur <= argz = 5 ouargz=—5 [27]

Exemples :

2 2 ‘x
z=14i=+2 ({Jri\g),donc |z| = V2 et argz:%[%’] c14i=+2e1.

z=—1=cosm+isinm donc |i| = 1 et arg(—1) = 7 [27] : —1 = €'".

z:i:cosg —I—ising donc |i| = 1 et arg(i) :g[Zw] ci=e'3.

Du point de vue géométrique on obtient :
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Proposition 4.3.4. Soient W et W' des vecteurs non nuls d’affizes respectifs z et 2', alors :

/

(ﬁ’) =argz —argz 27| = argz— [27]
z
Soient quatre points A(za), B(zg), C(zc), D(z2p) tels que A # B et C # D, alors :

(1@, EZ'_B) = arg e [27]

ZB — ZA

4.4 Applications

4.4.1 Racines n-iémes d’un nombre complexe non nul

Définition 4.4.1. Soient z un nombre complexe et n un entier naturel non nul. On appelle racine
n-iéme de z tout nombre complexe Z tel que Z" = 2.

Clairement, ceci ne présente un intérét que pour z # 0 et n > 2.

Proposition 4.4.1. Pour n € N*, tout nombre complexe non nul z = reie, r > 0, posséde exacte-

- 0 km
ment n racines n-iemes (Zy, -+ , Zn—1) données par Zj = {’/FeZ(EJrQT), ke [0,n—1].

Preuve : on cherche Z sous la forme Z = pe', p>0: Z" = p" €™ et on a

I"=z<=p'=retnep=_0[2nr

c’est a dire p" =1 et nyp = 6[27]. Or :
pl=r<p=ret

ne=072r] < 3Jke€Z np=0+2knr
b Zr

— JkeZ o=—+
n n

n i(2+2ﬂ . 0
Posons Z, = {¥/re'»"7n ) : pour K = n on obtient comme argument — + 27 donc Z,, = Zj et, plus
n

généralement, Zy,, = Zj. Il suffit donc de prendre k € [0,n — 1]. n

Remarque : Les points images My = M(Z},) sont sur le cercle de centre O et de rayon {/r et forment
les sommets d’un polygoéne régulier convexe a n sommets.
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FIGURE 4.5 — Racines n-iémes

Cas particulier : les « racines n-iémes de 'unité »

Proposition 4.4.2. Pourn € N*, I’équation Z" = 1 posséde exactement n solutions appelées racines

. L _ 2im
n-iemes de 'unité. Ce sont les nombres complezxes (1, u, u? - un 1) avecu =en .

En effet, siz=1onar=1et0=0donc Z, = V1t = (55 = (e"(%ﬂ))k, ke [0,n—1]
Exemples :

- 210 2km
O Racines cubiques de 'unité : z = 1 = %, Z;, = e’(§+T), k = 0,1,2, on a donc trois racines
cubiques : Zg =1, Z; = €(3) = —5—1—277 Zy=€'F) = —5 i = 7.

Sy

FIGURE 4.6 — Racines cubiques de 1

O Racines cubiques de 2 : les précédentes, multipliées par v/2.
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T s km
O Racines 4-iemes de 144 : 2 = V2eT, Zp = V2 5%T72), k=0,1,2,3.
4.4.2 Racines carrées
On veut résoudre Z2 = z ou z # 0 est donné sous la forme z = re? r>0..
0
e Meéthode trigonométrique : on applique ce qui précéde avecn = 2 : Zj, = \/7762(5‘””), k=0,1.
: ; . _ il _ i(24m) _ il im _
On a donc deux racines carrées opposées car Zg = \/re'2 et Z; = \/re"\2 =e2e" =—2.
e Méthode algébrique : on pose z = z + 1y, Z = X +¢Y et on déduit de I'équation A
d’inconnue Z, un systéme d’équations d’inconnues X, Y.

72 =2 = X’ -Y?’42XY =z=zx+1y

— X2 -Y?=2x
2XY =y

On a aussi |Z|? = | Z%| = |z| donc X2 +Y? = (/22 + 42, ce qui permet d’obtenir X2 et Y2 :

1
(Va2 +y2 +z), Y?= 3 (Va2 +y? —x).

Cela donne quatre possibilités, mais 1’équation 2XY = y donne le signe du produit XY (celui de y),
ce qui réduit les possibilités a deux ...

X? =

N

Exemple : z=3+4i, Z=X+1Y
X2-v?=3 (1)

Z*=3+4i — X2 4+Y?=y9+16=5 (2)
2XY =4
X2=4 (1)+ (2
= Yi=1 (2)-(1)
XY =2>0
— X=2Y=1louX=-2Y=-1
= Z=2+iouZ=-2—i

Remarque 4.4.1. Dans le cas particulier important ot z = x est un réel :

— si & > 0, on retrouve les racines usuelles \/z et —+/z,
— si 2 <0, on écrit z = —|z| = i?|z| et on obtient les racines conjuguées +iy/|z| = +iv/—z.

4.4.3 Equations du second degré

Soient a, b, ¢ trois nombres complexes avec a # 0. On veut résoudre Péquation az? + bz + ¢ = 0.
Le principe est le méme que dans R. On part de l'identité :

2 4 st < +b>2 b? — 4ac
az z c=a z - _— ] .
2a 4a?

Posons alors A = b? — 4ac : ce nombre complexe admet dans C deux racines carrées opposées d et —4,
calculées par I'une des deux méthodes précédentes. L’équation équivaut alors & :

(a) = ()

et on obtient les solutions :

R B
AT Ty, T T,
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Exemple : résoudre dans C Péquation 22 + (3 — i)z +2(1 — i) = 0.
A=(3-i)2—81—1i)=2i=2e% = (vV2T)2 = (1+i)%
On a donc, par exemple, § = 1 4+ ¢ et on obtient les solutions :

a4 i1
o= +1+ +z:71+i’ 2y — +1 1272.
2 2
Cas particulier : a, b, c réels et A < 0. Alors les racines complexes de A sont +iv/ —A et les solutions
de I’équations sont conjuguées I'une de 'autre :

 —b+iV/=A —b—iV=A

==V T ety =
= 2a o2 2a
Exemple : 22 +z+1=0.
On trouve A = —3 et on obtient dans C les racines complexes conjuguées :
, —1—1iV3 , —14iV3
Ty T e

—1++v-3

5 est une faute.

Attention : écrire

4.5 Polynomes a coefficients complexes

On peut reprendre mot pour mot les définitions et résultats du chapitre 3 en remplagant R par C, a
I’exception du paragraphe sur les polyndémes irréductibles. Il existe en effet un résultat fondamental
(dont la démonstration est hors programme) :

Théoréme 4.5.1 (théoréme de d’Alembert-Gauss). Tout polynéme non constant de C[X] posséde
au moins une racine dans C

On en déduit immédiatement le résultat suivant :

Corollaire 4.5.1. Les polynomes irréductibles de C[X] sont les polynomes de degré 1 ‘

Considérons maintenant un polynéme P € R[X] : on peut le considérer comme un élément de C[X].
On a alors une propriété intéressante et simple :

Proposition 4.5.1. Soit P € R[X], alors pour tout nombre complexe o, P(a)) = 0 <= P(a) = 0. ‘

Autrement dit, si a est une racine de P alors @ aussi (et réciproquement puisque @ = «).

Preuve : comme @ = «, il suffit de démontrer I'implication P(a) = 0 = P(@) = 0. Supposons que

P=ay+ a1 X+ --ap, X" avec ag, -+ ,a, € Ret que P() =0:0naap+aja+---a,a™ =0 et en
prenant le conjugué de chaque membre : ag + aj@ + - - - a,a@” = 0 (car les coefficients réels sont leurs
propres conjugués), c’est a direP(@) = 0. L]

++ + + + + + + ++ Pour aller plus loin + + + + + + + + ++
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On suppose ici qu’on a étudié le complément sur les racines multiples au chapitre 3. Le théoréme 4.5.1
a une autre conséquence :

Corollaire 4.5.2. Tout polynéme non constant de C[X] de degré n € N* posséde exactement n racines
comptées avec leur ordre de multiplicité

« comptées avec leur ordre de multiplicité » signifie qu’une racine double compte pour deux, etc ...
On peut alors justifier la proposition 3.4.2 sur les polynomes irréductibles de R[X] :

considérons une racine o d’ordre m : on a, d’aprés la proposition 3.3.2 P(a) = P'(a) = -+ =
PM= () = 0 et P (a) # 0. Les coefficients de P et de ses dérivées étant des réels, on
a aussi, d’aprés la proposition 4.5.1 : P(@) = P'(@) = --- = P V(@) = 0 et P™ (@) # 0. Il en
résulte que @ est une racine de P de méme ordre m que «.

Si « est réelle, on a rien de nouveau, mais dans la décomposition de P en produit de facteurs irréduc-
tibles on peut le cas échéant regrouper les facteurs correspondant & deux racines non réelles conjuguées
. On obtient des termes a coefficients réels de la forme :

(X —a)™(X —a)™ = (X? — 2Re ()X + |a>)™
dont le discriminant A = 4(Re (a)?—|a) est strictement négatif car |a|? = Im (a)?+Re (a)? > Re (a)%

Finalement, comme indiqué au chapitre 3 3, les polynémes irréductibles de R[X] sont les polynomes
du premier degré et ceux du second degré a discriminant strictement négatif.

4.5.1 Trigonométrie

e Formule de Moivre :

(cosf +isin )" = ()" = ™ = cos(nf) + i sin(nb)

Cela permet d’obtenir cos(nf) et sin(n#) sous forme d’une expression polynoémiale en cos(f) et sin(f).

Exemple :
(cos@ + isin#)® = cos(36) + isin(36) par la formule de Moivre. D’autre part :
(cos 4 isin0)® = cos® 0 + 3i cos? Osin § — 3 cos @ sin® § — i sin® § par la formule du binome.

En identifiant les parties réelles et imaginaires on obtient donc :
cos(30) = cos®§ — 3cos fsin® § = 4 cos> § — 3 cos §
sin(36) = 3cos? fsinf — sin® § = 3sinf — 4sin> 9

e Formules d’Euler :

el 4 o—if _ it _ o—if
cos = —, sinf=———
2 21

Elles permettent de linéariser une expression une expression polynémiale en cos(f) et sin(6) (transfor-
mation inverse de la précédente).

Exemples :

1. Forme linéarisée de cos® 6 :
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i —i0\ 3
cos’ = (6—;6)

€3i9 4 3621'96—1'6 + 36i66—2i0 + 6—3@'6

8
30 | =310 1 3010 | go—if
8
1
= Z(COS(SH) + 3cosf).
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2. Forme linéarisée de cos? 0 sin 6 :

0 —iON\Z /i _ i\ ?
cos?fsin*h = c te ¢ .e
2 21
1
6

(62i9 L2+ 6—22'0)(641'0 _ 4e3i96—i9 + 662i66—2i0_46i06—3i9 + 6—41'0)

26
— ?(6219 +2+ 672z9)(e419 o 46210 +6— 467219 + 674z9)

1 . s . Y . iy
— 76(6619_’_6 619_26419_26 419_6219_6 219+4)

\V)

= %(008(69) — 2cos(40) — cos(20) + 2)
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Chapitre 5

Fonctions usuelles

Ce chapitre passe en revue les définitions et propriétés de fonctions d’usage courant vues dans les
classes de lycée. Le seul point nouveau concerne la fonction tangente.

5.1 Quelques rappels
e Intervalles de R

Définition 5.1.1. Un intervalle de R est une partie I de R qui vérifie la propriété suivante :
V(z,y) e I xI[,VzeR, z<z<y=—ze€l.

Autrement dit, si un réel est compris entre deux éléments de I alors il doit lui-méme étre dans 1.

R*, par exemple, n’est pas un intervalle.

Les intervalles sont les sous-ensembles de R des types suivants :

— Intervalles bornés :
[a,b] ={z € R, a <z <b} (intervalle fermé), Ja,b[={z € R, a <z < b} (intervalle ouvert).
[a,b[={z €R, a<z<b}et]abj={zeR, a<z<b} (intervalle semi-ouvert).

— Intervalles non-bornés :
[a,+oo[={z€R, a<z}et]a,+o[={zeR, a<z}.
] —o00,b]={x€eR, z<blet]|—o0,b[={z€R, x<b}
R =] — 00, +00[.

e Fonctions croissantes ou décroissantes sur un intervalle

Une fonction croissante « conserve ’ordre » tandis qu’une fonction décroissante « inverse ’ordre » :

Définition 5.1.2. Soit f une fonction réelle définie sur un intervalle I de R.

— On dit que f est croissante si elle vérifie :

V(z,y) e Ix 1, z<y= f(z) < f(y)
— On dit que f est strictement croissante si elle vérifie :

V(zy) eI x I,z <y= f(z) < f(y)
— On dit que f est décroissante si elle vérifie :

V(z,y) e Ix1, z<y= f(x) > f(y)
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— On dit que f est strictement décroissante si elle vérifie :

V(z,y) € Ix 1,z <y= f(x) > f(y)
e Quelques propriétés remarquables

Définition 5.1.3. f est une fonction paire si
Vo € Dy, —x € Dy et f(—x) = f(x).

Dans ce cas le graphe de f en repére orthogonal est symétrique par rapport a 'axe Oy.

Définition 5.1.4. f est une fonction impaire si :
Vo € Dy, —x € Dy et f(—x) = —f(x).

Dans ce cas le graphe de f est symétrique par rapport a O.

Remarque 5.1.1. Plus généralement :
— si:
Vx € Dy, (a+a:€Df:>a—x € Dy et fla+ x) :f(a—:z))

alors le graphe de f est symétrique par rapport a la droite x = a.

— si:

Vx € Dy, (a—x € Dy et f(a—x) :f(x))

a
alors le graphe de f en repére orthogonal est symétrique par rapport a la droite x = 5

Définition 5.1.5. f est une fonction périodique s’il existe un réel T' > 0 tel que :
Ve €Dy, x+T €Dyet f(x+T) = f(x)

On dit que T est une période de f. Le plus petit de ces réels T' > 0, s’il existe, est appelé la période
de f.

La représentation graphique étant faite sur un intervalle quelconque de longueur 7', la courbe compléte
s’obtient en effectuant les translations de vecteurs nT% avec n € Z.
5.2 Logarithme népérien

5.2.1 Définition

La fonction logarithme népérien est la fonction, notée In, définie sur |0, +oo[ par

1

In(z) :/1 Edt
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In(a) = aire colorée

-
\
~

wr

o ¢

A

FIGURE 5.1 — Fonction logarithme népérien

En d’autres termes, c¢’est 'unique fonction f dérivable sur 0, +oof telle que :

{ f(z) = % pour tout z €]0, +00],
f(1) =0

En particulier : In est continue et dérivable sur son domaine Dy, =0, +oo[, In(1) = 0 et pour tout
1

x>0, (In)/(z) =~ > 0.
x

A partir de la définition sous forme intégrale, on a une interprétation du logarithme népérien en termes
d’aire algébrique. On pourra par exemple obtenir un encadrement de In 2 & ’aide d’une feuille de papier

millimétré et d’un crayon, en ne calculant que des inverses pour tracer le graphe de la fonction x — —.
x

5.2.2 Propriétés

Propriétés algébriques :

. ]\m > 0,Vb > 0, In(ab) :1na+1nb\

Preuve : on pose, pour x > 0, f(z) = In(az) —Inz —Ina. On a f'(z) = 0, Donc f est une fonction
constante sur |0, +oo[. De plus f(1) =0, donc f est la fonction nulle et on a ainsi montré :
Vz €]0, 400, In(ax) =Ina + Inz. Il reste alors a remplacer z par b. "

e Conséquences : pour a > 0 et b > 0,

1
ln(%)zlna—lnb ln<g>:—lnb,

ya
Ina” =nlna pourn €N, Inas =

Ina pour p € Z et ¢ € N*,

ISH RS

1
Inva = 3 Ina

Propriétés analytiques :

e lim Inz=—-o00, lim Inxz =+
r—0t r—r+00

Preuve : (a lire aprés étude du chapitre 6) on montre d’abord que lir+n Inz = 4o0.
T—>+00
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Soit M > 0. La fonction In étant strictement croissante, on a In2 > In1 = 0. Il existe donc un entier
n € N tel que n1ln2 > M. Posons alors A = 2" : on alnA = n1ln2 > M. De nouveau grace a la
croissance de In on a, pour z > 0: x> A= Inz > In A.

Ainsi, pour tout M > 0, on a pu trouver un A €]0, 00| tel que Vo > A, Inx > M.

Cela correspond & la définition de lim Inx = +4o0.

r—r+00
1
En posant x = — | on obtient : lim Inz = lim —Int = —oc. [
t z—0+ t—~+o00

Conséquences :
— In est une bijection de 0, +oo] sur R.

En particulier, il existe un réel unique, noté e > 0, tel que Ine = 1.
— le graphe présente une asymptote verticale en z = 0.

Inx
° lim — =0"et lim zlnz=0".
r—+00 I z—0t

1 1
Preuve : pourt>1on a n < —, donc :

Vit

z ] |
Vle,OSlnx:/ fdtg/ —dt =2r -2 <2z,
1t 1Vt

Inz 2z 2
etainsi: Vx> 1,0< — < i = —, d’oit le résultat grace au théoréme des gendarmes.
x

NG
Int B

: o 1 . . .
La deuxiéme limite est obtenue en posant x = —, ce qui donne lim zlnx = lim ——
t z—0t t—+o0 t

0.

Inz
e Comme BT —— =07, le graphe présente une branche parabolique horizontale en +oc.
T o X

e Siu:I— R} est une fonction dérivable sur un intervalle I, alors

u'(x)

Inu: I — R est dérivable et (Inu)'(x) = —— pour tout z € I.
x — In(u(z)) u(z)

Siu : I — R est une fonction dérivable sur un intervalle I ne s’annulant pas sur I, alors

u'(x)

o Inful: T — R est dérivable et (In|u|)’(z) = —— pour tout z € [
r o In(ju(z)) u(@)

5.3 Fonction exponentielle

5.3.1 Définition

On a vu que la fonction logarithme népérien In est une bijection de |0, +oo[ sur R.
La réciproque de cette fonction s’appelle I'exponentielle (de base e). Elle est notée e ou expz et
vérifie :

VreR,Vy e R, (y =expz <= = =1Iny)

En particulier on a : exp0 =1, expl =e.

e Pour tout z € R, In(expz) = z et, pour tout y € R’} , exp(lny) = y.
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e exp est continue et dérivable sur R et, pour tout = € R, (%) = e* > 0.

La fonction exp est donc strictement croissante sur R. C’est aussi une conséquence de la définition
puisque cette fonction est la bijection réciproque d’une fonction strictement croissante. Dans un repére
orthogonormal, les graphes de In et exp sont symétriques par rapport a la premiére bissectrice (la
droite d’équation y = x).

FIGURE 5.2 — Fonctions logarithme et exponentielle

5.3.2 Propriétés

Propriétés algébriques :

exp(a + b) = expa - expb, pour tout (a,b) € R%,

exp(—a) = pour tout a € R.

expa’
(expa)” = exp(ar), pour tout a € R et r € Q

Propriétés analytiques :

e lim expzx = +oo,
T—r—+00
. exp x
lim DT _ 400
Tr—r—+00 x€X

lim expx =0
T—r—00

e lim zexp(—z)=0.

T—>+00
Si w: I — R est une fonction dérivable sur I, alors
r — u(x)
[}
f I - R est dérivable sur I et Vo € I, f'(z) = u/(x) exp(u(z))
z — f(z)=exp(u(z))
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5.4 Exposants réels, fonctions puissances

; . 1
La définition d’une puissance entiére telle que 23 = 2x2x20u27? = 23 ne pose pas de difficulté.

Sir= b avec p € Z et ¢ € N* on peut définir par exemple 2" comme 'unique réel positif X tel que
q

X% = 2P en utilisant que la fonction x +— z? est une bijection de Ry sur R,. Ainsi, 23/2 est I'unique
réel positif X tel que X? = 2% =8, donc 23/2 — V8, mais comment définir 9v37

Une définition raisonnable devra étre cohérente avec les propriétés des exposants entiers. En particulier
on devra avoir 21 < 2V3 < 22 et e”, avec cette définition, devra correspondre a exp(zx).
La propriété rappelée plus haut : Ya > 0, Vn € N, Ina" = n Ina équivaut 4 : Vn € N, a" = exp(n Ina).
De méme :

* 2 _p 2 D

Va > 0,V(p,q) € Z x N* Inas = =Ilna <= a7 = exp(=Ina)
q q

Par exemple a2 = ez = (Ve = /5.
Ceci permet facilement d’étendre la notion d’exposant aux réels en posant, pour a > 0 et o € R,

a® := exp(alna). Le membre de droite est défini dés que a > 0 et donne un sens au membre de gauche.

On aura ainsi 2V3 = exp(v31n2 ~ 3, 32.
De plus pour a = e et & = x on obtient bien e = exp(xIne) = exp(x).

5.4.1 Exposants réels

Pour a > 0 et b € R on pose a’ = ¢*"@

Grace aux propriétés algébriques des fonctions logarithme et exponentielle on montre alors facilement
que les propriétés usuelles des exposants entiers ou rationnels s’étendent aux exposants réels en général :

Poura>0,d >0, beRett € R,

b b b
1° =1, ((a)b)b, = abb/, aba? = ab+b,, a ab_b/, (a a')b = aba®, (ﬁ) _ v

5.4.2 Fonctions puissances z%, avec o € R. Fonctions racines n-iémes
9

Définition 5.4.1. Soit a € R. On appelle fonction puissance « la fonction, que nous noterons h,,
définie sur |0, +oo[ par hy(x) = 2 :

ha(a;) — ¢ dif e Inx

Proposition 5.4.1. La fonction he, : © +— z% est dérivable sur |0, +oo[ et (%) = az*'.

o' a _
En effet, pour z > 0 : (z%) = (e* M%) = — 2% = — % — gz 1,

x
Le comportement de la fonction puissance dépend donc du signe de o mais pour o > 0 il dépend aussi
de la position de o par rapport a 1. Une bonne fagon de retenir ’ensemble consiste a penser aux cas
usuels a = —1 (pour @ < 0), @ =1/2 (i.e. v/z, pour 0 < a < 1) et @ = 2 (pour a > 1).
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h est strictement décroissante sur |0, +oo[, lim hy(z) = oo et lim hy(x) = 0.
z—0 T—+00

On peut alors prolonger h, par continuité en x = 0 en posant hq(0) = 0.

h est strictement croissante sur |0, +o0], liH(l) ha(xz) =0 et ll)r_’I_l ha(x) = 400.
Tr—r x oo

— w : il_r)% bl (x) = il_r)I{l) az® ! = 400, donc la courbe de la fonction h, prolongée en 0
présente une tangente verticale en x = 0.

— : ilg}) B (z) = ig% az® ! =0, donc la courbe de la fonction h, prolongée en 0 présente
une tangente horizontale en x = 0.

. ha(z . 0 si O<a<l
Remarque 5.4.1. lim o) = lim 2% !'= . ’
T—+00 I T—~400 —+00 si a>1
Dans le premier cas, la fonction h, croit moint vite que x en 400, dans le second il croit plus vite.
Graphiquement cela se traduit par une « branche infinie » du type « branche parabolique » tournée

respectivement dans la direction Oz et Oy, comme dans les cas 2V/? = VT et 22

4.5

a>1

0<a<l1

a <0

-85 a% i i35 4 (2] k) R a

-8.%

FIGURE 5.3 — Fonctions puissances hg

Proposition 5.4.2 (Croissances comparées). Si a > 0, alors :

Inxz e x

lim — =0, lim — =+o00, lim =400, lim z%*=0
T—+o00 % T—+o00 L% z—+oo In T—+00

Cette régle peut étre retenue de la facon suivante :

« En cas de forme indéterminée, c’est I'exponentielle de x qui 'emporte sur les puissances de x qui
elles méme ’emportent sur le logarithme de x »

I — R}

est une fonction dérivable sur I, alors

Proposition 5.4.3 (Dérivée de u®). Siu : {

I — R?
I { x — f(x) :+u(ac)°‘

est dérivable sur I et




ATTENTION : ne pas confondre x — z% et x — a”.
Par exemple, si f(z) = 2% = "2 on a f/(z) = ¢*2In2 = 2% In 2, tandis que (22)" = 2z.

De fagon générale :

Va >0, Vr € R, (a*) =a”Ina et Va € R, Yz > 0, (z?) = az®!

Définition 5.4.2. La fonction définie sur R par z — a® = ¢*"? on a > 0, s’appelle la fonction

exponentielle de base a. Pour a = e on retrouve 1’exponentielle usuelle.

On s’intéresse enfin aux fonctions racines n-iémes, parmi lesquelles se trouve la fonction racine carrée
bien connue. La définition suivante s’appuie sur le fait que pour n € N* la fonction X — X" est une
bijection strictement croissante de Ry sur Ry :

Définition 5.4.3. Pour n € N\ {0, 1} et # > 0, ¥/z est 'unique réel X > 0 tel que X" = z.
Pour z > 0 on vérifie immédiatement que :
{7‘/5 = 1‘% = e% Inz

La fonction racine carrée corresponda & n = 2 (on écrit alors plus simplement /z). On rappelle a son
sujet la propriété trés importante :

Ve e R, Va2 = |z|.

Le résultat suivant est un cas particulier de la proposition 5.4.3. On I’énonce tout de méme en raison
de son importance :

Proposition 5.4.4. Pour n € N\ {0, 1} la fonction x — {/x est dérivable sur R et

On notera bien que ces fonctions ne sont pas dérivables en zéro.

1 1 1 1 _2 1
E l . /: —r 2 = —— S /: —x 3 = —_—.
xemples : (1/7) 57 NG (V) 37 T

Remarque 5.4.2. Lorsque « est un entier strictement positif, la fonction £ est bien stir définie sur
R au sens usuel (produit de « réels égaux a x) et si « est un entier strictement négatif, z est définie

_ . . . 1 o
sur R* comme inverse de x~%. On vient de voir que les fonctions z» sont définies pour z > 0.
La définition donnée plus haut est la seule qui convienne dans tous les cas, pour x > 0.

5.5 Fonctions trigonométriques

5.5.1 Définition des fonctions trigonométriques

Soit x un réel. Le plan étant orienté, on peut lui associer un unique point M du cercle trigonométriques
-
i

C(0,1) tel que z soit une mesure de 'angle orienté ( i ,OM) : voir figure 5.4 ci-dessous.

Définition 5.5.1.
Les fonctions cosinus et sinus sont les fonctions de R dans R qui & tout réel x associent respectivement

'abscisse et 'ordonnée du point M du cercle C(0,1) défini par (_z>, OM ) =z [27].
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Sur la figure 5.4 on a donc cosz = OC, sinz = OS et le théoréme de Pythagore dans le triangle

OMC' donne une premiére relation : OM? =1 = OC? + 058? = cos? z + sin® z = 1.
o
T
J
T
H
& X
o : C
C(0,1)
FIGURE 5.4 — Cercle trigonométrique
On retiendra les « lignes trigonométriques » usuelles vues au lycée :
T m T T
0 0| = — - =
6 | 4|32 "
V3 V2| 1
0|1 — | — — 0 —1
cos 5 5 5
1| V2] V3
ingd |0 = | — | — 1 0
sin 5 5 5
1
tanf | 0 | — 1 V3 |40 | 0
V3
e La fonction sinus, notée sin est une fonction e La fonction cosinus, notée cos, est une fonc-
périodique de période 27, continue et dérivable tion périodique de période 2w, continue et déri-
sur R. vable sur R.
Vz eR, (sinz) = cosz Vr eR, (cosz) = —sinz

1.5

y= C(% = sin(x)

-5 4.5 -4 -3.5 -2.5 -2 -lTIS -1 -0.5 0.5 1
2

-0.5

N3

A e -

-1.5

FIGURE 5.5 — Fonctions sinus et cosinus

Définition 5.5.2.

sin
La fonction tangente, notée tan, est la fonction définie sur R\ { g + km, k € Z} par tanx =

cosz
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Le domaine exclut les réels x qui annulent cosx.
Sur la figure 5.4 on a, grace au théoréme de Thalés : tanxz = HT.

Proposition 5.5.1. La fonction tangente est une fonction périodique de période m, continue et
dérivable sur son domaine. Sa dérivée est donnée par :

1
2

VxER\{g—i—lm, keZ}, (tanz) =1+ tan’z =

COS~ X

Cette fonction est donc strictement croissante sur tout intervalle de son domaine.
On vérifie sans peine, & partir de la définition et avec les théorémes usuels sur les limites, que

lim tanz = —ocoet lim tanz = 400,
z%f%Jr T—g

T
il en résulte que la fonction tan définit une bijection strictement croissante de | — 5 5[ sur R.
m
Les droites z = 5 + km, k € Z, sont asymptotes verticales & la courbe.
: y = tan(x)
2
1
g
xr= —
2 /
5 -4 3 2

SED

FIGURE 5.6 — Fonction tangente
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5.5.2 Formulaire
Toutes les formules trigonométriques se retrouvent a partir d’un petit nombre d’entre elles.

Ce premier groupe de formules se retrouve aisément & l'aide du cercle trigonométrique :

sin(—x) = —sinz, cos(—x) = cosuz,
sin(fr+m) = —sinz, cos(r +m) = —cosuz,
sin(m —xz) = sinx, cos(m—x) = —cosuz,
. 77 ™ .
sin(x + 5) = cosz, cos(x + 5) = —sinz,
sin(g —z) = cosuz, cos(g —z) = sinz.

PP sinz
La définition de la tangente : tanx = —— permet de retrouver les formules analogues la concernant
cos &
(voir ci-dessous).

Il est recommandé de mémoriser les cing formules suivantes, si possible en les visualisant telles qu’écrites
ci-dessous :

cos’a+sina = 1, (5.1)
cos(a+b) = cosacosb—sinasinb, (5.2)
cos(a —b) = cosacosb-+ sinasinb, (5.3)
sin(a+0b) = sinacosb+ cosasinbd, (5.4)
sin(a —b) = sinacosb— cosasinb. (5.5)

Elles permettent de retrouver toutes les autres formules a ’aide de calculs simples. C’est un exercice
a faire plusieurs fois jusqu’a maitriser ces calculs. Une autre méthode consiste a utiliser les nombres
complexes (voir chapitre 4).

Exemples de calculs :

tan(a--b) sin(a +b) sinacosb+cosasinb  tana + tanb
an(a+b) = = =
cos(a+b) cosacosb—sinasinb 1 —tanatanb

par le produit cos a cosb),

(diviser numérateur et dénominateur

cos(2a) = cos(a + a) = cos’a —sin®a = 2cos’a — 1 = 1 — 2sin’q,
e Pour transformer cosa x cosb sous forme d’une somme, il suffit d’ajouter membre & membre les

1
égalités (5.2) et (5.3) et on obtient : cosa x cosb = B (cos(a + b) + cos(a —b)).

On obtient ainsi le groupe de formules :

1 1
cosa X cosb = 3 (cos(a + b) + cos(a — b) sina x sinb = 3 (cos(a — b) — cos(a + b)

1
sina X cosb = 3 (sin(a + b) + sin(a — b)
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e Pour transformer cosp + cos ¢ sous forme d’un produit, on utilise & nouveau (5.2) et (5.3) en les

ajoutant :

cos(a + b) + cos(a — b) = 2cosacosb.

, , - Pta
On pose alors at soit, de maniére équivalente : 2
2
. + -
ce qui donne : cosp + cosq = 2cos(p q) cos(u
On obtient ainsi le groupe de formules :
B p+q  p—q B . pP+q . p—q
cosp+cosq = 2cos cos 5 cosp —cosq = —2sin sin 5
. . . ptq p—q . o p+q . p—q
sinp+sing = 2sin cos —— sinp —sing = 2cos sin —
e Autres formules usuelles :
tana + tanb tana — tanb
tan(a + b —_—— tan(a — b —_——
(a+b) 1 —tanatanbd’ ( ) 1+ tanatanb
cos(2x) cos? z — sin’ z, sin(2z) 2cosxsinz,
2t
2cos’x — 1, tan(2x) Lﬂ;,
1 —tan“zx
1 — 2sin® x,
9 1+ cos2z .9 1—cos2z
cos” x — sin” x — 5

ou, de fagon équivalente :

x . 9 X
1+ cosx = 2 cos? 5 1—cosx:281n2§

x
Si, pour z # 7 + 2k7, on pose t = tan 5 on a :

1—¢? . 2t . 2
COSY = ————5 SMr = —— anxr =
1412’ 1+ 2 1_¢2
2z a2 T
x x Ccos” 5 —SsIn“ 5
Par exemple : cosz = cos® = —sin? = = —=2 2
’ 2 2 cos? % +sin®Z

et on divise numérateur et dénominateur par cos? 5
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5.5.3 Reésolution d’équation et d’inéquations

cosz =cosa <= x=a+2kroux=—a+ 2 avec (k,l) € Z?
sinz =sina <= z=a+2kroux=mn—a-+2nr avec (k) € Z*

tanr = tana <= x=a+ kmw avec k € Z

cosxr =0 <— xz%%—kw, keZ

sine =0 < zxz=kn, ke’

tanx =0 < x=km, ke’

Soit v € [0, 7]. Alors : cosz > cosa <=z € [—a + 2k7, o + 2k7| avec k € Z.

Soit a € [—g, g] Alors : sinx > sina <=z € [a + 2km, m — o + 2k7] avec k € Z.
Exemple d’équation : cosz + cos2z = 0 sur | — m, 7.

Premiére méthode

cosx + cos 2z = 0 <= cos 2x = — cos T <= cos 2z = cos(x + )
On a donc :
20 =x+7+2kr ou 2rx=-x—w+2kr, keZ
Soit :
2k
r=m+2kr ou m:—g—i—%, keZ.

Sur | — 7, 7|, on obtient § = {_g; g;ﬂ}

Remarque : la premiére famille de solutions est contenue dans la deuxiéme. En effet, en prenant
k = 2 + 3¢ dans la deuxiéme, (¢ € Z) on obtient x = w + 2/7.
On le voit plus simplement avec les points images des solutions :

C(0,1) /3

po
- = - = = - == -
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Deuxiéme méthode : changement d’inconnue

On a cos 2z = 2cos?z — 1 donc, en posant X = cosz, on est ramené & résoudre I’équation

2X2 4+ X-1=0

1
Les solutions sont X; = —1 et Xy = 3 et résout ensuite successivement les équations
1
cosr = —1et cosz = 3
. . T T
Sur | — 7, 7], on obtient & nouveau {—g; g;ﬂ'}

Troisiéme méthode : transformation de somme en produit

2 -2
cosx +cos2x =0 <— 2cos<x—; x)(:os(gc 5 $>:0
2 cos (3—33) Cos (§> =0
3 2 2
cos (;) =0 ou cos (g) =0

[

3z T T T
?_§+kﬂou§—§+k‘7r
W+2kw + 2k
r=s+-—_—ouxr=m T
3 3
Sur | — 7, 7], on retrouve bien {—g; g;w}

Exemple d’inéquation : cosz + cos 2z > 0 sur l'intervalle | — m, 7.

Le changement d’inconnue X = cosx vu auparavant nous rameéne a I'inéquation 2X2 + X — 1 > 0.
En appliquant la régle sur le signe du triné6me on obtient X < —1 ou X > 7 Ensuite :
cosr < —l<=cosx=—-1<=ax=n+2kn, kel

1 T T T
cosx25<:>cosachos§<:>:r€ {—§+2k7r,§+2k7r]

L’ensemble des solutions sur | — 7, 7] est {—g, g} u{r}.

On peut aussi reprendre la factorisation issue de la transformation de somme en produit et faire un
tableau de signes en s’aidant du cercle trigonométrique.

cosx + cos2x > 0 <= 2cos (%E) Cos (E) >0

2
] 4
x -7 3 3 T,
(%) '
cos | — 0 + —
2
cos (E) + +
2
cosz + cos(2zx) ? + ? ?
On retrouve ’ensemble {—g, g}] U{r}.
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Chapitre 6

Limites et continuité

L’objectif de ce chapitre est de consolider et compléter des notions utilisées dans les classes de lycée.

6.1 Généralités

e Fonctions majorées, minorées, bornées

Définition 6.1.1. Une fonction réelle définie sur une partie D de R est dite majorée sur D si I’ensemble
f(D) est une partie majorée de R, c’est a dire si : AM € R, Vax € D, f(z) < M.

On définit les notions de fonction minorée, bornée sur le méme modéle :
f minorée : Im € R, Vax € D, f(x) > m.
f bornée : f majorée et minorée, i.e. I(m, M) e Rx R, Vo € D, m < f(z) < M.

On dit que M est un majorant et m un minorant de la fonction.
Il n’y a pas unicité des minorants et des majorants.
Une fagon équivalente d’écrire qu’une fonction est bornée :

Proposition 6.1.1. f bornée sur D <= 3JA € R, Vx € D, |f(z)| < A ‘

Exemples : la fonction = — cosx est bornée sur R : on a Vz € R, |cosz| < 1. La fonction z — Inx
n’est ni majorée ni minorée sur son domaine R*, la fonction z + \/x est minorée (par 0) mais non

: . 1 :
majorée sur R . La fonction x — — est bornée sur [1, 2] mais pas sur |0, +ool.
x
e Borne supérieure, borne inférieure d’une fonction

Définition 6.1.2. Si l’ensemble f(D) admet une borne supérieure S dans R alors on dit que S est la

borne supérieure de f et on note S = sup f(x) ou méme S = sup f.
€D D

Cela signifie que S est un majorant de f et que, si M est un majorant de f, on a S < M. Ou encore :
Ve e D, f(x) < S et Ve>0,dze€D, S—e< f(x) < S (6.1)
On définit la borne inférieure de f suivant le méme modéle.

Attention : la borne inférieure et la borne supérieure n’existent pas toujours.

Si elles existent, elles sont uniques.

Si une fonction n’est pas majorée (resp.minorée) sur D, on écrit éventuellement : sup f = 400
D

(resp. 1%ff = —00).
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sup f=/¢
la,b][
-
a b
inf f=—0cc
]a:b][f

FIGURE 6.1 — Ezemple de bornes supérieures et inférieures pour une fonction croissante

6.2 Définitions des limites et de la continuité

La notion de limite (qui inclus celle de continuité comme cas particulier) a été abordée au lycée d'un
point de vue intuitif. Quitte & admettre un certain nombre de résultats, ce que nous continuerons
largement & faire dans ce cours introductif, on a les outils suffisants pour déterminer effectivement des
limites dans les cas usuels.

Toutefois, des expressions telles que :
Quand z se rapproche de 0, f(z) se rapproche aussi de 0,

ou encore :
si on veut que f(z) soit trés proche de 0, il suffit de prendre x suffisamment proche de 0,

censées exprimer que f admet pour limite 0 en £ = 0 sont au mieux beaucoup trop vagues et, en fait,
incorrectes. Comme on ’a vu au chapitre 1, une expression mathématique doit étre dépourvue de toute
ambiguité et permettre de s’insérer dans des démonstrations.

6.2.1 Limite finie en un point «a

Dans ce paragraphe, f est une fonction réelle définie sur D C R, a est un réel qui posséde la propriété
suivante :
a € D ou (Ve >0, DNja —¢,a + ¢[# 0). (6.2)

On dit alors que a est dans I’adhérence de D et on écrit a € D.

Cela signifie que si f n’est pas définie en a, elle doit étre définie en des points arbitrairement proches
de a : il faut pouvoir « faire tendre = vers a » en restant dans le domaine de f.

En pratique f sera définie au moins sur un intervalle dont a est une borne ou sur un

intervalle ouvert contenant a.
4202 —x—2

Exemples : f(z) = vz eta=0, f(z) =Vreta=3, f(z)= 0 et a = 1. Par contre
x_

chercher la limite de v/z en @ = —1 n’a aucun sens.
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Définition 6.2.1. Soit ¢ € R. On dit que f admet pour limite £ en a (ou que f(z) tend vers ¢ quand
x tend vers a) si :

Ve >0,3da>0,Vx e D, (|Jr —a|] <a= |f(x) — ] <e). (6.3)

Explication : quel que soit le réel strictement positif € donné, méme trés petit, on doit pouvoir relever
le défi suivant : trouver un intervalle [a — a, a + o] sur lequel f(z) et ¢ seront distants de moins de ¢
(avec x € D, bien siir).

AY

¢ e

B

O a— o a a+ «

FIGURE 6.2 — Limite finie en un point

Notation : li(Ilnf =/{ ou %gré f(x) = £ (ne pas mélanger les deux).

3

e Exemples usuels : z — z, 2 — 22, 2 — 2%, z — 2", n € N*, 2 — /z, © — Jx : toutes ces

fonctions ont pour limite 0 en x = 0.
. sinxzx

lim

z—0 X

=1, lim cosz =0.
T

Remarque : la notation li_1>n f(x) = ¢* signifie que I'on a liLn f(z) =l et f(x) > £ «au voisinage de
r—a r—a

a », c’est & dire sur au moins un ensemble D N [z — a,z + a] avec a > 0.
« On dit : f(x) tend vers ¢ par valeurs supérieures quand x tend vers a »

e Lorsque f admet une limite en un point a de son domaine (a € D), la situation peut étre précisée :

Proposition 6.2.1. St une fonction f admet une limite £ en un point a de son domaine, alors

t=f(a)

On dit alors que f est continue en a. Ceci fait I'objet d’une autre section.

Preuve : soit ¢ > 0 (cette expression sous-entend que € est quelconque). D’aprés (6.3) il existe un
réel a > 0 tel que :
Vo e D, (jr—a < o= |f(z)— ] <),

or, pour x =a on a |x —al = 0 < «, donc nécessairement|f(a) — ¢| < e. Ainsi :
Ve >0, [f(a) =4 <e¢,

ce qui équivaut a |f(a) — ¢| = 0 (voir la propriété (1.1) prouvée au chapitre 1) , c’est a dire f(a) = £.
|
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e Limite a droite, limite & gauche : on obtient ces notions en remplagant dans la relation de
définition (6.3) le terme |z—a| < a, c’est & dire aussi a—a < z < a+a, respectivement par a<z < a+a,
a — a < x<a. Ainsi, par exemple :

Définition 6.2.2. Soit £ € R. On dit que f admet ¢ pour limite & gauche en a (ou que f(x) tend vers
¢ quand x tend vers a par valeurs inférieures) si :

Ve >0,3a>0,Vx €D, (a—a<r<a=|f(x)— ¥ <e). (6.4)

On remarquera que x = a n’est pas concerné.
Exercice : écrire la définition de la limite a droite.

Notations : lim = ¢ ou lim f(x) = ¢ pour la limite a droite et lim = ¢ ou lim f(x) = ¢ pour la
7>a z—at ea rz—a~

limite a gauche.

Exemple : lim E(z) =1, lim E(z) =0 (E est la fonction partie entiére).

z—1t z—1—

2 —(
1 —(
T O
o——+(C
—( =
— s

FIGURE 6.3 — Fonction partie enticre

A titre d’exemple, nous donnons le résultat suivant, illustré figure 6.1 :
Proposition 6.2.2. Soit f une fonction croissante sur un intervalle |a,b[ et majorée. Alors f admet
une limite a gauche en b donnée par lim f(x) = sup f.
z—b~ Ja,b[

Preuve : f(]a,b[) est une partie non vide de R et, par hypothése, majorée, elle admet donc une borne
supérieure £ = sup f. Montrons que £ est la limite de f & gauche en b.

Ja,b
Soit € > 0 : d’aprés la caractérisation de la borne supérieure (6.1) il existe un réel zg €|a, b| tel que
0 —e < f(xg) <. Comme f est croissante et majorée par £ on a :

Vr €la, b, x > xg =l —c < f(x) < L.
Posons o« = b — xq, alors d’aprés ce qui précéde :
Vz €la,b,b—a<z<b=|f(z) -/ <e.
Le réel € > 0 étant a priori quelconque, on en déduit que :
Ve >0,3a>0,Vz€la,b,b—a<z<b=|f(z)—{ <e.

et ceci établit le résultat annoncé. n
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Le lien entre ces notions est précisé dans la proposition suivante :

Proposition 6.2.3.
Si f n'est pas définie en a alors f admet une limite en a si et seulement si f admet des limites d
droite et a gauche en a qui sont égales, on a alors lim f(z) = lim f(z)= lim f(z).

T—a T—a~ z—at

Si f est définie en a alors f admet une limite en a si et seulement si f admet des limites o droite
et a gauche en a qui sont égales a f(a).

Cette caractérisation de la limite permet de prouver qu’une limite n’existe pas. Par exemple, si on
trouve deux limites différentes & gauche et a droite en a, alors la limite en ¢ n’existe pas.

Exemples :

1. La fonction partie entiére E n’a pas de limite en a = 1 (voir exemple précédent). En fait elle
n’a pas de limite aux points de Z.

2241, siz>0

2. La fonction f(z) = { 21 siz<0 n’admet pas de limite en 0 car xlir(r)l+ f(x) =1 et
lim f(x)=-1.
z—0~

3 -2 -\\i 1 2 3
>C

3. Considérons la fonction f définie sur R par f(0) =1 et f(x) = 0 pour tout réel x # 0 : on a
lim+ f(z) = lim f(z) = 0 et cependant la limite en zéro n’existe pas (ce devrait étre 1 = f(0)).
z—0 z—0~

14

8

O T
Remarque 6.2.1. Ce dernier exemple peut dérouter : on aimerait pouvoir dire que la limite de f en
zéro est £ = 0. Ceci est le résultat d'un choix dans la fagon de définir la limite en un point (inégalité
| —a| < a plutot que 0 < |z —a| < a dans (6.3)) , choix qui n’a pas toujours été celui-ci dans le passé.
L’une de ses raisons d’étre est la forme simple que prend le résultat 6.3.1 sur la limite d’une fonction

composée qui, sinon, exige des précautions un peu lourdes). Notons que ces subtilités n’ont pas
a étre prises en compte dés que f n’est pas définie en a, ce qui est le cas de la majorité

71



des situations intéressantes.
Pour pallier ce petit désagrément on a la notion de limite suivant une partie, que vous avez déja utilisée
sans l'avoir formulée précisément ni nommeée comme telle :

Définition 6.2.3. Soient A C R et £ € R. On dit que f admet pour limite ¢ en a suivant A (ou que
f(x) tend vers ¢ quand z tend vers a, x appartenant a A) si :

Ve >0,3da>0,Vr € AND, (Jxt —a| <a=|f(z) — ]| < e). (6.5)
On écrit : lim f(z) = £.
veA
Exemples :

— Reprenons la fonction nulle sur R* et valant 1 en z = 0 : il n’y a pas de limite en 0 mais on a
lim f(x) =0, que l'on écrit usuellement lim f(z) = 0.
x—0

zeR* ;;8
— Anticipons sur la définition du nombre dérivé en un point a (chapitre 7) :
z) — f(a
o)t 1) =@
T#a
Ici A =R\ {a}.
— Dérivée a droite en a : c’est la limlite en a suivant A =]a, 4+o00|.
— Dérivée a gauche en a : c’est la limlite en a suivant A =] — o0, a].

6.2.2 Limite infinie en un point a
Dans ce paragraphe on garde les mémes hypothéses sur f.
Définition 6.2.4.
On dit que f a pour limite +00 en a si elle satisfait la propriété suivante :
VAeR,3a>0,Vz e D, (|x —a| < a= f(z) > A). (6.6)
On dit que f a pour limite —co en a si elle satisfait la propriété suivante :

VAeR,3a>0,Vx e D, (Jx —a| <a= f(z) < A). (6.7)

Remarque 6.2.2.
— Dans le premier cas on peut se restreindre & A > 0 et dans le second & A < 0.
— On peut définir des limites infinies en a en se ramenant & la limite nulle en a :

1
lim f(z) = 4+o0 si et seulement si lim —— = 0"
T—a T—a f(x)
lim f(z) = —oo si et seulement si lim —— =0~
z—0 z—0 (1’)
— Il résulte des définitions que si liLn f(x) = —o0 ou +00 alors f ne peut pas étre définie en a.
x a

1
Exemple : lim — = +o0.
z—0 T
e On peut encore parler de limite a gauche et de limites a droite. Par exemple :

Définition 6.2.5.
On dit que f a pour limite +o00 a gauche en a si elle satisfait la propriété suivante :

VAeR, 3a>0,VeeD, (a—a<zx<a= f(z)> A). (6.8)
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a—« Q

FIGURE 6.4 — Limite infinie a gauche en un point

1 1 1
Exemples : lim — = +oo et lim — = —oo, donc la limite de — quand x tend vers 0 n’existe pas.
z—0t T =0~ T x
) 1
lim — = 4o0.

z—0t \/5

Une situation classique :

Proposition 6.2.4. Soit f une fonction croissante sur un intervalle |a,b| et non minorée, alors

lim f(z) = —o0. Si cette fonction est non majorée alors lim f(z) = —oo.
z—at T—b~

La fonction représentée figure 6.1 reléve de la premiére partie de cette proposition.

Remarque 6.2.3. On peut se ramener en a = 0 en posant x = a +t : on a alors ¢ tend vers 0 quand
x tend vers a et vice versa.

e lim f(x) =1 € R si et seulement si %iné fla+t)=1.
—

r—ra

e lim f(x) = 400 si et seulement si %ir% fla+1t) = +4oc.
—

Tr—a
o %g}lf(x):—oo si et seulement si %gr(l)f(a—l—t):—oo.
2_2z+1
Exemple : f(:z:):;Tiiz ena=1.Onpose x =1+1.
fa) (1+t)2-2(1+1t)+1 t2 t
€Tr) = = =
A+02-30+H)+2 -t t—1
2?2 -2z +1 . t

Donc lim —————— = lim —— = 0.
Oncxl—>mlx2—3$+2 tl—%t—l 0

6.2.3 Limite en +00 et en —c0

On suppose ici, pour simplifier, que le domaine D de f contient un intervalle de la forme [a, +oo[ (pour
le cas d’une limite en +00) ou de la forme | — 0o, a] (pour le cas d’une limite en —o0).

Définition 6.2.6. On dit que f a pour limite £ en +oo si elle satisfait la propriété :
Ve >0,3A>0,Vz e D, (z > A= |f(x) —{] <¢). (6.9)
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FIGURE 6.5 — Limite finie en +oo

Définition 6.2.7. On dit que f a pour limite 400 en +o0o si elle satisfait la propriété :

VM >0,34>0,¥z €D, (z > A= f(z) > M). (6.10)

| =

Remarque : on peut se ramener au cas d’une limite en ¢ = 0 en posant z = —.

e o

On a alors t tend vers 07 si et seulement si  tend vers +0o et t tend vers 0~ si et seulement si - tend

vers —oo. Ainsi :

—_

i =] € R si et seul tsi i —) =1
° xiToof(x) € R si et seulemen 51t_1>151+f(t)

1
e lim f(z)= o0 siet seulement si lim f(z) = 400.

T—+00 t—0t+
1
e lim f(z)= —oosietseulement si lim f(-)= —oc.
T——+00 t—0+

1
o lim f(z)=1¢€Rsietseulement si lim f(-)=1.

T——00 t—0-" 1
1
e lim f(z)= +oosietseulement si lim f(-) = +o0.
T——00 t—0-" 't
1
e lim f(x)= —o0 sietseulement si lim f(-) = —oc.
T——00 t—0—" 1
Exemples :
. 1 . 1 . 1 . 1 . 9 . 2
lim — =0, lim — =0, lim —=0. lim —=0. lim z=+4oc0, lim 2= +o0.
r—+00 I r—+00 I T—+00 \/_% T——00 I T—>+00 T—>—00

6.2.4 Continuité

Définition 6.2.8. Soient f : R — R de domaine de définition D et a € D. On dit que f est continue
en a si f admet une limite en a.

Compte tenu de ce qui a été vu précédemment on a des formulations équivalentes :
— f est continue en a si et seulement si ligl f(z) = f(a).
x a

— f est continue en a si et seulement si : Ve > 0, 3a > 0, Vz, (|Jz —a| < a = |f(z) — f(a)] <e.

e Continuité a gauche et a droite en un point :

On dit que f est continue a gauche en a si lim f(z) = f(a).
T—a—

On dit que f est continue & droite en a si lim+ f(z) = f(a).
T—a
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FIGURE 6.6 — Ezemple de discontinuité en a

e Prolongement par continuité :

Proposition 6.2.5 (et définition). Soient f : R — R de domaine de définition D et a un réel
tel que a ¢ D. On suppose que f admet une limite £ en a. La fonction f : D U {a} — R telle
que f(z) = f(z) siz € D et f(a) = £ est continue en a. C’est I'unique fonction continue en a et
coincidant avec f sur D : on l'appelle « prolongement par continuité de f en a ».

C’est une conséquence immédiate de la définition de la limite en a. Il est souvent utile de considérer
ce prolongement, que I'on note encore f, plutdt que f, par abus d’écriture. On a également les notions
de prolongement par continuité & gauche ou a droite...

sin x
Exemple : la fonction f définie sur R* par f(z) = peut se prolonger par continuité en 0 en
x

posant f(0) = 1.

e Continuité sur un intervalle :

Définition 6.2.9. On dit que f est continue sur un intervalle I de bornes ¢ = inf I et b = sup [ si elle
est continue en chaque point de l'intervalle ouvert |a, b|, continue a droite en a si a € I et continue a
gauche en bsi b e I.

e Continuité sur un intervalle, théoréme des valeurs intermédiaires :

Lorsqu’une fonction est continue sur un intervalle, le fait qu’elle “ne fasse pas de saut" se traduit par
une propriété trés importante en pratique. Si par exemple je reléve une température de 15 degrés le
matin et de 25 degrés le soir, je suis stir qu'une température de 20 degrés a été atteinte au moins une
fois dans la journée (on modélise la température par une fonction continue de la variable temps).

75



Théoréme 6.2.1 (th. des valeurs intermédiaires).

Soient I un intervalle de R (de longueur non nulle), a, b deux éléments de I tels que a < b.

Si f : I — R est continue sur I alors f prend toutes les valeurs comprises entre f(a) et f(b) : si
par ex. on a f(a) < f(b) alors

Vy € [f(a), f(b)], 3z € [a, 0], f(z) =y

f(a’) \/

>
a L b

FIGURE 6.7 — Continuité et valeurs intermédiaires
o Cela permet d’affirmer 'existence d’au moins une solution = dans l'intervalle [a,b] de 1’équation
f(x) =y ou y est donné.

e Sion sait que f est strictement croissante sur [a, b] (ou strictement décroissante), on en déduit que
f(z) = y admet une solution unique dans Uintervalle [a, b].

On peut énoncer ce théoréme sous une forme équivalente :

Théoréme 6.2.2 (th. des valeurs intermédiaires-bis).

Soit I un intervalle de R (de longueur non nulle). Si f : I — R est continue sur I alors f(I) est
un intervalle.

Corollaire 6.2.1. Si f : I — R est continue sur I et prend au moins une valeur positive et une
valeur négative, alors elle s’annule sur I i.e. I’équation f(x) =0 a au moins une solution sur I.

e Continuité sur un segment

Le résultat, fondamental, est le suivant :
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Théoréme 6.2.3. Si f est une fonction continue sur un segment [a,b], alors I’image £([a, b]) de ce
segment est un segment [m, M].
Commentaire- Cela signifie trois choses :

1. f est bornée : on a en effet m < f < M,

2. f atteint ses bornes : en effet, comme m, M € f([a,b]), il existe des réels c et d dans [a, b

tels que f(c) =m = inf f(x)et f(d)=M = sup f(x),
z€[a,b] z€la,b]

3. f prend toutes les valeurs comprises entre ses bornes.

En particulier : une fonction continue sur un segment [a, b] est bornée et atteint ses bornes.
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6.3 Propriétés et détermination pratique

On énonce dans cette section des propriétés utilisées dans la pratique de la recherche des limites, qui
évitent le recours aux définitions.

6.3.1 Changement de variable

On peut éventuellement se ramener en @ = 0 en faisant un changement de variable :

lim f(z) : le changement ¢ = a; —a raméne A %gr(l) f(t+a)
li : lech t t=-— one & i -
xﬁnfoof(x) e changemen ; rameéne & lim f(t)
li : lech t t=— éne a i -
x_l)r_noof(w) e changemen . raméne & lm f(t)
6.3.2 Opérations algébriques
Limite d’'une somme
Soient [ e R, I’ €R, a € R oua = +00 ou a = —0o0.
lim f(zx) l [ I | 400 | —00 | +00
lim g(x) ' | 400 | —00 | +00 | —00 | —00
r—a
lim (f + g)() l+1" | +o0 | —00 | +00 | —00 | ND
r—a

Cas indéterminé : « +0o + —o0 »

Limite d’un produit
Soient l e R, I’ €R, a € R oua = +00 ou a = —0o0.

%g%f(x) L {1>0]1>0|1<0|l<0]| 400|400 | —00| 0
%g)r}lg(x) I'| 400 | =00 | 400 | —o0 | 400 | =00 | —00 | oo
lim (fg)() 0| 400 | —0o | —00 | 400 | +00 | —00 | +oo | ND

Cas indéterminé : « 0 X oco»
Limite d’un quotient

a) Cas ou le dénominateur a une limite non nulle
Soient I € R, " € R, a € R ou a = 400 ou a = —o0.

C%g{l}j"(%) l l +oo | 400 | —o0 | —o0 | £o0
lim g() !'#0 | +oo |[I'>0|[U'<0|I'>0|1'<0| 400

tim(Ly@) | L

z—a’ g l7

3 » . » m
Cas indéterminé : « —’ »
00
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B) Cas ou le dénominateur a une limite nulle
Soient [ € R, a € R ou a = 400 ou a = —o0.

%ing(:n) [I>0]1>0]1<0|l<O0
limg(z) | 0% | 00 [ 07 | 0°
hm(i)(x) +o0o | —oo | —oo | 400 | ND
T—a q

0
Cas indéterminé : « 0 »

6.3.3 Composition

Proposition 6.3.1. Soient f : [ = R, g : J — R telles que f(I) C J.
Soient a € T (cf. critére 6.2) et b€ R . Alors :

Tr—ra T—ra

lim f(z) =b et lin}]g(y) ={= lim(go f)(z) =¢.
y—

Ce résultat est valable avec a = +00 ou a = —00 et b = +00 ou b = —oc0 lorsque cela a un sens.

Remarque 6.3.1. On peut montrer que sous les hypothéses de cet énoncé, si li_r)n f(x) = bon a
xX a

nécessairement b € J ce qui explique qu’il n’y ait aucune hypothése particuliére sur b.

Exemples :

e Fla)=vVa2+ax+1,Dp=R.cif(x)=2+2+1,9(y)=yet F=gof
. 2 _ . _

lim =z +x+1—+ooetyll>rfoo\/§—+oo, donc

T—+00

lim F(x)=+o0

r——+00
F(z) = S, D =5, o]
° T) = —, =|=, +o0l.
V3xr —1 FI3
1
Ici f(x)=3z—-1,g9(y) =—¢et F=gof
(z) () 7
1
lim 3z —1=0"et lim — = 400, donc lim F(z) = 400
x—>%+ y—=0t /Y $_>%+

6.3.4 Limites et comparaison

Proposition 6.3.2.
Si f > h sur]A,+oo[ et lim h(zx) =400 alors lim f(z) = +oo.

T—+00 xr—+00
e ; _ ; _
Si f < g sur]A,+oof et acggl—loog(x) oo alors xll)riloof(a:) 00
Exemple :
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1
f(l'): $4+$27+1,Df:R.

1

4
2ot 20
Dot f(z) > Va4t = 22,

Or lim 2% =400, donc lim f(z)= +ooc.
T—+00 T—+00

Pour tout z € R, z* +

Proposition 6.3.3. Si |f(x)—1| < u(z), pour tout x €]A,4+o0[ et lim wu(z) =0 alors lim f(z)=1

r—r—+00 r—r-+00
Proposition 6.3.4 (Théoréme des gendarmes).
Sih < f <gsur]|A +oo] et lim g¢g(z) = lim h(x) =¥, alors f admet une limite en +oo et
T—+00 T——+00
AR S =1

e Dans le cas de limites en —oo, il suffit de remplacer, dans ces théorémes, |A, +oo] par | — 0o, A[ et
T — +00 par £ — —oQ.

e Dans le cas de limites en a € R, il suffit de remplacer, dans ces théorémes, |4, +oo] par Ja—¢,a+¢]|
et r — +oo par r — a.

6.3.5 Continuité en un point et opérations usuelles

Proposition 6.3.5. Soient f : I - R, g : ;I — R continues ena € I, A € R.

1
Alors f+ g, fg, A et ? sont continues en a (si f ne s’annule pas au voisinage de a).

Proposition 6.3.6 (composition). Soient f : I - R, g: J—R,ael.
Si f est continue en a, f(I) C J et g continue en b = f(a),
alors g o f est continue en a.

6.3.6 Exemples classiques
Fonctions polynomiales

flx)=ag+ar1x + asx?® 4 -+ + apx™ avec a, # 0 (on dit que f est de degré n).

Proposition 6.3.7.
Les fonctions polynomiales sont continues en tout point a de R : lim f(z) = f(a). De plus :

T—a
IEI-Poof(:C) = 4oosia, >0
—oosla, <0
lim f(x) = 4o0sia,>0etn pair
T—r—00

400 si a, < 0 et n impair
—00 si a, > 0 et n impair
—00 si a, < 0 et n pair
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On retiendra que

lim ag+ a1z + agz® + -+ apz” = lim apz”
r—+o00 r—+00

Fonctions rationnelles

P(x)  ap+ a1z +aa® + -+ + apa” . L
T) = = sous forme réduite (on ne peut pas simplifier).
1@ =56 bo + b1z + bpa? + - - + bya? ( pett p pifier)

Proposition 6.3.8.
Les fonctions rationnelles sont continues en tout point a de leur domaine :

st Q(a) # 0 alors lim f(x) = f(a). De plus :
— SiQa) = g e? P(a) # 0 alors lim f(z) = £oo.
—Sin<p,xgrinoof(x):0, o
— Sin>p, $11>Iiloof(a:) +oo.

(

— Sin=p, lim f(z)= an (c’est le rapport des termes de plus haut degré).
r—r+o0 bn

De fagon générale on retiendra que

. ag + -+ apx™ . anpx”
lim = lim
r—+00 bO + -+ bpxp r—+o00 bpq:p

6.4 Une application a I’étude d’asymptotes

Il a été étudié dans les classes de lycée la notion d’asymptote a la courbe représentative d’une fonction
f dans deux situations :
— une limite infinie en un point du bord du domaine de définition, ce qui conduit & 'existence
d’une asymptote paralléle & Oy, ou « asymptote verticale »,
— une limite finie en 400 ou —oo, ce qui conduit a l'existence d’une asymptote paralléle & Ox, ou
« asymptote horizontale ».
On se propose de généraliser cette notion au cas d’une asymptote éventuelle non paralléle aux axes :
on parle « d’asymptote oblique ». Pour cela on considére une fonction réelle f définie sur un intervalle
non borné, par exemple de la forme |zg, +o0l.

Définition 6.4.1. S'il existe des réels a et b et une fonction ¢ telle que f(z) = ax + b+ p(z) avec

El}rl @(x) = 0 alors on dit que la droite d’équation y = ax + b est asymptote en +oo a la courbe I'y
x oo

représentative de f.

Interprétation : ax+b est une approximation de f(x) au voisinage de +00, de méme qu’'une fonction
affine tangente permet d’approcher la fonction au voisinage du point de tangence.

Il se peut que f(x) soit écrit sous cette forme, auquel cas (aprés avoir vérifié que la limite de ¢ est
nulle), on conclut immédiatement. Notons que cette définition inclut le cas a = 0 qui correspond a
une limite finie et une asymptote horizontale. On obtient donc une asymptote non paralléle aux axes
uniquement si a # 0, auquel cas f admet une limite infinie en 4o0.

Sur la figure 6.8 ci-dessous on a ¢(z) = PM.
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Ya

PM = f(x) — (ax + 1)
— 0 quand © — 400

—

FIGURE 6.8 — Droite asymptote

Exemple : f(z) =2x+3+e “en+oo:ona lim e ® =0 donc la droite d’équation y = 2z + 3 est

T—+00

asymptote a la courbe en +o0.

W

/ﬁ.ﬁ. =1 {5 @ [ 1 1.5 2 25

En général les réels a et b doivent étre déterminés, s’ils existent.

Proposition 6.4.1. Si la courbe représentative de f admet une asymptote oblique en +oo alors :

a= lim @) et b= lim f(x)—ax

rx—+o0o I x—r—+00

f(x)

x
finie b alors la droite d’équation y = ax + b est asymptote a la courbe I'y représentative de f.

Réciproquement, si en +00 admet une limite finie non nulle a et si f(x) —ax admet une limite
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On peut étudier la position de la courbe par rapport & son asymptote simplement en étudiant le signe
de PM = f(z) — (ax +b).

Remarque 6.4.1.

— Il n’y a pas nécessairement d’asymptote oblique, méme si lim f(x) = 400 ou —oo, en effet

Tr——+00
f(z) : . X : :
==~ peut ne pas avoir de limite ou, dans le cas ou a existe, f(x) — ax peut ne pas avoir de
x

=)

limite.
Exemples : f(x) = z sinz en +oo pour laquelle

f(z) = z + 3y/x pour laquelle lim @
Tz—+o0 I
6.10).

— Enfin on se gardera de croire naivement qu’une courbe qui admet une droite asymptote en +oo,
par exemple, « tend vers son asymptote sans jamais la rattraper ». C’est une vision romantique
qu’il faut abandonner.

n’a pas de limite (voir figure 6.9), et

= 1 mais f(z) — z n’a pas de limite finie (voir figure

sin 3z

Exemple : f(z) =z +3
6.11
— Ce qui précéde s’adapte immédiatement au cas olt x — —o0.

. La droite d’équation y = x est asymptote en +oo : voir figure
x

18
16
1
12

1@

FIGURE 6.9 — f(x) =z sinz en 400
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y=z+3Vz

FIGURE 6.10 — f(z) =z + 3v/z en 400

10

F@)=a+ 3sin(z3:c)

sin 3x

FIGURE 6.11 — f(z)=x+3 n +0oo

Nous terminons par un exemple d’étude de fonction illustrant ce qui précéde .

Un exemple d’étude compléte :

B (x+ 2)2
Ho) = 3@+
e Ensemble de définition : Dy =] — 0o, —1[U] — 1, 4-00].

e Pas de parité ni de périodicité pour cette fonction.

e Branches infinies :
o quand x — —1 : asymptote verticale x = —1

oquand £ — 400 :ona lim f(x) =400
r—+00

On recherche une asymptote oblique éventuelle. On calcule alors

2)? 1
lim @ = lim M = — (rapport des termes de plus haut degré), donc a = —.
T—400 I r—+oo 31 (:L‘ + 1) 3 3
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On calcule ensuite ( )2 ( )
1 c+2)+x(x+1
22rdr+4—a22—z 3x+4
= = — 1 quand x — +o00
3(x+1) 3(x+1)
Doncb=1

1
On a donc une asymptote y = gac 4+ 1 en +o00. On a le méme résultat en —oc.

On peut étudier la position du graphe par rapport & 'asymptote.

f(a:)—(ax+b):f(x)—(?1)x+1):33(21‘11)—1
_33:—1—4—300—3
B i’)(:v—kl)

:m>081$>—1,<081$<—11

la courbe est au dessus de ’asymptote pour x > —1 et au dessous pour z < —1.
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> +2z  x(z+2)

o fl(x)= 31’ 3@ d’ou le tableau de variation :
P -2 =il 0 +o00
() il - - cg
) oo +0co
—50 B0 4/3
o Tracé :

w
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Chapitre 7

Dérivabilité, accroissements finis

7.1 Dérivation : définitions

On considére une fonction réelle f définie sur un intervalle I de R (toujours supposé non vide et non
réduit & un point). Son graphe est noté I'y : pour x € I, (z, f(z)) € I'y et M(zx) est le point de
coordonnées (z, f(z)) dans un repére du plan.

e Taux de variation :

Définition 7.1.1. Soient a, b € I avec a # b. On appelle taux de variation (ou tauz d’accroissement)
f(b) — f(a)

de f entre a et b le réel 7(a,b) = T

7(a, b) est le coefficient directeur (ou pente) de la sécante (M (a)M (b)) :

YA
f(b)

f(a)
-

a b

FIGURE 7.1 — Interprétation graphique du tauz de variation

Exemples : on peut illuster cette notion dans deux situations différentes :
— La variable x est une distance horizontale sur une carte topographique et y est 'altitude. Alors
7(a, b) est la pente moyenne sur le parcours entre M (a) et M(b). Cette valeurs est affichée a
lattention des cyclistes sur certaines routes (en %).
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— La variable z est le temps et y la position d’un point mobile sur un axe (ici celui des ordonnées) :
7(a, b) est la vitesse moyenne du point entre les instants a et b.
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Dans chacun de ces deux exemples, on peut étre intéressé par une information plus précise : dans le
premier, la pente a ’endroit ot on se trouve (c’est ce que ressentent les mollets du cycliste), dans le
second, la vitesse instantanée (celle, plus ou moins, qu’indique le compteur) : il s’agit dans les deux
cas de considérer des points a et b « trés voisins ». Mathématiquement, il s’agit de passer a la limite
quand b tend vers a : on aura alors ces informations en z = a.

e Dérivabilité en un point :

Définition 7.1.2. On dit que f est dérivable en a si le taux de variation 7(a,a + h) a une limite finie

fla+h) - f(a)
h

quand h — 0, c’est a dire si lim existe (et est finie). Dans ce cas, on note f'(a) cette

h—0
h#£0

limite et on 'appelle nombre dérivé de f en a.

z o Pzt
_ B 9 B
i f@t ) = fla) ) = fO0) o PRI T
h—0 h h—0 h b0 h
Donc f est dérivable en 0 et f'(0) = 1.

Exemple 7.1.1. f : { ,a=0.

lmh+1=1
h—0

Remarque 7.1.1. on a aussi : f(a) = lim M_
r—a Tr—a
T#a

Il existe une caractérisation équivalente de la dérivabilité :

Proposition 7.1.1. f est dérivable en a si et seulement si il existe une fonction € de limite nulle
en zéro telle que :

Va € I, f(z) = f(a) + f(a) (& —a) + (v — a) e(z — ) (7.1)

Posant x = a+h, on peut écrire (7.1) sous la forme : f(a+h) = f(a)+f'(a) h+he(h) avec }llim e(h) =0.

—0
En fait, pour h # 0 on a e(h) = flat h})l — f(a)

L’expression (7.1) s’appelle le développement limité de f a l'ordre un au voisinage de a.

— f'(a) et le résultat s’en déduit sans peine.

e Interprétation graphique, tangente a une courbe :

La position limite des sécantes (AM)) est la tangente 7" a I'f au point A, elle a pour coefficient diracteur
f'(a) et son équation est donc :

y=f(a)+ f(a)(x—a)

La fonction z — f(a) + f’(a) (x — a) s’appelle la fonction affine tangente & f en a. En un certain sens
c’est la fonction affine qui approxime le mieux f au voisinage de a. L’erreur d’approximation n’est
autre que la quantité (z — a)e(z — a) qui tend vers zéro “plus vite que (x — a)" quand = — a.

Ces différents termes sont interprétés sur la figure 7.2 ci-dessous. On a posé ﬁ = AH7, ﬁ —HPj
etc...
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flat R

O i a a+h &
AH = h : accroissement en r

HP = h f'(a) : acccroissement de la fonction affine tangente

HM = f(a+ h) — f(a) : acccroissement de f
PM = he(h) : écart courbe - tangente

HM =HP + PM

FIGURE 7.2 — Interprétation graphique de la dérivée

Exemple :
Pour I’exemple 7.1.1, I’équation de la tangente au point My = (0, f(0)) = (0,1) est : y = 1 + x.

e Fonction dérivée :

Définition 7.1.3. On dit que f est dérivable sur un intervalle ouvert I si f est dérivable en chaque

point de I. On définit alors la fonction dérivée de f, notée f’, qui associe a tout x € I le nombre dérivé
h) —

de fenx: f(x) =lim fle+h) f(x)

h—0 h
h+#0
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e Dérivabilité a gauche et a droite :

existe. Dans ce

h) —
Définition 7.1.4. On dit que f est dérivable & gauche en a si hlim flat })l f(@)
—0~

cas, on note fy(a) cette limite.

B) —
On dit que f est dérivable a droite en a si lim flath) - f(a)

existe. Dans ce cas, on note f(a
h—0t h ’ d( )

cette limite.

Exemple 1 : f(z) = |z| en a = 0.
fla+h)— f(a) |h] {1sih>0

h h —1sih<0
lim flat+h)—fla) _ 1et lim flat+h)—fla) _ L
h—0— h h—0+ h

Donc f admet des dérivées & gauche et a droite en 0, mais n’est pas dérivable en 0 car

h) —
]IZ% fla+ })L fla) n’existe pas. On a f,(0) = —1 et f3(0) = 1.

Exemple 2 : f(z)=|z> —z|ena=1.
flat+h)—fa) _[A+h)?>—@Q+h)| _[1+2h+h*—1-h] _[h(1+h)

h h h h
A A ) R B VR O
h—0 h h—0
h>0 h>0
et tm LOTW=S@ gy
h—0 h h—0
h<0 h<0

fla+h) = f(a)

Donc f n’est pas dérivable en a = 1 car n’a pas de limite quand h — 0. Mais f5(1) = 1

et f;(l) = —1. On dit que le point d’abscisse 1 est un point anguleuz.

. y=|z"+z+1]

y=—zx+1l, =<1

y=x—1,x>1

=i -$.5 L3 [ 2 i i1.% 2

e Dérivabilité sur un segment :

Définition 7.1.5. On dit que f est dérivable sur [a, b] si f est dérivable sur |a, b[, dérivable a gauche
en b et dérivable a droite en a.

91



7.2 Théorémes généraux

On trouvera ici les principaux résultats effectivement utilisés.

Proposition 7.2.1. Si f dérivable en a alors f est continue en a.

Preuve : le second membre de (7.1) a pour limite f(a) quand & — a, on a donc 913131111 f(z) = f(a).
|

Attention : la réciproque est fausse, c’est a dire qu’une fonction continue en a n’est pas nécessairement
dérivable en a : considérer la valeur absolue en ¢ = 0. En fait on peut construire une fonction continue
sur [0, 1] qui n’est dérivable en aucun point de cet intervalle (fonction de Bolzano). Si on pouvait tracer
son graphe, il aurait cette allure (qui s’y frotte s’y pique) :

On comprend alors pourquoi on dit qu’une fonction dérivable est « plus réguliére » qu’une fonction
simplement continue...

Proposition 7.2.2. Soient u et v définies sur I et dérivables en a € I, soit A € R.
u+ v, A et uv sont dérivables en a et

(u+v)(a) =4'(a) +7'(a), (M) (a)=X(a), (uwv)(a)=1'(a)v(a)+u(a)v'(a)

Proposition 7.2.3. Soit v définie sur I, ne s’annulant pas sur I et dérivable en a € I et u définie
sur I et dérivable en a € I,

U o
— est dérivable en a et
v




Proposition 7.2.4. Soit u dérivable en a € I, f définie sur J intervalle contenant u(I) et dérivable
en b =u(a), alors f ou est dérivable en a et

(F ou)(a) = F'(u(a)) u/(a) = £'(b) u(a)
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Exemple : F(z) = (2% + z)?

Flz) = f(u(@)) avec u(z) = 2® + @ et f(y) =y

u'(x) =22+ 1, f'(y) = 3y°

F'(z) = f'(u(z)) v/ (x) = 3(z* + 2)2(2z + 1)

Dérivées particuliéres :

e Dérivée de u" : soit u une fonction dérivable sur un intervalle I et n € Z, alors u'* est dérivable :
— en tout point de I lorsque n > 0,

— en tout point de I ol v ne s’annule pas, si n < —1,
et, dans les deux cas, (u"(z)) = nu(z)" ' /(x).

Plus généralement, si v > 0 sur I alors pour tout réel « la fonction u® est dérivable sur I et on a
(u(2)) = au(z)* ' (2).

e Dérivée de /u : soit u une fonction dérivable et strictement positive sur un intervalle I , alors

!/
Vu est dérivable sur I et (\/u(z)) = @)
u(z)
Exemples :
1 -3
e flx)= m = [u(z)]
2¢% +1> 0 donc Dy =R
n=-3;u(r)=20"+1;ud ()= (compléter)
donc f'(z) = —=3u'(z) [u(z)] ™ = (compléter)
o flz)=Vat+1=/u(x)
2?+1=(z+1)(2* -2 +1) et donc Dy = [~1,+oo[ u(z) =2° + 1;u'(z) =------ (compléter)
donc f est dérivable sur | — 1, +oo[ et f/(z) =------ (compléter)

7.3 Deérivation et extrema d’une fonction

Définition 7.3.1 (Extremum local, extremum global ). Soit f : R — R et ¢ € Dy.
— On dit que f présente un maximum local en ¢, si et seulement si, il existe un intervalle ouvert
Ja, B[, contenant c, tel que f(z) < f(c) pour tout  €]a, B[NDy.
— On dit que f présente un minimum local en ¢, si et seulement si, il existe un intervalle ouvert
Jov, B[, contenant ¢, tel que f(x) > f(c) pour tout = €|, B[NDy.
— On appelle extremum local un maximum local ou un minimum local.
On parle d’extremum global, ou absolu, quand les inégalités sont valables pour tout x € Dy.

Le résultat fondamental est le suivant :

Proposition 7.3.1. Soit f : R — R dérivable sur |a,b[. Si f présente un extremum local en un
point ¢ €la, b, alors f'(c) = 0.

Preuve : supposons par exemple que ¢ soit un point de maximum local et soit |a, 8] un intervalle
ouvert inclus dans |a, b], sur lequel on a f(x) < f(c). Soit h € R* tel que a + h €]a, 8] : si h > 0 alors

h) — ¢ h) —
Jleth) = Je) < 0 et on en déduit fj(c) Y lim fledth) = J(©) < 0; si au contraire h < 0 alors
h h—0+ h
fo(c) “ hli%l flet h})L — /) > 0. Comme f est dérivable en c on a 0 < f;(c) = f'(c) = fz(c) <0, ce
e
qui ne peut se produire que si f/(c) = 0. n
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La tangente a la courbe de I'y au point (c, f(c)) est alors paralléle a I’axe des abscisses.

O 1 a c1 C2 C3 b

FIGURE 7.3 — Eztrema d’une fonction : minimum relatif en a, co, b, mazimum relatif en cg, c3.

Attention : si f/(c) = 0, ¢ n’est pas nécessairement un point d’extremum. On dit que ¢ est un point
critique de f. On vérifie grace au tableau de variations s’il s’agit ou non d’un extremum : la dérivée
doit s’annuler et changer de signe, ou bien rester nulle sur un intervalle ouvert de centre
c (elle est alors constante sur cet intervalle). Si f'(c) = 0, ¢ €]a, b[, sans que ¢ ne soit un point
d’extremum local de f, on parle de point d’inflexion, ou point col, de f.

Sur les points a et b du bord de l'intervalle, figure 7.3 on a des extrema locaux mais la tangente n’est
pas horizontale.

Exemple (point d’inflexion) :

y=x
i i 1

3 , 9 , inflexion
f(z)=(z,c=0, f'(z) =3z donc f'(0) =0et 0

. .- . . B
est un point critique de f, mais f est croissante sur 5 - ~ T : T
R donc 0 ne peut pas étre un point d’extremum de
[ A

Si f n’est pas dérivable en ¢, on peut quand méme avoir un extremum local en ¢ mais dans ce cas,
on n’a pas de tangente horizontale : pour la fonction valeur absolue, ¢ = 0 est un point de minimum
absolu...
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7.4 Théorémes de Rolle et des accroissements finis

7.4.1 Enoncés et preuves

Théoréme 7.4.1 (Théoréme de Rolle).
continue sur [a,b],

Soit f : [a,b] — R une fonction { dérivable sur ]a,b| alors :
et telle que f(a) = f(b),

Je €la, b], f'(c) = 0.

Preuve : d’aprés le théoréme 6.2.3 du chapitre 6, il existe des points « et § de [a,b] tels que
F(la,b]) = [£(a), £(8)] : Va € [a.b], f(a) < f(z) < F(B).
Si « et ( sont aux extrémités de [a,b], la condition f(a) = f(b) entraine que f([a,b]) est réduit & un
point : f est constante. Sa dérivée est alors nulle partout et n’importe quel point ¢ €]a, b| convient.
Si au contraire I'un des points «, /5 au moins est un point de ]a, b[, désignons-le par ¢ : c’est un point
d’extremum (minimum absolu pour «, maximum absolu pour ) et d’aprés la proposition 7.3.1 on a

f'(c) =0. n

Ce résultat est illustré figure 7.4 : il y a ici deux valeurs de ¢ possibles (¢ et d) qui correspondent tous
les deux & un extremum relatif dans |a, b : le cycliste qui part et arrive en deux points situés a la méme
altitude aura au moins une fois I’ occasion de se retrouver & ’horizontale, ici deux fois, méme si ¢ et d
n’ont pas le méme réle sur le plan du moral ...

Qa d C b

FIGURE 7.4 — Contexte du théoréme de Rolle

Attention : il ne faut pas retenir seulement ’hypothese f(a) = f(b). Dans les deux figures ci-dessous,
ou elle est vérifiée mais pas la conclusion, on cherchera quelle est I’hypothése manquante ...
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fla)

o,

Le (célébre) théoréme des accroissements finis, riche en applications, est une extension du précédent :
on enléve ’hypothése f(a) = f(b).

Théoréme 7.4.2 (Théoréme des accroissements finis).

Soit f : [a,b] — R une fonction { continue sur [a, b] alors :

et dérivable sur ]a,b[

S €la,bl, £(b) — f(a) = (b—a) F'(0).

Preuve : la sécante qui passe par les points d’abscisses respectives a et b a pour équation y = g(z) =

f(a)—i—W(w—a). La fonction définie sur [a, b] par h(x) = f(x)—g(x) vérifie h(a) = h(b) =0, de

plus elle est continue sur [a, b] (f et g le sont) et dérivable sur ]a, b (c’est le cas pour f, par hypothése,

et g est dérivable sur R.
D’aprés le théoréme de Rolle il existe donc un réel ¢ €]a, b] tel que h'(c) = 0. Or :

et h'(c) =0 <= . f'(c). n

Sur la figure 7.5 ci-dessous, il y a trois réels ¢ qui conviennent (dont c¢; et ¢2). En ¢y, par exemple,
le cycliste ressent exactement la pente qui, si elle était partout la méme, réaliserait le méme dénivelé

f(0) = f(a).

FIGURE 7.5 — Contexte du théoréme des accroissements finis
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Corollaire 7.4.1 (inégalité des accroissements finis).
Soit f : I — R une fonction dérivable sur lintervalle I, alors :

1. sl existe des réels m et M tels que Vo € I, m < f'(x) < M, alors pour tout couple (a,b) €
Ix1Ttel quea<bona:

m(b—a) < f(b) — f(a) < M (b—a). (7.2)

2. s’il existe un réel k >0 tel que Vx € I, |f'(x)| <k, alors :

V(z,y) € L, [f(y) = f(@)] < kly —=|. (7.3)

Preuve : pour le premier point on suppose que a < b, sinon le résultat est trivial. Le théoréme des
accroissements finis assure l'existence d'un point ¢ €]a, b[ tel que f(b) — f(a) = f'(c) (b — a), or, par
hypothése, on a < f’(c) < M : I'inégalité en résulte car b — a > 0.

Le deuxiéme point est une conséquence immeédiate du premier en posant m = —k et M = k. [
Exemple : votre vitesse reste comprise entre 30km/h et 90 km/h... En 20 mn vous parcourrez une
distance comprise entre 10km et 30 km.

Ce n’est pas plus compliqué que cela. Attention tout de méme aux hypotheéses ...

7.4.2 Applications
e Sens de variation d’une fonction

Commengons par un résultat intuitif, admis dans les classes antérieures :

Proposition 7.4.1.
Soit f une fonction dérivable sur un intervalle I. Si la dérivée est nulle sur I (Vx € I, f'(x) =0),
alors f est constante sur I.

Preuve : I'inégalité (7.3) est vérifiée avec k = 0, donc : V(z,y) € I, |f(y)— f(z)| =0, ie. f(x) = f(y).

Les deux résultats suivants, et ceux qui sont analogues en changeant le signe de la dérivée, sont a la
base de I’étude du sens de variation des fonctions :

Proposition 7.4.2.
Soit f une fonction dérivable sur un intervalle I, alors

f est croissante sur I si et seulement si : Yz € I, f'(z) > 0.

Preuve : supposons f'(x) > 0 sur I et soit (z,y) € [a,b]? avec z < y. Appliquons I'inégalité des

accroissements finis (7.2), coté gauche, avec m =0 : 0 < f(y) — f(z) i.e. f(y) > f(x), ce qui prouve la
croissance.
Réciproquement, si f est croissante sur I et si a € I, alors pour tout  # a dans I les quantités

f(z) — f(a) et x — a sont de méme signe, donc W >0 et ainsi :
Tr—a €r—a
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Proposition 7.4.3.
Soit f une fonction dérivable sur un intervalle I.

siVx € I, f'(x) > 0, alors f est strictement croissante sur I.

Remarque : on ne peut pas utiliser (7.2) dans ce cas, car on ne peut pas garantir que m > 0. En effet
la borne inférieure d’un ensemble de nombres strictement positifs (ici, les dérivées) peut étre nulle.
Exemple : inf R}, = 0.

Preuve : supposons f'(xz) > 0 sur I et soit (x,y) € [a,b)? avec z < y. D’aprés le théoréme des
accroissements finis, il existe un réel ¢ tel que z < ¢ < y et f(y) — f(z) = f'(c¢) (y — z), donc

>0 >0

fly) > f(=). n

Remarque 7.4.1. si f'(x) > 0 sur I et si cette dérivée ne s’annule qu’en un nombre fini de points, on
a le méme résultat. Exemple : f(z) = 23 sur R.

Il suffit de raisonner sur chacun des sous-intervalles ot f' > 0.

Corollaire 7.4.2. Soit f : [a,b] — R une fonction continue sur [a,b], dérivable sur ]a,b[. Alors :
— Si f'(z) > 0 pour tout = €la,b], f est une bijection strictement croissante de [a,b] sur

[f(a), £(B)].

— Si f'(z) < 0 pour tout x €|a,b], f est une bijection strictement décroissante de [a,b] sur

[£(b), f(a)].

e Limite d’une dérivée en un point et dérivabilité en ce point

Le résultat suivant permet, dans les cas favorables, d’étudier la dérivabilité en un point particulier sans
recours au taux d’accroissement. Etudions un exemple type : on considére la fonction définie sur R par

1 3
flz) = 1302 — 537—1—3 si x <4,
ve—3 si x>4

Cette fonction est continue et dérivable pour x < 4 et x > 4 par simple application des théorémes
usuels. On trouve sans difficulté que les limites & gauche et a droite en a = 4 sont égales (& 1) mais

cette fonction est-elle dérivable en ce point ?
z 3 1 1

Pour z < 4 on a f'(z) = = — = et ainsi lim f'(z) = =.Pour z > 4 on a f'(r) = ———— et donc
fil@) =5 -3 Jlim fi(z) = 5 Fla) = 57—

1
11I£+ fl(x) = 5 On se dit que les tangentes de part et d’autre du point d’abscisse a on la méme
z—

1
position limite en ce point et I'intuition nous dit que f est dérivable en a = 4 avec f/(4) = 3 Est-ce

correct 7 Et §’il n’y avait pas eu la méme limite , ou pas de limite du tout ? La réponse est 1a :

Proposition 7.4.4. Soit f une fonction réelle définie sur un intervalle ouvert I de R, continue en
a € I et dérivable sur I\ {a}. Si la dérivée f' a une limite finie £ en a (resp. a droite, a gauche en
a) alors f est dérivable en a (resp. a droite, d gauche en a) et f'(a) =€ (resp. fy(a) =1, fo(a) =1).
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et donc, en

1
C’est ce résultat que I'on applique : on conclut successivement que f;(4) =5 fi4) ==

1
effet, que f est dérivable en a = 4 avec f'(4) = 3

2

Preuve : on donne une preuve sommaire, dans le cas, par exemple, de la dérivée a gauche. On

. f(z) = f(a)

suppose que lim = ¢ et on veut montrer que —————=
T—a~ xr —

f étant continue sur [z, a] et dérivable sur |z, a[, le théoréme des accroissements finis donne 'existence

f(z) — f(a)

a la méme limite. Soit € [ avec x < a :

d'un réel ¢; €]z, af (il dépend de x) tel que = f'(cz), or quand z — a~, nécessairement

f(z) — f(a)

= f'(cz) — ¢, ce qui donne la conclusion. "
T —a

c: — a et donc

C’est une rédaction un peu rapide car ¢, n’est pas unique donc I’expression ¢, — a~ est un raccourci. On
sera plus rigoureux pour la régle de 'Hopital ci-dessous, deuxiéme cas (comparer les deux rédactions).

. . / .. . .
Remarque : on montre en fait que si f' a une limite en un point, alors le taux d’accroissement a la
méme limite. Cela reste valable avec une limite infinie : il n’y a pas alors dérivabilité mais existence
d’une (demi) tangente verticale.

Attention : la réciproque est fausse. Il se peut que le taux d’accroissement ait une limite (donc qu’il
y ait dérivabilité) sans que f ait une limite. Autrement dit, une dérivée n’est pas forcément continue.
Il y a un exemple classique :

1
Exemple : on considére la fonction f définie sur R par f(0) = 0 et, si  # 0, f(x) = 2% sin —. Le taux
x

— f(0 1
d’accroissement entre zéro et x # 0 est /(@) g( ) = /(@) = xsin — — 0 quand z — 0. f est donc
T — x T

1

dérivable en zéro et f'(0) = 0. Par contre, pour  # 0 on a f'(r) = 2zsin — — cos — qui n’a pas de
x

limite en zéro (le premier terme tend vers zéro mais le second n’a pas de limite ... pourquoi ?).

e Régle de I’'Hopital

x
Cette régle concerne la recherche de limites sous la forme (supposée indéterminée) lim fg; Nous allons
r—a x
r#a

en fait en voir deux variantes et seule la deuxiéme utilise un résultat de cette section (le théoréme de
Rolle).
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Proposition 7.4.5 (régle(s) de I'Hopital).
1. Soient f et g deux fonctions définies et dérivables sur un intervalle ouvert I et a € I.
On suppose que f(a) = g(a) =0 et que g'(a) # 0, alors :
/
LI [

sag(@)  g'(a)

2. Soient I un intervalle owvert, a € I, f et g deuz fonctions continues sur I et dérivables sur
I\ {a} telles que f(a) = g(a) =0, g(z) #0 et ¢'(x) #0 sur I\ {a}.
/

Si le quotient

- a une limite finie { en a, alors :
g'(x)

f@) o fla)

lim ——= = lim
T—a z—a ol
ag(a)  eg(@)

Preuve : commencgons par le premier cas. Remarquons qu’il existe un intervalle ouvert de centre

f(z)
g9(z)

a. En effet le développement limité a 'ordre un de g au voisinage de a s’écrit :

a sur lequel g(x) # 0 pour x # a, ce qui justifie I'existence du rapport sur cet intervalle privé de

g9(x) =g(a)+(@—a)g'(a)+(z—a)e(x—a) = (x—a) g'(a) + (z—a)e(z —a) = (x—a) (¢'(a) +e(x—a))

avec lim e(x — a) = 0, donc pour z assez proche de a (i.e. sur un certain intervalle de la forme
Tr—ra

la —a,a+al), ¢'(a) + e(z —a) # 0 et g ne sannule qu'en = = a.

fz) _ fl@)—fla) x—a

Pour z # a, = : comme ¢'(a) # 0, le second quotient, qui a pour limite
, 9() z—a  g(z)—g(a)
; quand x — a, est défini pour x assez proche de a et le résultat s’en suit immédiatement.
g'(a) /
x
Second cas - Soit € > 0, comme on suppose lign f'(z) = /¢, il existe un réel o > 0 tel que pour
i2ag'(2)
f'(x)

zel\{atona:|z—al <a= —{| < e. Fixons un tel z et introduisons la fonction h de

g'(x)
la variable ¢t € I par h(t) = f(t) g(z) — g(t) f(x). Supposant par exemple que x > a (pour fixer les
notations des intervalles) on a : h continue sur [a, z], dérivable sur ]a, z[ et h(a) = h(x) = 0.
D’aprés le théoréme de Rolle, il existe un réel ¢, (il dépend de z) tel que ¢, €]a, x| et h'(c;) = 0.
/
On a h'(t) = f'(t) g(z) — ¢'(t) f(x), donc on obtient f'(c;)g(x) — ¢'(cz) f(z) =0 d’onr @) = fer)

g(@) ~ gle)
1) _ ) _|fler)

; — E’ < e. On a ainsi prouvé que :
9(z) 9'(ce)

De plus |¢; —a| < |z —a| < o donc on a

Ve >0, 3a > 0, |z — a Sa:’m—é‘ <eg,
g(z)
et on a le résultat annoncé. n

Remarque 7.4.2. En fait, le deuxiéme résultat est également valide pour les limites infinies, et aussi
si f et g tendent vers I'infini en a, et si x tend vers —oo ou +00, c’est donc une régle trés souple. Pour
plus de détails on pourra consulter Wikipedia : https://fr.wikipedia.org/wiki/Régle de L’Hépital.

On peut aussi écrire les mémes résultats en termes de limites a droite ou & gauche.
On peut si besoin appliquer cette régle plusieurs fois de suite jusqu’a lever 'indétermination.

101


https://fr.wikipedia.org/wiki/Regle_de_L'Hopital

f'(x)
J(z)

On notera qu’on énonce des conditions suffisantes : si la limite de existe alors etc...

La réciproque est fausse!

. sinzx—=x
Exemple : trouver lim ————
z—0 3

Ici, f(x) =sinz —z, g(z) = 2°. On a f(0) = g(0) =0, f'(z) = cosz — 1 et ¢'(z) = 3z%

.. cosz—1 . . o ., 0 s
Hélas, ——— conduit encore & une forme indéterminée « 0 »... alors on recommence avec les dérivées
T
de ces fonctions, c’est & dire —sinz et 6.
—sinx 1

On a ilg% 6~ 6 donc :

. sinx —=x 1
lim —— = ——
x—0 SL‘3 6

Vous apprendrez par la suite une méthode plus directe pour ce type de question.

7.5 Deérivées successives, dérivées partielles

e Dérivées successives

Définition 7.5.1. Soit f : I — R. Par convention : f(o) = fet:
— si f est dérivable sur I on note f M) = f sa dérivée (dérivée premiére, ou d’ordre un),
— si de plus f' est dérivable, on pose f = (f") = f7 : dérivée seconde de f (ou dérivée d’ordre
deux),
— de proche en proche, si f admet une dérivée d’ordre n € N qui est elle-méme dérivable, on pose

oD = (£
Exemple : f(z) = 23 + 22+ 1.
f'(2) = 32% + 2, f"(z) = 6z, fP(2) =6, fD(z) =0
Définition 7.5.2.
— Par convention une fonction f continue sur I est dite de classe C° sur I. On écrit f € CO(I).

— Une fonction n fois dérivable et de dérivée n-iéme continue est dite de classe C" : f € C"(I).
— Une fonction qui est de classe C" quel que soit n € N est dite de classe C*.

Exemples : les fonctions polynomes, les fonction cos, sin, exp sont de classe C*° sur R.

Le résultat suivant permet de calculer rapidement les dérivées successives d’un produit f ¢ de deux
fonctions. 11 généralise la formule bien connue : (f g)’ = f' g + f¢’. On remarquera I’analogie avec la
formule du biné6me de Newton.

Proposition 7.5.1 (Formule de Leibniz). Soient f, g : I — R des fonctions n fois dérivables sur
1. Alors le produit f g est n fois dérivables sur I et sa dérivée d’ordre n est donnée par la formule

de Leibniz : .
(Fg)™ = Z( . ) o g

k=0

Exemple :

(F9) W=D g+afDg +61"g" +4f g% + 4
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e Dérivées partielles (hors programme, complément pour la physique)

En mathématiques, en physique et dans toutes les sciences qui utilisent les mathématiques on a &
utiliser des fonctions dépendant de plusieurs variables (en physique, par exemple, le volume d'un gaz
est une fonction de la température et de la pression). Il est possible d’étudier les variations d’une telle
fonction lorsque toutes les variables sont maintenues a une valeur fixe, sauf une. Par exemple on peut
regarder comment varie le volume en fonction de la pression & température constante.

R? — R?

zy) — fly) PV

Nous allons nous restreindre au cas d’une fonction de deux variables f : { (
exemple f(z,y) = 2%y> + 222 + > + 2.

Définition 7.5.3.

On appelle premiére fonction partielle de f en (a,b) la fonction f(-,b) : { Ro— R

x — f(xz,b)
R — R
y — fla,y)

0
Si la premiére fonction partielle est dérivable, on note a—f sa dérivée. Ainsi, au point (z,y) :
x

On appelle deuxiéme fonction partielle de f en (a,b) la fonction f(a,-) : {

0 h,y) —
Ki(x’y):£i3 fz+ yf)b flay)
h£0

Si la deuxiéme fonction partielle est dérivable, on note —f sa dérivée. Ainsi, au point (x,y) :

Oy

of _ o S@y+h) - fz,y)
@(x7 y) - :}llliré h *
h£0
Sur I'exemple choisi, on a :
0
8f (z,y) = 22> + 42 + 2 (on considére y comme une constante),
x

of
9y
On peut ensuite calculer les dérivées partielles secondes par rapport aux deux variables en appliquant
le méme principe aux fonctions dérivées partielles premiéres déja calculéees. Ainsi :

(z,y) = 32°y* + 3y* (on considére x comme une constante)

92 o (8L
&EJ; (z,y) = S;;) (z,y) = 2y° + 4,
2 f 0 (W ) @

82 i
amgy(w,z/) <8 ) (z,y) = 62y,
02 f 8(%)
82f 62f

On remarque que x,y), mais dans le cas général cette égalité est soumise a

Oyox (@,y) = (%say(

certaines conditions qui sortent du cadre de ce cours.
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Chapitre 8

Intégration

8.1 Intégrale d’une fonction sur un intervalle

8.1.1 Définition de l’intégrale

On ne va pas donner une définition rigoureuse de 'intégrale d’une fonction sur un intervalle, mais un
sens précis ce cette quantité quand les fonctions sont "raisonnables" :

— Si la fonction est positive, définie sur l'intervalle (a, b), I’intégrale de f sur ’intervalle (a,b),
b

notée / f(x)dx, est I'aire comprise entre la courbe représentative de f et le segment (A, B)
a

(A(a,0), B(b,0)) dans un repére orthonormeée.
— Si la fonction est négative, définie sur U'intervalle (a, b), I’intégrale de f sur l’intervalle (a,b),

b
notée / f(x)dx est moins 'aire de la surface comprise entre la courbe représentative de f et

le segm(ént (A, B).

On observe que dans chacun des cas, on a la formule de Chasles

[ s = [ was s [ s,
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olla<c<hb.
On rend cette formule vraie pour toutes les valeurs de a, b, et c et pour toute fonction "raisonnable"

en définissant I'intégrale par
b

Définition I’intégrale de f sur ’intervalle (a,b) , notée / f(z)dz, est I’aire comprise entre
a

la courbe représentative de f et le segment (A, B) comptée positivement ol f est positive

et négativement ou f est négative.

et avec les conventions suivantes :

| s =
[ s@ar=— [ yas,

Exemple : calcul d’intégrale pour une fonction en escalier.
Soit f donnée par

1 si xel-2-1]

-1 si z€]-1,0] v e
flz) = 0 si z= - nd /// b
1 si x€]0,2] ;/:‘. k_z’
-2 si x€][2,3] (; ¢

On veut calculer / f(z) dz. On utilise la formule de Chasles :

/f dm—/ f(z dx+/ f(z d:c+/f dx+/f dx

Chacune des 1ntegrales se Calculent alors avec la définition car on connait l’aire d’un rectangle, on

3
ajoute l'aire si le rectangle est au dessus le 'axe, on la retranche s’il est en dessous : / f(z)dx =
-2

3
1-14+2-2=0, onadonc/ f(z)dx =0.
—2
Calcul d’intégrale pour une fonction continue sur [a, b|.

b
On verra plus bas comment calculer pratiquement / f(x)dx pour la plupart des fonctions usuelles.

Dans le cas général d’une fonction continue quelconqug7 on ne sait pas calculer exactement la valeur
de l'intégrale, ni en donner une formule avec des fonctions usuelles (on sait méme souvent démontrer
qu'une telle formule n’existe pas!). On utilise alors une "méthode numérique" pour en calculer une
valeur approchée. On sait par contre démontrer que ces méthodes numériques "convergent" toutes vers

B b
la mA®?me valeur. On en conclut qu’on peut calculer / f(x)dx lorsque f est une fonction continue
a

sur [a, b].

8.1.2 Fonctions continues par morceaux

Soit f : R — R une fonction. f est continue par morceaux sur lintervalle [a, b], ssi, I{xo, -+, zn},
subdivision de [a,b] (i.e. zo =a < z1 < ... < T < Tig1 < ... < zp, = b) telle que :
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f soit continue sur |z;_1, x|

f admet une limite finie a droite en ;1 pour tout 1 <i¢ <n

f admet une limite finie & gauche en x;
( On dit que f admet un nombre fini de discontinuités, toutes de premiére espéce). Pour un intervalle
quelconque I (pas forcément borné ni fermé), on dit que f est continue par morceaux sur I si f est
continue par morceaux sur [a,b] NI pour tout a < b.

6 6
Fonction continue par morceaux Fonction qui n'ejt pas| continue par morceaux

5 5

1/(x-1) pas de limite finie en 1+

4 4

3\ 3
2 2

-4 -3 -2 -1 0 1 2 3 4 5 6 -4 -3 -2 -1 “ \ 1 2 3 4 5 6
U\ J
-1 1 Iy

sin(1/x), pas de limite en 0

Notation On note f(z") et f(z7) les limites a droite et & gauche de f.
Exemples :
— Une fonction continue sur [a, b] est continue par morceaux sur [a, b].
— Les fonctions 2en escalier sont des fonctions continues par morceaux.
T si xel0,1
— @)= { sinz si z€ {1,3}
— f(x) = E(x) partie entiére est continue par morceaux sur R.

est continue par morceaux

b
Pour une fonction continue par morceaux sur [a,b], on calculera / f(x)dx en utilisant la relation de
a

Chasles

b n T;
/a f(x)dx = Z f(x)dx

i=1"%i-1

pour se ramener a des calculs d’intégrales de fonctions continues.

8.1.3 Propriétés de l’'intégrale

Soit f une fonction continue par morceaux sur un intervalle I. On adopte les conventions suivantes :

Va € 1, / f(z)dz =0,

Y(a,b) e I*, b<a /bf(:v)dz:: —/baf(l‘)dl',

on a alors pour toutes valeurs de (a,b,c) € I’ la relation de Chasles déja vue :

[ s = [ was s [ s,
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Linéarité

Soient f1 et fo continues par morceaux sur [a,b] et A € R, alors Af; + f2 est continue par morceaux

sur [a,b] et
/abAf1+f2=A/abf1+/abf2

Moyenne d’une fonction sur un ’intervalle

La moyenne d’une fonction sur 'intervalle [a, b] est la quantité

b
el ICL

C’est la valeur d’une fonction constante sur [a,b] qui a la méme intégrale que f sur [a, b].

Deux inégalités
Soient a < b et f et g deux fonctions continues par morceaux sur [a,b]. On déduit facilement du fait

b
que f > 0 sur [a, b] implique / f(x)dx > 0 que

f < gsura,b = /ab f(x)dx < /abg(x)das

et

[ @ < [

On déduit de la premiére inégalité que si f et g sont continues par morceaux sur [a, b], m = i1[r1fb] f(t),
t€la,
M = sup f(t) et si g est positive, alors
t€la,b]

m [ o< [ sy < ar [ g

En particulier avec g = 1, on obtient la ’inégalité de la moyenne

1
b—a

/bf(t)dth.

m <

et si f est continue sur [a,b], avec le théoréme des valeurs intermédiaires, on a la formule de la
moyenne : il existe ¢ € [a, b] tel que

b
fe) =5 [ s
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8.2 Primitives d’une fonction sur un intervalle

8.2.1 Définition

Soient f et F' deux fonctions définies sur le méme intervalle I. On dit que F est une primitive de f
sur I, ssi F est dérivable sur I et Vo € I, F'(z) = f(z).

Proposition

Soit f une fonction admettant sur I une primitive F. Alors G est une primitive de f sur I si et
seulement si il existe une constante C' € R telle que Vo € I, G(z) = F(x) + C

Preuve : : On suppose que Vo € I, F'(z) = f(x)
G'(z)=f(x),Vzel = (F-G)(x) =0, Vx eI
= (F' — G)(x) =Cste, Vx € I puisque [ est un intervalle.
Si G(x) = F(x)+Cste, Vz € I G est dérivable sur I et Vo € I, G'(z) = F'(x) = f(z).
|
Remarques :

— On dit que les primitives sont définies & une constante additive prés.
— Si on fixe la valeur de F' en un point x, € I, alors F' est définie de fagon unique.

Exemples :
— f(z )—O F(z)=Csur R
— f(z)=1, F(z) =2+ C sur R
ff(:c): osz, F(x) = sin(z) + ¢ sur R.
— f(x) = 2% On sait que (%) = 322,. On en déduit F(ﬂs):%x?’—kcsur R.

8.2.2 Primitives usuelles

Fonction Primitive Domaine de validité
xn—i—l
", neN R
n+1
openy-1} | 2 R ot R~
xt, pE - €
P I p+1
- In |x| R** et R™*
x
1
In |z + af | — 00, —al et | — a, +o0]
r+a
N xoz-&-l R-i-
, aeR 1 *
P a€RCY |
a®, a>0 a4 R
Ina
cos X sin R
sinz —CoS X R
1
— _oEE ke, (k+ 1)), k€Z
sm1 x sin x
T T
t 2k— 1=, 2k+1)—=[, ke Z
— ane | )2k 17, @k + )I[ ke
chx shx R
shx chx R
1
—_ th R
ch?x v
e” e’ R
! tan(z) R
arctan(x
2 +1
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8.2.3 Le théoréme fondamental de 1’analyse

On va voir la relation entre primitive et intégrale.

Théoréme Soit f une fonction continue sur un intervalle I, a € I et F(z / f(t)

alors F est une fonction définie et dérivable sur I, et Vo € I, F'(x) = f (x)

Preuve : Puisque x € I, f est continue sur [a, z| si z > a ou sur [z, a] si x < a, F est donc bien définie
1
sur I. On doit calculer }lllr% E( (z +h) — F(x)) (ou la limite A droite si 2 est la borne gauche de I,
—

ou la limite A gauche si  est la borne droite de I). La relation de Chasles permet d’écrire

F(:c—irh)—F(a:):/:Jrhf(t)dt—/jf(t)dt:/:f(t)dtJr/xth(t)dt—/axf(t)dt:/:Hlf(t)dt.

Soit € > 0, la fonction f étant continue en z, il existe § > 0 tel qu’ on a |f(t) — f(z)| < € pour tout ¢
tel que |t — x| < 0. On en déduit que pour tout h tel que |h| < J, on a, si h > 0,

[ o - sea s [ o - wa s [ e=a,

et donc On en déduit que pour tout h tel que |h| < §, on a, si h > 0,

[ e et [0 - swiase [T e=an

Mais
[ 00— s = P n) - Fa) ),

on obtient

3 (F(+ h) — F2) — (@) < e

On a montré
1
limysor 3 (F(x + ) — Fa)) = f(z).
On procéde de méme pour h < 0 car on a cette fois

x T

£ (1) = f(a)|dt < e / ¢ = elhl.

+h

[ - s < [

z+h +h

x
Exemple : si F(z) = / t3e7t dt alors F'(z) = 23"
2

b
Ce théoréme donne le moyen de calculer / f(x)dx lorsqu’on connait une primitive de f. On a en effet

la formule de base du calcul des intéagrales :

Corollaire Soit f continue sur [a,b] et F' une primitive de f sur I contenant [a,b], on a

b
/a F(z)de = F(b) — F(a).
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T

Preuve : On sait que / f(x)dx est une primitive de f sur I, on a donc F(x / f(x)dx 4+ C, la
a

formule s’en déduit.
Notations

On comprend pourquoi on note F'(z) = / f(x)dx une primitive de f (attention par soucis de praticité,
on utilise la méme lettre comme nom de variable pour la primitive et comme nom de variable pour
décrire f. Par exemple, on écrit / xdr = (1/2)x* + C.

On note F(b) — F(a) = [F]%. On a donc

Exemple :
2 1 1 2 8 1 1 23

2 _ 2 _ = _ (= I
/1x+xdx—[3x +2x}1—3+2 (3+2) 6"
3 2 3 2 3 1 12 3
/ Q;E(x)dx:/ ggE(x)dx+/ a;E(w)da::/ acdx—i—/ 2x dx = [7372} + [352}
) ) 9 1 21 2191 2

2+9 2

L’hypothése de continuité de f est importante. En effet, on a

Proposition Soient f continue par morceaux sur I = [«, 5] et a € I, 'application intégrale de f :
I —- R
xr
¢ = Flz) :/ £(t) dt
a

est continue, dérivable a droite sur [«, B[ et dérivable a gauche sur Jo, 8] et F' (z) = f(27), F' (z) =

f@™).

Preuve : : reprendre la démonstration du théoréme avec soin.

On en déduit qu’au point de discontinuité de f, F' est continue mais n’est pas dérivable.

: f(t)dt
0

f(x)

8.2.4 Calcul des primitives

Reconnaitre et reconstituer une formule de dérivation

Si F' est une primitive de f, la formule F'(x / f(t)dt s’écrit aussi F(x / F'(t)dt. La premiére

méthode et la principale, consiste donc & reconnaitre une dérivée sous le signe intégrale, pour cela, on
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apprend le tableau des primitives usuelles qu’on utilise directement, ou indirectement en remarquant
que si F' est une primitive de f, F/(u) est une primitive de f(u)u'. Par exemple :

ua+1
— Soit o # —1, une fonction du type v'u® a pour primitive T
— une fonction du type v’ e a pour primitive e*
— une fonction du type 5 \F a pour primitive f .
— une fonction du type — a pour primitive In |u].
us u us
2 . 3 1. 4,72 1 ,
e Exemples : coszsin® x dxr = gsie) =7 (u(x) = sin(z))
0 0

/dox—/ ; D + D de =[S + 1)) :%(2%—1) (u(z) = 22 + 1)

! 2241 _ 1 x24+1 1_1 2 _ .2
xe de = |—e =—(e“—e) (u(z) =2"+1)
0 2 0 2

/ tan(x)dz = —In(|cos(z)|)
T 1
/ de = 3 In(2” +1)

22 +1

Changement de variable

Théoréme
Soit f : I — R continue sur l'intervalle I, soit ¢ : [a, ] — I de classe C! sur I, alors

Remarque Attention, il ne faut pas oublier de vérifier p([a, 8]) C I.
o(x)
Preuve : Soit F' une primitive de f, on a / ft)ydt = F(p(z)) — F(o(a)). Mais F(p(z)) =

o(a)

F(p(e)¢'(z) = F(p(@)¢ (@), Flo(x)) est done une primitive de f(p(x))¢(z) et on a F(p(x)) =
Flp(t)¢ (t)dt + C. Cette formule est vraie pour tout = € I, utilisée en z = «, elle implique C' = 0,
dott le résultat.

En pratique, pour calculer / f(x)dx, on dit qu’on fait le changement de variable x = (), on "calcule

le dx" par la formule formelle do = ¢'(t)dt de telle sorte que I'expression sous l'intégrale f(x)dx
devienne f(o(t))¢'(t) dt, on calcule ensuite les bornes a et 3 telles que ¢(a) = a et ¢(B8) = b, et si «
et 8 existent et ¢([a, §]) C I, on applique la formule du théoréme.

Exemples :

1
/ V1—22de ="
0

V1 — 22 est définie sur [—1, 1]. On pose = sin(t), on a dx = cos(t)dt, V1 — z2dx = \/1 — sin?(t) cos(t)dt =
| cos(t)| cos(t)dt, sin(0) = 0, sin(w/2) = 1, sin([0,7/2]) C [-1,1]. Comme cos(t) > 0 sur [0,7/2], la
formule du changement de variable donne

1 w/2
/ V1—a22de = / cos®(t) dt =
0 0

T
T
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Intégration par parties

Théoréme b

b
Soit u et v des fonctions de C' sur [a, b], alors / w(t)' (t) dt = [u(t)v(t)]’ — / o' (t)v(t) dt.
Preuve : v'v+ uv' est continue sur [a,b]. C'est la dérivée de uv sur [a,b], d’ou

b b
[ v = [y = o), .
Exemples :
) u(z) =In(z) — u'(z)=
o I:/ rzlnzxdr =7 On pose :
1

V(x) =2 — v(z) =<z
2

N

1 2 2 1 T 1 3
I:{,z } _/, =22 |>| =2In2-1+->=2mm2— >
5% ln(m)l . 2:1:d:v n il n +7 n 1

In2 wz)=z — u(z)=1
o I:/ xe® dxr =7 On pose :
0 Viz)=€e" — wv(z)=¢"

In2

I = [ze”)? - / e dr = 2eM? — ") =22 -2+ 1=2In2 -1
0

Exemples de calculs de primitives de fractions rationnelles

On verra au deuxiéme semestre les outils qui permettent de calculer une primitive de n’importe quelle

fraction rationnelle. On se limite ici aux fractions rationnelles dont le dénominateur est de degré < 2.

Si on prend une fonction w définie sur un intervalle I et qui ne s’annule pas sur I, alors une primitive
/

u
de — est In|ul, on a donc
u

/ n dx = In(|z + a|) + C sur tout intervalle oui x + a ne s’annule pas.
r+a

2
/ #dm = In(|z? + az + b|) + C sur tout intervalle ot 2> + az + b ne s’annule pas.
z*+axr+b

Pour calculer / dx, il y a trois possibilités :

24+ ar+b

1. 22 + az + b a deux racines réelles distinctes xg et z1, on cherche alors a et 3 tels que

1 a
-

24+ar+b x—20 T—x21

et on est ramené au premier exemple.
2. 2 + az + b a une racine double z(, on a alors

|
2 +azx+b (v—x0)?

et on a
/ 1 1
—_—dr = ——+——.
224+ ax+b (x — x0)
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3. 22 + az + b n’a pas de racine réelle, on le met sous forme canonique

2 +ar+b=(z+a)?+8,

on change de variable pour se ramener & calculer / de dont une primitive est arctan(X).

Exemple
1 1 1
——do= | —————dx. 1=v2X = V2dX et ——————dx =
/x2+2x+3dm /(ac—i—l) +2d:n On pose z+ V2X,onadr = V2dX e (x+1)2+2d:n
V2 1 V2 V2
——dX dou | ————dzx X = —arctan(— 1 .
2X2 42 /:E2+2x+3 /X2+1 mc‘m(\[(ﬁ N+C

2
o / de =7 La dérivée du dénominateur est 2x 4+ 2, on écrit le numérateur z + 2 =
22 + 27 + 2

5(2x 4 2) + 1 et on remarque que la forme canonique du dénominateur est (z 4 1)? + 1. On a donc

22 197 19 ————dr = -1 20 + 2 t 1)+ C.
/x2+2x+2 2/m2+2m+2 +/(ac+1)2+1 =5 In(2” + 22 +2) + arctan(z +1) +

Exemples de calculs de primitives de polyndémes trigonométriques

Un polyndmes trigonométriques est une combinaison linéaire de produit de puissances de cos et de sin.
f(z) = 3cos?(z) sin(z) + 2sin®(x) + cos?(x) est un polynoéme trigonométrique. Certain terme s’intégre
directement, ici | 3cos®(z)sin(z)dr = —cos®(z) + C, d’autre non. La méthode générale consiste a
linéariser le polynéme en utilisant les formules trigonométriques, ou de facon plus adaptée pour les

1
cas compliqués, en utilisant les nombres complexes. Ici on sait que cos®(z) = 5(005(2@ + 1), donc

1 1
/cos2(x)dx =1 sin(2z) + 2% + C, par contre pour sin®(x), on écrit

ez‘a: o e—i:c . 1 . . . o 1
sin®(z) = ( 5; )3 = —g(e‘m +3e 4 37 4 %) = —E(Sin(3m) + 3sin(x)).
i i
1 3
On a donc /sin3(x)dx D cos(3x) + 1 cos(z) + C. On trouve

/(3 cos?(z) sin(x) + 2sin®(z) + cos®(z))dz = — cos®(x) + % cos(3z) + 2 cos(x) + i sin(2x) + %m +C.

On voit que la formule n’est pas trés satisfaisante, reste a linéariser cos®(x)!
On a compris que linéariser P(cos(z),sin(x)) consiste a transformer le polydme P(cos(z),sin(z)) en
une combinaison linéaire Z ay sin(kz) + by, cos(kzx).

k

Propriétés de parité et de périodicité

Soient @ un réel et f une fonction continue sur R :
a a
a) Si f est paire alors f(z)dx = 2/ f(x)dx
—a 0

b) Si f est impaire alors f(z)dz =0.
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c) Si f est périodique de période T alors pour tout réel a :

/aa+Tf(x)dw:/0Tf(x)dx: g

2
T
2

f(z)dx

Preuve : exercice, utiliser la relation de Chasles.
Exemple :

/ (COSQ(.T) + 1) cos(z) sin(x) dz =?. On observe que la fonction a intégrer est périodique de période
27 et impaire, donc :

/027r (0032(37) + 1) cos(x) sin(z) do = /W

- (0052(37) + 1) cos(x) sin(x) dz = 0.
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Chapitre 9

Systémes linéaires, matrices

9.1 Introduction

On va s’intéresser dans ce chapitre a la résolution de systémes d’équations dits « linéaires » dont voici
deux exemples :

r + y + z =1 1 + 12 + w3y + 14 = 1
(Sl) 2z + =z = 2 (32) 1 + T2 + 223 = 2
—-r — y + 3z = 0 ro + 3x3 + 2x4 = 0

Ce sont des systémes d’équations dont les inconnues sont x,y et z dans le premier cas, x1, x2, x3 et
x4 dans le second. Pourquoi parle t-on de systémes « linéaires » 7 Commengons par une définition :

Définition 9.1.1. Soit n € N*. On dit qu'une application F : R* _ R
1.1, . q pPp : X:(x1,902,"'7$n) — F(X)

est linéaire si elle vérifie
— VX, Y)eR"xR", F(X+4+Y)=F(X)+F(),
— VX eR" VAR, FAX)=AF(X).

Rappelons que si X = (1,29, -+ ,2,) € R" et Y = (y1,y2, - ,yn) € R" alors :
X+Y = (z1+y5,m2+y2, ypn+uyn) et AX =z, 20, -+, A1p).
Considérons alors le premier systéme, posons X = (z,y,z) € R? et
FX)=z4+y+z GX)=22r+4+2 HX)=-z—y+3z

On vérifie trés facilement que chacune des applications F, G, H : R® — R est linéaire et ceci caractérise
précisément les systémes linéaires. Chacune des lignes prise isolément est une équation linéaire.

L’ensemble des solutions de (S) est 'ensemble des triplets X = (z,y, z) qui satisfont les trois équations.
On dit que X est linconnue vectorielle dans R3.

Un systéme d’équations linéaires ne comporte pas nécessairement le méme nombre d’équations que
d’inconnues : (52) a quatre inconnues et trois équations.
2+ zy + z =1

A contrario, voici un exemple de systéme non linéaire : 9
TYz +y + 2 = 2

On rencontre des systémes linéaires dans différents domaines des mathématiques (Algébre Linéaire,
Calcul Scientifique ...) et dans de nombreuses applications ot le nombre d’équations et d’inconnues
peut atteindre plusieurs milliers : il faut donc disposer de méthodes de résolution efficaces car, a défaut,
le temps de calcul sur ordinateur pourrait devenir prohibitif.
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Le plus simple des systémes d’équations linéaires est I’équation ax = b : une équation, une inconnue.
Cette équation a :

— une et une seule solution si a # 0 : S = {b/a},

— aucune solution sia=0et b#0: 5 =0,

— une infinité de solution sia =b=0: 5 =R (ou C).

On se gardera donc de croire naivement qu’un systéme d’équations linéaires a toujours une unique
solution.

Remarque 9.1.1. Dans (S1) et (S2) on a pris soin d’écrire les inconnues dans le méme ordre et les
unes au dessus des autres. C’est une précaution indispensable pour éviter les erreurs. Ainsi le systéme

r+z4+3y=1 T + z + 3y =1 z + 3y + 2z = 1
y—z+x =28 sera écrit < x — 2z + y = 8 oubieng z + y -— =
z—r—y=3 - 4+ z — y = 3 r + y - z = -3

Deux systémes (d’équations linéaires) sont équivalents s’ils ont le méme ensemble de solutions (éven-
tuellement vide ou infini). Les deux derniers systémes écrits, par exemple, sont équivalents (et n’ont
pas de solution : pourquoi 7).

La suite du chapitre consiste & donner une méthode de résolution explicite des systémes d’équations
linéaires puis a donner les notions de base sur les matrices (déja introduites en classe terminale)
pour pouvoir établir le lien entre les systémes d’équations linéaires et les matrices. Les propriétés
des opérations sur les matrices fournissent des outils puissants pour étudier les systémes d’équations
linéaires.

9.2 Reésolution des systémes linéaires par la méthode de Gauss

Considérons le systéme suivant, dans lequel on a numéroté les lignes :

r +y + z =1 Ly
(T) 2y + z = -1 Ly
—z = 4 L3

Ce systéme est d'un type particulier qu’on appelle triangulaire supérieur. Il est trés simple de résoudre
un tel systéme et la méthode de Gauss décrit un algorithme pour transformer le systéme de départ
en un systéme triangulaire équivalent.

9.2.1 Résolution d’un systéme triangulaire supérieur (exemple)

On prend les équations de (T') a partir de la derniére et « on remonte ». C’est-a-dire qu’on calcule z,
puis y, puis x par substitution des inconnues déja calculées :

dans L3 : z = —4,
3
dansLQ:2y:—1—z:—1—|—4:3:>y:57

3 7
enﬁn,dansLl,w:I—y—z:1—§+4:§.

73
Il y a donc une unique solution : S = { (5, 2’ —4) }
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9.2.2 Méthode de Gauss

Les transformations suivantes sont utilisées systématiquement dans la méthode de Gauss pour trans-
former un systéme en un systéme triangulaire :

— changer 'ordre des équations,

— changer l'ordre des inconnues (dans toutes les équations a la fois),

— multiplier une équation par un nombre non nul,

— conserver toutes les lignes sauf une et ajouter a cette derniére ligne une combinaison des autres.

Il est facile de vérifier que ces transformations sont réversibles et donc qu’elles transforment un
systéme en un systéme équivalent.

Une fois fixé 'ordre des équations et des inconnues, pour obtenir un systéme triangulaire a partir d’'un
systéme de n lignes notées de haut en bas Ly, --- Ly, le principe général de I'algorithme de Gauss est
le suivant :

— utiliser la premiére ligne (L) pour éliminer la premiére inconnue de toutes les autres lignes,
— recommencer avec le sous-systéme formé des nouvelles lignes Lo, - - L, et avec la seconde in-
connue,

et ainsi de suite. On précise tout cela sur quelques exemples :

3z + 2y = 0 Ly

oExemplel:{x oy =1 Ly

1
On choisit comme inconnu (x,y). Pour éliminer 2 dans Lo, il faut lui soustraire ng :

3z + 2y = 0 Ly
5 1
- = =1 Lo <+ Ly ——-L
3?/ 2 2 31

1
Le codage Ly < Lo — ng signifie que la nouvelle ligne numéro 2 s’obtient, comme on vient de le
1
préciser, par I'opération Lo — §L1 sur les lignes du systéme précédent.
En pratique, on peut se contenter de noter cette étape ainsi :

3r + 2y = 0 Ly

5 1
- = =1 Lo — =L
3y 2 31

La re-numérotation des nouvelles lignes par Ly, Lo, --- est implicite, pour alléger.

1
Attention : décrire 'opération effectuée, ici Lo — ng, en face la ligne obtenue et non pas par an-

ticipation au niveau du systéme de départ (erreur fréquemment relevée dans les copies d’examen).

On a obtenu le systéme triangulaire souhaité, on procéde a la remontée :

-3 2 2
Ly donne y = = puis L; donne z = —3¥=%

on a une unique solution.
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On peut simplifier (un tout petit peu ici) le calcul en commengant par une permutation de lignes :

x -y = 1 L1+ Lo
3r + 2y =0 L2<—L1

Pour élimiter x, il suffit de soustraire a la deuxéme ligne 3 fois la premieére :

r — y =1 Ly
- 5y = 3 Lo — 314

On laisse au lecteur le soin de faire la remontée. On trouve bien str le méme résultat que précédemment.

x -+ y + =z = 3 L1
e Exemple2:¢ 2z + y — 2z = 2 Lo
—2r — y + 2z = -1 L3

On choisit (x,y, z) comme inconnue. On ne permute pas les lignes car le coefficient de x dans la premiére
ligne est 1 et les calculs seront simples.

élimination de z dans les lignes 2 et 3 :

T + y + z = 3 Ly
-y — 3z = —4 LQ — 2L1
Y + 4z = 5 L3+ 2Ly

On ne travaille plus qu’avec les deux derniéres lignes, pas de permutation nécessaire si on n’est pas
géné par le — devant le y dans la deuxiéme ligne.

élimination de y dans la ligne 3 :

r + y + z = 3 Ly
Y — 3 = 4 Ly
z = 1 L3—|—L2

Remontée :

L3 donne z =1

Lo donney=4—-3z=1
Lidonmmer=3—-—y—z=1

S:{<17171)}7

T + 2y + z = 8 Ly
e Exemple3:{ 2z 4+ y + 3z = 11 Lo
- — 3y + 2z = -7 L3
élimination de x dans les lignes 2 et 3 :
x + 2y + z =8 Ly
—3y + =z = -5 L2 < LQ — 2L1
-y + 3z = 1 Ly <+ L3+ L,

On peut poursuivre avec I'inconnue y de la ligne Ly ou encore de la ligne L3 (pour faciliter les calculs
en évitant les fractions) en commencant dans ce cas par permuter les lignes Lo et Ls.
On peut aussi, si on n’aime ni le —3 ni le —1 devant le y permuter les deux derniéres variables :

r + z + 2y = 8 Ly
z — 3y = -5 Lo
32z —y =1 Ls
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élimination de z dans la ligne 3 :

r + z + 2y = 8 Ly
z — 3y = =5 Lo
8y = 16 L3—3L2

Remontée :
L3 donne y = 2
Lo donne z = —-543y=1et L; donnex =8 — 2z — 2y = 3.

Attention : on remet les valeurs dans l'ordre (z,y, z) implicite choisi au départ (c’est 1a le danger des
permutations de variables) :

S={(3,2,1)}
r + 2y + z = 8 Ly
e Exempled: (¢ 2x + y + 3z = 11 Lo
3z + 3y + 4z = -7 Ls

élimination de x dans les lignes 2 et 3 :

Tz + 2y + z = 8 Ly
—3y + z = =5 L2 — 2L1
—3y + z = =31 L3 — 3L1
I’élimitation de y ou de z dans la derniére ligne conduit a
r + z + 2y = 8 Ly
-3y + z = =5 Lo
0 = -26 Ls— Lo

En raison de la troisiéme ligne, on est dans un cas ot il n’y a pas de solution :

S =1.
r 4+ 2y + 2z = 8 Ly
e Exemple5:¢ 2z + y + 3z = 11 Ly
3z + 3y + 4z = 19 Ls
élimination de x dans les lignes 2 et 3 :
T + 2y 4+ z = 8 Ly
-3y + z = -5 Lo — 21,4
—3y 4+ z = =5 L3 - 3L1
I’élimination de y ou de z dans la derniére ligne conduit a
z + 2y + z = 8 Ly
3y + z = -5 Lo

0 =0 L3 — Lo

La derniére ligne peut étre enlevée. Il reste deux équations pour trois inconnues : on dit que le systéme
est sous-déterminé.
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On choisit 'une des inconnues que 'on « fait passer » dans le second membre (ce choix est dicté par
la facilité des calculs ultérieurs) :

z = =543y Lo

On résout le systéme obtenu en considérant y comme un paramétre (une donnée non explicitée) .
Les inconnues x et z sont alors exprimées en fonction de y et on obtient une infinité de solutions en
choisissant arbitrairement la valeur de y :

Ly donne x =8 — 2 — 2y = 13 — 5y et on a finalement

S ={(13-5y,y,—5+3y), y € R}.

Une autre expression de I’ensemble des solutions est obtenue en choisissant z comme paramétre plutot
que y :
1
Ly donne y = §(z +5)
14 5

Ly donnex:8—z—2y:§—§z

14 5 1

S:{——fz,f z+5),2), zE]R}
(5 = 5325 +5),2)
Bien entendu ces deux descriptions correspondent au méme ensemble de solutions. Cette
fois-ci le systéme a une infinité de solutions qui dépendent d’un paramétre arbitraire (y dans la premiére
description, z dans la seconde).

Remarque 9.2.1.

1. On voit qu’il ne sert & rien de réécrire les inconnues z, y ... & chaque étape, on peut n’écrire que
les coefficients sous forme de tableau et faire évoluer ce tableau a chaque opération d’élimitation
ou de permutation. Il ne faut pas oublier d’effectuer les opérations sur les seconds membres.

2. La méthode de Gauss s’appelle parfois méthode du pivot de Gauss. Dans 'algorithme, et a
chaque étape d’élimination, le pivot est le coefficient de 'inconnue dans la ligne qui va servir a
éliminer cette méme inconnue dans les lignes suivantes : dans I'exemple 2 et dans I’élimination
de x dans les lignes 2 et 3, le pivot est le coefficient de x de la premiére ligne, c’est a dire 1,
dans I’élimitation de y dans la troisiéme ligne, le pivot est le coefficient —1 car la deuxiéme ligne
contient —x.

Pour 'implantation sur ordinateur, le choix du pivot est crucial : on choisit le plus grand coef-
ficient en valeur absolue afin de minimiser les erreurs d’arrondis et on effectue les permutations
de lignes en conséquence.

3. On verra dans les deux chapitres suivants une interprétation géométrique des systémes linéaires
& deux ou trois inconnues.

9.3 Matrices

9.3.1 Définitions

Une matrice a coefficients réels (complexes) est un tableau rectangulaire de nombres réels (ou com-
plexes). On note M,, ,(R) I'ensemble des matrices a coefficients réels comportant n lignes et p colonnes
et M € M,,,(C) 'ensemble des matrices & coefficients complexes comportant n lignes et p colonnes.

ne matrice & n lignes et p colonnes se note (a; j)1<i<n.1<j<p OU éventuellement (a; ;)1<i j<n quan
U t 1 t 1 t j)1<i<n,1<j<p tuell t (as5)1<i,j< d
p = n ou simplement (a; ;) s’il n’y a pas ambiguité. On dit que c’est une matrice de taille n x p.
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Dans cette écriture, a;; désigne le nombre qui figure en ligne ¢ (numérotation de haut en bas) et en
colonne j (de gauche a droite).

On dit que la matrice (a;j ;)1<i<n,1<j<p €st :
— carrée si n = p. Les termes de la forme a;; définissent la diagonale de la matrice. L’ensemble

des matrices carrées n x n a coefficients réels est noté simplement M,,(R), plutét que M,, »(R).

— triangulaire supérieure si elle est carrée et si tous les termes strictement sous la diagonale

sont nuls :
X X X
0 x X X
M = 0 0 x X
0O 0 ..0 x

— triangulaire inférieure si elle est carrée et si tous les coefficients au dessus de la diagonale
sont nuls.

— diagonale si elle est carrée et si tous les coefficients hors de la diagonale sont nuls :

x 0 .. 0 O
0 x .. 0 O
M = X
0O 0 ... x O
0O 0 .. 0 x
Parmi les matrices diagonales de taille n on distingue la matrice identité de taille n, notée I,

1o 1 00
dont tous les termes diagonaux sont égaux & 1. Par exemple Iy = (0 1), I3=(0 1 0
0 0 1

— nulle si tous les coefficients sont nuls. On la note 0.
— une matrice ligne, ou vecteur ligne, si elle est de taille 1 x p.

— une matrice colonne, ou vecteur colonne, si elle est de taille n x 1.
Exemples :

° n:p:Q

M= (_11 g) € Mos(R) = Ma(R)
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e vecteur ligne de taille 1 x 4 (on dit simplement de taille 4) : ( 10 -1 5 )

e vecteur colonne de taille 4 :

_ o W W

9.3.2 Transposée d’'une matrice

Définition 9.3.1. Soit A = (a; ;) une matrice de taille n x p. La matrice transposée de A, notée tA
est la matrice (b; ;) de taille p x n telle que :

Vi € [[1,]3]], Vj c [[1,n]], b@j = Qj;

On observera donc que la ligne i de A devient la colonne j de A.

-1 2 3 Y
Exemple : A = € My 3(R), A= 2 1| eMszR)
0 1 2 ’ 3 9 ’

9.3.3 Somme de deux matrices

Définition 9.3.2. Soient A(a; ;) et B = (b;;) deux matrices & coefficients réels ou complexes de
méme taille n X p. La somme, notée A+ B de ces deux matrices est la matrice (a; j 4 b; j)1<i<n, 1<j<p-

On ajoute les termes de méme position.On a immédiatement les propriétés

A+ B = B+ A (commutativité) et A+ 0= A.

e Exemple 1 :

e Exemple 2 :

1 -1 0
M=(2|,N=[0 |, M+N=|2
3 4 7

¢ Exemple 3 :
M=(1 2 3),N=(-2 0 —5), M+N=(-1 2 -2)

9.3.4 Produit d’'une matrice par un scalaire

Définition 9.3.3. Soient A = (a; ;) une matrice & coefficients réels (ou complexes) de taille n x p et
A un réel (ou un complexe). La matrice produit de A par le scalaire A est la matrice de taille n x p
ANA = ()\ ai,j).

On multiplie chaque terme de la matrice A par A. On a les propriétés suivantes, toutes trés simple &
établir :
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Proposition 9.3.1. Soient A(a; ;) et B = (b; ;) deuz matrices a coefficients réels ou complexes de
méme taille n x p, A et p des scalaires. Alors :

1A= A,
0A=0,

AMA+B)=)XNA+ B,
A+u)A=XA+uA

) Exemple:Mz(é (1) 1),)\:2, )\M:(2 2 2)

9.3.5 Produit de deux matrices

La définition que I'on va donner du produit de deux matrices ne semble pas naturelle au premier abord
(on ne fait pas les produits des termes de méme position). Elle sera éclairée par 1'usage que 1'on va en
faire et que vous en ferez en étudiant ’algébre linéaire. Ce produit est soumis & une contrainte stricte
sur les dimensions des matrices : pour pouvoir effectuer le produit, noté AB, de deux matrices
A et B, il faut que le nombre de colonnes de A soit égal au nombre de lignes de B. On
commence par un cas particulier :

e produit d’une matrice ligne par une matrice colonne :

Définition 9.3.4. Le produit d’une matrice ligne (al ag .. ap) de taille p et d’une matrice colonne

b1

b2 de taille p, dans cet ordre, est donné par :

by
b1
by

(a1 as ... ap). =ai b1+a2b2+....+apbp.

by

Il s’agit donc d’un scalaire (un réel ou un complexe), que 'on peut voir comme une matrice de taille
1 x 1 (sans les parenthéses).

Exemples :
(1 3) T2) S 1(-2) £34=10
4 )
-3
(1 =2 5).[ 4 ) =1(-3)+(-2)4+50=—1L
0
-3
Par contre le produit (1 3) | 4 n’est pas défini.
0

e cas général :

Définition 9.3.5. Soient A = (a;;) une matrice de taille n x p et B = (b; ;) une matrice de taille
p % q. Le produit AB de ces matrices est la matrice C' = (¢; ;) de taille n x ¢ dont le terme général ¢; ;
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est donné par le produit de la iéme ligne de A et de la jéme colonne de B, c’est & dire :
p
Vi € [[1,77,]], Vj c [[1,(]]], Cij = Z Qi k bk,j~
k=1

Deux matrices A € M, , et B € M), , donnent donc une troisi¢éme matrice C' = AB € M,, 4

nXxXp-pXxXq—nXxXyqg
—_

Exemple :

-3 -1 1
2 11 -3 -1 4
A—<3 1 0>,B— ? (1) 1 ,mn=2,p=q=3 C’-AB-(_7 _3 4>

Le produit BA n’est pas défini : B € M3 3 et A € M 3. Le nombre de colonnes de B est différent du
nombre de lignes de A.

Proposition 9.3.2. Soient A, B, C des matrices a coefficients réels ou complexes et X € R (ou C).
Dans tous les cas ot les dimensions des matrices rendent possibles les opérations on a :

A(BC) = (AB)C (associativité),

AB+C)=A.B+ A.C et (A+ B).C = A.C + B.C (distributivité par rapport a l’addition),
si A€ My alors Ald, = Id,.A = A,

(M).B = A.(AB) = A\(A.B).

Vous pouvez démontrer toutes ces propriétés en exercice.

Attention : le produit des matrices n’est pas commutatif : méme si les produits AB et BA existent
on n’a pas toujours AB = BA. C’est évident si les matrices ne sont pas carrées : si A est une matrice
n X p et B une matrice p x n, AB est une matrice n X n tandis que B.A est une matrice p X p, mais c’est
en génémal faux aussi si les matrices sont carrées. Le premier exemple qui suit illustre cette situation.

Autres exemples de produits :

2 2 1 3 0 0 5 5
A_<1 1),B—<_1 _3> donnentAB—(O 0) etBA—(_5 _5>

(1 2 2 (7 0 3 42 (7 14
A_<3 _1>,A _A><A_<0 7>,A — A xA_(21 _7>

0 1 9 0 0
=000}
1 00 z T
Is=101 0|,B=|y |donneIlsB=|y | =B
0 0 1 z z
1 00 a b c a b ¢
Is=10 1 0|,B=|d e f|]donmmelsB=|d e f |=B.
0 01 g h i g h i

Produit matrice-vecteur : Il découle de ce qui précéde que le produit d’une matrice n x n par
un vecteur colonne de dimension n est un vecteur colonne de dimension n tandis que le produit d’'un
vecteur ligne de dimension n par une matrice n X n est un vecteur ligne de dimension n.
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Exemple :

b cC 1 a+2()+3c
e f 2 | = d+2e+3f
h i 3 g+2h+ 3i

o

— (a—|—2d—|—39 b+ 2e+ 3h c+2f+3i)

~

(1 2 3)

S0 S Qo9

Q@ Q.
.
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9.3.6 Matrices inversibles

Définition 9.3.6. Une matrice carrée A € M, (R) est inversible, s’il existe une matrice carrée B €
M, (R) telle que AB = BA = I,,. B s’appelle alors la matrice inverse de A et est notée B = AL,

On a la méme définition en remplagant R par C.

On admet la proposition suivante :
Proposition 9.3.3. A € M,, est inversible si et seulement si AB € M, telle que AB = I,

Remarquons juste que s'’il existe B € M,, et C' € M,, telles que AB = I, et CA = I, alors B = C.
En effet AB=1,= C(AB)=CI,=C= (CA) B=C=1,B=C=B=C.

¢ Exemple :

A= <1 2)) B = (_31 _12) On vérifie que AB = BA = (é (1)) — I,, donc A est inversible et

. (3 =2
o= D)

Remarque 9.3.1. Toute matrice carrée n’est pas inversible. Il est d’abord nécessaire que la matrice
soit une matrice carrée, mais cela ne suffit pas. En effet, s’il existe un vecteur colonne non nul X
tel que A.X = 0, A ne peut pas étre inversible, sinon on aurait A~.(4X) = 0 et avec la propriété
d’associativité on obtient (A71.A).X = 0 et donc I,X = X = 0 : contradiction. Par exemple, la

1
> n’est pas inversible : prendre X = < )

-1 1

matrice 1
1

9.4 Matrices et systémes d’équations linéaires

9.4.1 Ecriture matricielle d’un systéme linéaire

Tout systéme d’équations linéaires comportant n équations portant sur p inconnues peut s’écrire AX =
B ot X est un vecteur colonne de dimension p constitué des inconnues, B est le vecteur colonne
de dimension n constitué des seconds membres et A une matrice n X p constituée des coefficients
du systéme. C’est notamment pour avoir cette propriété qu’on a introduit le produit de
matrice.

z + 2y =1

r — y = -1

On pose X = m , B= 1 . On a alors A = b2 ,en effet AX = T2y , donc
Y —1 1 -1 T —y

()<= AX =8B

e Exemple 1 : (S) {

r 4+ 2y + 2= 0

o Exemple2:(5)¢ 2z + y — z= 1
T -z = 2
x 0 1 2 1
Avec X =y |,B=|1]etA=(2 1 -1 )ona(S)<=AX=8
z 2 1 0 -1
r + 2y = a
e Exemple3:(S)q 2x + y + z = b
-r + ¥y = c

128



x 1
Avec X =y |,B=|b |et A= 2 ona (S) <= AX = B.
z

-1

— =N
o = O

On énonce maintenant le résultat fondamental :

Proposition 9.4.1. Un systéme d’équations linéaires AX = B & n équations et n inconnues admet
une et une seule solution pour toute donnée B si et seulement st A est une matrice inversible.

Notez que A est une matrice carrée n x n. La preuve utilise le résultat suivant :

Lemme 9.4.1. Si C est une matrice inversible alors

AX = B & (CA)X = OB,

La multiplication & gauche par une matrice inversible transforme donc automatiquement un systéme
d’équations linéaires en un systéme équivalent. La méthode de Gauss revient & chaque étape a cette
opération de multiplication a gauche par une matrice convenable que vous pouvez chercher.

Preuve du lemme : 'implication de la gauche vers la droite s’obtient en multipliant par C, on a
donc C(AX) = CB, l'associativité donne alors (CA)X = B. L’implication de la droite vers la gauche
s’obtient en multipliant par C™!, on obtient C~*((CA)X) = C~*(CB) et en utilisant I'associativité, on
obtient C~1(C(AX)) = (C71.C).B = B et de nouveau I'ssociativité (C~'C)(AX) = B soit AX = B.

Preuve de la proposition 9.4.1 : Si A est inversible, on peut prendre C' = A~! dans la proposition
précédente, on obtient

AX =B+ X =A"1B,

ce qui démontre 'existence et I'unicité de la solution.

Réciproquement, si le systéme d’équations linéaires AX = B admet une solution pour toute donnée
B, alors on peut résoudre les systémes linéaires AX; = F; ol F; est le vecteur colonne ne comportant
que des 0 a l'exception d” un 1 sur la iéme ligne. La matrice C' = (X;...X,,) dont les colonnes sont les
X; vérifle AC = I,,, A est donc inversible. n

9.4.2 Meéthode pratique de calcul de ’inverse d’une matrice

On écrit un systéme de matrice A avec un second membre B quelconque. Par exemple si

111 a
A=1[1 0 1] (voir 'exemple 2. ci-dessous) on prend B = | b | et on résout le systéme par la
0 1 1 c

méthode de Gauss (mais toute autre méthode est recevable). Si la matrice est inversible, et seulement
dans ce cas, la solution dépendra des coefficients de B et pourra s’écrire sous la forme X = M B ou M
est une matrice de réels. Comme on a aussi X = A~'B et que B est quelconque on peut en déduire
que A7t = M.

Ce dernier point se justifie ainsi : en choisissant B ne contenant que des zéros sauf a la ligne ¢, I’égalité
M B = A7 B donne I'égalité des €€ colonnes de M et de AL, En faisant varier i on obtient I’égalité
des deux matrices.

On précise la méthode sur trois exemples :
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e Exemplel: A= <1 _11)

. x . a
On prend une matrice inconnue X = ( ) et une matrice second membre B = ( >

Y b
On résout le systéme (5) Tty =
M r — y = b
( x 1a + 1b
r + y = a Ly 2r = a+b L1+L2) = 5 P
(S){x—y:b L2<:>{2y:a—b L Ly = _i _7b<:>
Yy = =a
2 2
11 L.
(g) = i 21>( :M<> Finalement on obtient A~ = M = i _21
2 2 2 2
1 1 1
e Exemple2:A=(1 0 1
01 1
T a
Onprend X =y |et B=| b |].
z c
r + y + z = a 14 r + Yy + z = a 14
AX:B<:>(S) x + z = b Ly «— Y = a-—20> L1 — Lo
y + z = ¢ Ls y + z = ¢ L3

on a un systéme triangulaire en permutant les deux derniéres lignes et on effectue la remontée :
y=a—>
z=c—y=—a+b+c
r=a—y—z=a—a+b+a—-b—c=a—c

En respectant ’ordre des variable fixé par le vecteur X :

r = a - c T 1 0 -1 a 1 0 -1
y = a — b |y |= 1 -1 0 b | donc A7 = 1 -1 0
z = —a + b + z -1 1 1 -1 1 1
1 1 1
e Exemple3: A=(1 -1 2
2 0 3
Avec X = y etB()
r + y + z = a 14
AX=B=S){ z — y + 22 = b Lo
2x + 3z = ¢ Lj
r + vy + z = a Ll
<~ —2y + 2z = b—a Lo — 14
-2y + 2z = c—2a Ls—214
T 4+ vy + 2z = a L4
— -2y + z = b—a Lo
0 = —a—b+c L3—L2

On trouve que le systéme n’a de solution que si —a — b+ ¢ = 0, il n’a donc pas toujours de solution :
la matrice A n’est pas inversible.
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9.5 Matrices et systémes 2 x 2

Dans le cas particulier des systémes 2 x 2 on se propose de donner un critére d’existence d’'une unique
solution et, dans ce cas, de donner une formule générale de résolution. On obtient alors un critére
d’inversibilité et une formule d’inversion pour les matrices 2 x 2.

Considérons le systéme

axr+by=u L
(S){ cx+dy=v Lo

a b

de matrice associée A = ( d)' On a les implications suivantes :
c

act +bcy =cu cly
car +ady = av alLs N { (ad —bc)r =du—bv Lz — Ly
adx + bdy = du dl (ad —be)y = —cu+av Lo — Ly
bex 4+ bdy = bv  bLo

(5) =

On ne peut bien str poursuivre le calcul que si ad — be # 0.

b

d> d’ordre deux le réel noté

Définition 9.5.1. On appelle déterminant d’une matrice carrée A = (Z

ou det (A), donné par « le produit en croix » : = ad — be.

a b
e d

a b
c d
Remarque 9.5.1. On obtient immédiatement que det A = det °A.

Il convient de savoir interpréter la nullité d’un déterminant (voir aussi le chapitre 10) :

Proposition 9.5.1. Soit A = (Ccl Z . Alors det A = 0 st et seulement si les lignes (a,b) et (¢,d) sont

. . . b .
proportionnelles, ou encore si et seulement si les colonnes (z) et (d) sont proportionnelles.

Preuve : supposons les lignes proportionnelles. Si (a,b) = (0,0) le déterminant est clairement nul,
sinon il existe un réel k tel que ¢ = ka et d = kb, alors det A = ad — bc = akb — bka = 0.
Réciproquement supposons que ad — be = 0. Si (a,b) = (0,0) on a fini, sinon on a par exemple a # 0 :
on pose alors k = 2 de sorte que ¢ = ka. Mais alors ad —bc = 0 = d = b = kb et les lignes sont

a
proportionnelles.

Le raisonnement est analogue avec les colonnes mais on peut aussi utiliser le cas des lignes et la
remarque 9.5.1. |

Revenons a la résolution du systéme (.5) :
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Proposition 9.5.2.
— Sidet A =0 avec a, b, ¢, d tous nuls, le systeme (S) admet des solutions si et seulement si
w=uv=0 et dans ce cas Uensemble des solutions est RZ.
— Sidet A =0 mais a, b, ¢, d non tous nuls, le systeme admet des solutions si et seulement si
(a,b,u) et (c,d,v) sont proportionnels. Dans ce cas, si par exemple a # 0 on a (S) <= L; :

— bt
l’ensemble des solutions est {(UT,t) it e R}.

— Sidet A #£ 0 le systéme admet une unique solution donnée par les formules de Cramer :

u b a u
v d c v
pr— 3 p— 9.1
. a b 4 a b (0-1)
c d c d

Pour se souvenir de ces formules on notera que pour le numérateur de x, premiére inconnue, on
remplace la premiére colonne du déterminant de A par la colonne du second membre tandis que pour
le numérateur de y, deuxiéme inconnue, on remplace la deuxiéme colonne du déterminant de A par la
colonne du second membre.

Preuve : le premier cas est immédiat. Dans le second cas on a par exemple a # 0 et alors, comme on
I’a vu dans la preuve de la proposition 9.5.2, il existe un réel k tel que ¢ = ka et d = kb. Si v # ku le
systéme est clairement incompatible et S = (), sinon (S) <= L; et la suite est classique : on donne a y
une valeur arbitraire ¢ et on en déduit x. Enfin si det A # 0 on termine les calculs amorcés plus haut :
on obtient la seule solution possible et on vérifie qu’elle convient. Il reste & interpréter les numérateurs
comme des déterminants. [

Réécrivons les formules de Cramer sous la forme suivante :

1
x = detA(du—bv)
= g (eutav)
y = oA (Ceutav

. zy 1 d —=b U 1 d —=b
On a prouvé que (y)_detA<—C a )<U>,etd0ncA _detA<—C a )

En résumé :

Proposition 9.5.3. Une matrice A = est inversible si et seulement si det A # 0 et dans ce

d
cas son inverse s’obtient par la formule :

1 d —b
A ~ det A —c a (9-2)

1
Tt A s’obtient & partir de A en échangeant
e
les termes de la diagonale (a et d) et en changeant les autres de signe.

Remarque 9.5.2. On notera que la matrice en facteur de
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Chapitre 10

Géométrie élémentaire du plan

Objectifs : dans le contexte de la géométrie plane étudiée au lycée, sans construction théorique
préliminaire, donner la maitise de quelques outils indispensables et de leurs applications : produit
scalaire, déterminant, calculs d’angles, de distances et d’aires.

10.1 Contexte général et rappels

On s’assurera que toutes les notions abordées dans cette section sont effectivement connues.

10.1.1 Contexte

La notion de plan (on dit aussi plan affine), conformément a ce qui se pratique dans I’enseignement
secondaire, est considérée ici comme une donnée, largement basée sur 'intuition et ’expérience sensible.
Les objets de base sont les points et les droites pour lesquelles on a les notions de parallélisme et
d’orthogonalité.

Le plan, noté ici P, est muni d’une distance. La notion générale de distance est celle-ci :

Définition 10.1.1. Une distance sur un ensemble F est une application d : E x F — R qui vérifie :
1. V(A,B) € E?, d(A,B) =0 <= A =B,
2. Y(A,B) € E? d(A, B) = d(B, A) (symétrie),
3. V(A,B,0) € B3, d(A,C) < d(A, B) + d(B, C) (inégalité triangulaire).

La distance que vous connaissez, avec la notation usuelle d(A, B) = AB, vérifie bien siir ces propriétés

mais aussi le célebre théoréme de Pythagore (et sa réciproque), qui n’en est absolument pas une
conséquence :

Les droites (AB) et (BC) sont othogonales si et seulement si AB* + BC* = AC®.

Le plan P muni de cette distance, appelée distance euclidienne, porte le nom de plan (affine) euclidien.

10.1.2 Vecteurs et droites du plan

Un couple (A, B) de points s’appelle un bipoint. Deux bipoints (A, B) et (C, D) sont équipollents si
ABDC est un parallélogramme (i.e. les cotés opposés sont paralléles ou AD et BC' se croisent en leur
milieu). On écrit (A, B) ~ (C, D).

L’ensemble de tous les bipoints équipollents & un bipoint (A, B) définit un objet mathématique ﬁ
tel que (A4, B) ~ (C, D) <— AB = CD. On appelle vecteur nul, et on note T le vecteur AA ou A est
un point quelconque.

Par une simple construction de parallélogramme on établit que :
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Proposition 10.1.1. Un vecteur U et un point O étant donnés, il existe un unique point M tel que
OM =7

FIGURE 10.1 — Bipoints et vecteurs

Cette propriété est a la base de la notion de translation et permet de définir ’addition vectorielle.

L’ensemble des vecteurs du plan P, appelé plan vectoriel, sera noté P.
Si (A,B) ~ (C, D), alors AB = CD ce qui justifie la définition suivante :

Définition 10.1.2. On appelle norme d’un vecteur u = AB le réel positif || @ ||= AB.
Un vecteur de norme 1 est dit unitaire ou normé.

Un vecteur non nul o = 1@ est caractérisé par :
— sa direction : la droite (AB),
— son sens : de A vers B, ce qu’exprime la donnée du couple (A, B), qui est distinct de (B, A),
— sa norme.

Définition 10.1.3. Deux vecteurs @ et ¥ non nuls sont dits colinéaires s’ils ont méme direction. Le
vecteur nul est colinéaire & tous les autres. On écrit i // 7.

On peut alors établir facilement le résultat suivant :

Proposition 10.1.2 (et définitions). Soient A € P et W un vecteur non nul.

—
o L’ensemble des points M € P tels que AM et U soient colinéaires est une droite (affine).
Cette droite est notée D(A, 7), on dit que c’est la droite passant par A et dirigée par .

B désigne ’ensemble des vecteurs colinéaires a 7, on Uappelle droite vectorielle engendrée par x ou
ensemble des vecteurs de la droite D. On écrit D = Vect(W).

e
o [L’ensemble des points M € P tels que AM et U soient colinéaires et de méme sens s’appelle la
demi-droite (affine) d’origine A dirigée par .

La somme de deux vecteurs est définie de facon a satisfaire la relation de Chasles ﬁ + B? = 1@ .
Le produit d’un vecteur par un scalaire (i.e. un nombre réel) est défini en utilisant la caractérisation
ci-dessous :

Définition 10.1.4. Soient A € R et @ un vecteur, alors AU est le vecteur de méme direction que 7,
de méme sens que @ si A > 0, de sens contraire si A < 0 et de norme || AU ||= A || & ||.

(—=1) W est noté —/.

On a alors :
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Proposition 10.1.3. Deux vecteurs U et W sont colinéaires si et seulement si l'une au moins des
propri€tés suivantes est réalisée :

— INER, VU =\U
— JpeR, U =pv

Si U # T alors Vect(W) = {0 € B; INER, ¥ =AU}

Preuve : la condition suffisante (si A ou p existe, alors ...) est immédiate. Montrons qu’elle est
nécessaire : sUpposons U et U colinéaires. Si @ = 0 alors on peut écrire u =07 (1 = 0 convient),

17|

sinon on vérifie que T =c H l U avec £ = 1 si les vecteurs sont de méme sens et £ = —1 sinon. On

A}
d

Notons que si U et U sont colinéaires et non nuls, les deux propriétés sont satisfaites et ceci permet
de justifier le dernier point (droite vectorielle engendrée par 7) [

peut donc prendre A = ¢

Un résultat simple mais utile :

Proposition 10.1.4. Soit U un vecteur non nul. Il existe exactement deux vecteurs unitaires coli-

néaires a 7, a 5av0ir 71 = H I de méme sens que 7, et 72 = — T I de sens contraire.

—
—
U, u
e e e e o
e—— o
—
U2

FIGURE 10.2 — Vecteurs unitaires colinéaires a un vecteur donné

Compte tenu des propriétés d’'une distance et des définitions des opérations vectorielles on a :

Proposition 10.1.5. La norme vecto_r)z’elle vérifie :
VR e, | T =0T =0,

— Y@, ePL T+ TN+ T,
— VU e P,YAER, | AT ||= |\ || ¢ ||-

On établira également a titre d’exercice (trés simple) que :

Proposition 10.1.6.
VAER VT €P, AT =0<=A=0o0utd =0.

Listons les propriétés usuelles des deux opérations précédemment définies :
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Proposition 10.1.7. Soient U et U deux vecteurs du plan, \ et p deux réels, alors :

U+7 =7+,

U+ (V+d)=W+7)+,
T+ 0 =1,
T+ (-0)=10,

Ap). W = \(p. ),
A4 p). 0 =20 + p.d,
MU +7) =AU + N7,
1.7 =1.

L’ensemble de ces propriétés font de ? muni des opérations « somme » et « produit par un réel » un
espace vectoriel sur le corps R des nombres réels. La notion générale d’espace vectoriel sera étudiée
ultérieurement dans les cours d’algébre linéaire.

Notons que la propriété d’associativité @ + (U + @) = (¥ + ¢) + @ permet de donner un sens &
expression @ + ¥ + W qui est égale, par définition, indifféeremment a o + (7 + ?) ou (7 + 7) + .

10.1.3 Repéres cartésiens, bases

B
Définition 10.1.5. Un repére cartésien du plan affine P est un triplet (O, ¢, j ) ou O est un point,

— =
appelé origine du repére et (7, j ) un couple de deux vecteurs non colinéaires, appelé base du plan

vectoriel P.

L’intérét de cette notion réside dans le résultat suivant et les propriétés qui suivent. Ces propriétés
permettent de ramener des questions de géométrie & des calculs sur des couples de réels ou sur des
nombres complexes (voir la section facultative 10.6).

Proposition 10.1.8. Soit (O, i, j ) un repére cartésien du plan affine. Alors :
: 7 o : , vy B
(a) Pour tout point M € P il existe un unique couple de réels (x,y) tel que OM =x i +y j .
. . . . - -
(b) Pour tout vecteur U e B il existe un unique couple de réels (x,y) tel que U=xi+yj.

%

et @ € D(0, Q

tel que (O, P, M, Q) soit un parallélogramme. On a existence de réels x et y tels que OP = z i

et OQ = yj (cf. propositions 10.1.2 et 10.1.3) et, par définition de I’addition vectorielle : OM =
%

OP +0@Q = xi +yj. Ceci établit 'existence pour (a) et donc aussi pour (b) en raison de la
proposition 10.1.1.

_>
Preuve : soit M € P, il existe un unique couple de points (P, Q) avec P € D(0, i)

Pour établir I'unicité, on suppose qu’il existe deux couples (x,y) et (z’,4) pour un méme point M.
. . e _> K /_.> /_} . N .
On en déduit OM =2zi¢ +yj =2 ¢ +y j et donc, en appliquant les régles du calcul vectoriel
/
Yy —Yy—

— — —
(x—2)i = —vy)j.Siaz# 2, on multiplie par el obtient i = ey Comme les

— — ., , . . / A
vecteurs ¢ et j ne sont pas colinéaires on a nécessairement aussi y = y'. La méme preuve vaut pour

(). "
-
i,

),

Définition 10.1.6. Le couple (z,y) s’appelle les coordonnées du point M dans le repére (O,

)

ou les coordonnées du vecteur @ dans la base (i, j ) (selon le cas).
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Notations : le repére étant choisi, on écrira M (z,y) pour exprimer que (z,y) est le couple de coordon-
nées de M dans ce repére. On écrira v ( z pour exprimer que (z,y) est le couple de coordonnées

de @ dans la base correspondante.

On peut aussi noter 7(:6, y) mais on préférera la notation en colonne pour rappeler les vecteurs colonnes
du chapitre 9.

On rappelle le lien entre les opérations vectorielles précédemment définies et les coordonnées, de preuve
immeédiate.

?a 7 ﬁﬂU@e sotent 7(33 ), 7( y") deuz vecteurs du plan et
A un réel. On a alors (7 + 7 (x + x) et ( (i;)

Proposition 10.1.9. Dans une base

Remarque 10.1.1.

— Les coordonnées dépendent évidemment du repére. On n’abordera pas dans cette partie du cours
les questions liées aux changements de repéres.

— La bijection de P (ou P) qui & un point (ou un vecteur) associe le couple (z,y) de ses coor-
données, ainsi que la maniére dont se correspondent les opérations d’addition et de produit par
un réel (proposition précédente) permettent « d’identifier » cet ensemble a R?. Ceci sera précisé
dans un cours d’algébre ultérieur avec la notion d’isomorphisme d’espaces vectoriels.

10.1.4 Quelques rappels sur les angles
Il faut distinguer angle géométrique (ou écart angulaire) et angle orienté.

Angle géométrique : étant donnés deux vecteurs W et ¥ non nuls, on leur associe les demi-droites
A et A’ d’origine arbitraire 0 qu’ils dirigent. Ces demi-droites interceptent un arc AA’ sur le cercle de
centre 0 et de rayon 1 noté C(O, 1) (cf. Figure 10.3).

Définition 10.1.7. La mesure de 'angle géométrique AOA! ; ou écart angulaire des demi droites A et
A, ou encore écart angulaire des vecteurs U et U est la longueur de I'arc AA’ correspondant au plus
court chemin de A vers A’ sur le cercle. C’est un réel de [0, 1] noté (7, 7) ou (A, AV).

Remarque 10.1.2. Il s’agit de la longueur du plus court chemin de A vers A’ sur le cercle C(O,1).
Cette mesure d’'un angle par une longueur explique le caractére « naturel » du radian comme unité
d’angle. Si I'unité choisie est le degré, on obtient des réels de I'intervalle [0, 180]. C’est la mesure d’angle
que fournit le rapporteur.

Angle orienté : un angle orienté de vecteurs est défini par la donnée d’un couple (ﬁ, 7) de vecteurs
non nuls. Les vecteurs @ et o (ou les demi droites A et A’) définissent donc deux angles orientés
correspondant aux couples (W, V) et (¥, ).

La mesure d’un angle orienté nécessite d’avoir défini (arbitrairement) une orientation du plan, ce que
nous identifierons ici au choix d’un sens de parcours sur les cercles, dit sens direct. Il y a un choix usuel
(voir la figure 10.3).

Définition 10.1.8. La mesure principale de l'angle orienté (7, 7) est le réel oo obtenu en affectant
I’écart angulaire de ces vecteurs du signe + si le plus court chemin de A vers A’ correspond au sens
direct, du signe — sinon.

On appelle plus @né\ralemen‘c mesure de l'angle orie/ng (7, 7) tout réel de la forme a + 2km avec
k € Z. On écrit (W, V) = a[27] et on lit « Pangle (W, V) a pour mesure o modulo 27 ».
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A/

—~

(@,7) = L(AA)) =

FIGURE 10.3 — Angles géométriques et angles orientés de vecteurs

Remarque 10.1.3.

— Deux mesures d’'un méme angle orienté de vecteurs différent donc d’un réel de la forme 2k7 : le
trajet de A vers A" sur le cercle C(A, 1) peut étre effectué avec un nombre de tours supplémen-
taires et un sens arbitraires. Seuls comptent les points de départ et d’arrivée, dans cet ordre.
Dans la notation, le [27] est omis s'il n’y a pas d’ambiguité.

— Si un angle orienté de vecteurs a pour mesure « [27], alors un changement d’orientation change
cette mesure en —a [27].

— Si (¥, V) = a alors (ﬁ) = a[27] ou (U, V) = —a[27] et dans les deux cas on a

—

cosa = cos(U, V), sina= ’sin(ﬂ)’.

L’addition des angles orientés est définie de fagon & satisfaire la relation de Chasles, on I’écrit ici avec
les mesures. Pour trois vecteurs non nuls @, ¥ et @ du plan :

On retiendra également les propriétés suivantes, que nous énongons sans démonstration :

Proposition 10.1.10. - -
(Z,d)=0[2x], (d,-)=nr[2n],
(. 7)) =~(7.7) [2n),
VAS 0, ((AD), )= (T, 7)[2n],
VA<0, (W), 7)= (W, 7)+x[2n).




Proposition 10.1.11 (Vecteurs orthogonaux, vecteurs colinéaires).
Soient U et U deuz vecteurs non nuls du plan. Alors :

7r
D) [7].

™
(On exprime ainsi que les mesures de cet angle orienté sont de la forme 5 + km avec k € 7).

1. W et U sont orthogonauz si et seulement si (4, 7)

2. Wet U sont colinéaires si et seulement si (U, V) = 0[x].
(On exprime ainsi que les mesures de cet angle orienté sont de la forme km avec k € 7).

Définition 10.1.9. Une base (i, j) du plan vectoriel B est orthonormale si ¢ et j sont

> =, 7
orthogonaux et de méme norme 1. Elle est orthonormale directe si de plus (i, j) = 5 [27].
- = - =
Un repére cartésien (O, i, j )duplan P est orthonormal (resp. orthonormal direct) sila base (¢, j)
est orthonormale (resp. orthonormale directe).

)

On déduit du théoréme de Pythagore le calcul de la norme dans une base orthonormale :

Proposition 10.1.12. Dans une base orthonormale, soit 0 (z), on a

I = Va? + 42

Nous terminons cette section par quelques propriétés usuelles en lien avec les angles orientés et les
coordonnées :

- — . .
Proposition 10.1.13. Soit (i, j ) une base directe du plan vectoriel 3 Un vecteur W non nul

. x .
a pour coordonnées données par :
Yy

—

%
e=| | cose, y=||| sina aveca=(7,u)2n]

——
Preuwe : il suffit de remarquer que le point M du cercle C(0, 1) tel que OM = Al a des coordonnées

(cos a, sin ) par définition des fonction cos et sin. "
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FIGURE 10.4 — Vecteurs définis par une norme et un angle orienté

Proposition 10.1.14. Soit (?, 7) une base directe du plan vectoriel B et soit U (Z un vecteur
non nul. Il existe exactement deux vecteurs orthogonaux a U et de méme norme que

1. le vecteur U, (_ab> qui est directement orthogonal & 1, i.e. (7,u1) = —}—g [27],

2. le vecteur Uy (_ba> tel que (ﬁ) = —g [27].
Preuve : les vecteurs cherchés sont les vecteurs o qui sont tels que || ¥ ||=|| @ || et

—

(ﬂ) = :l:g[ZW]. Posons a = (7,7) [27], de sorte que a =|| @ || cosa et b =|| ¥ || sinc

—

(proposition10.1.13). Gréace a la relation de Chasles (_z>, ) = (?, )+ (d, ) on obtient donc les
deux vecteurs ¥ = 71 ot U = 72 tels que :

| & || cos(a+m/2) = —b | & | cos(aw—m/2) =D
) < | o || sin(e+7/2) = a ) et Uy <|| U || sin(o —7/2) = —a)

FIGURE 10.5 — Vecteurs orthogonauz & un vecteur donné et de méme norme
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10.2 Produit scalaire et déterminant

Ce sont des opérations qui associent & tout couple de vecteurs du plan un scalaire. Ce sont des outils
essentiels en géométrie comme on le verra dans toute la suite du chapitre : parallélisme, orthogonalité,
distances et aires ...

10.2.1 Définitions du produit scalaire et du déterminant

Définition 10.2.1. Le produit scalaire euclidien est une application B X B — R qui associe & un
couple (7, 7) de vecteurs du plan un réel noté U -V tel que :

:{0 - siﬁzﬁou?zﬁ,
| ||| || cos(&,?) sinon.

On a immeédiatement :

Proposition 10.2.1 (Inégalité de Cauchy-Schwarz).
(@, ) e P x P, [T- T < TN

et I’égalité a lieu si et seulement si U et U sont colinéaires.

Définition 10.2.2. Le déterminant dans le plan orienté est une application 3 X 8 — R qui associe
a un couple (7, 7) de vecteurs du plan un réel noté det (7, 7) tel que :

0 si W = ﬁ ou v = 6>,
et (7, 7) = { 12 ||| ¥ || sin(@,7) sinon.

Remarque 10.2.1.
— Cﬁiéﬁnitions mettent a part les cas ot I'un des vecteurs au moins est nul car alors ’angle
(7, 7) n’est pas défini.
— La définition du produit scalaire ne suppose pas d’orientation du plan car la fonction cosinus
est paire. Par contre un changement d’orientation change le signe du déterminant car
la fonction sinus est impaire (cf. la remarque 10.1.3).

— Le cas particulier 7/ = o est intéressant car (o, v') = 0[27] et ainsi :

w-d =7 |? et det(W,ud)=0.

Le produit scalaire U - W est aussi appelé carré scalaire de U et notée W2 :

w?=| |

— Comme (ﬁ) = —(ﬁ) [27], on a :
UV =7 et det(V,U)=—det (U, V).

On parlera donc de produit scalaire de deux vecteurs (sans préciser I'ordre) mais toujours du
déterminant d’un couple de vecteurs.
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10.2.2 Premiéres applications en géométrie

Une conséquence simple des définitions :

Proposition 10.2.2. Soient U et U deux vecteurs du plan. Alors :
— U et U sont orthogonauz si et seulement si UV =0,
— W et U sont colinéaires si et seulement si det (W, 7) =0

Preuve : il suffit d’utiliser la proposition 10.1.11 et les lignes trigonométriques usuelles. L]

Proposition 10.2.3. Soient A, B et C trois points du plan. L’aire du triangle ABC est donnée

par :

A(ABC) = % [det (AB, 4C)|

Preuve : si les vecteurs E et ﬁ sont colinéaires, c’est & dire si le triangle ABC' est applati, le
résultat est immédiat car les deux membres sont nuls. Sinon, soient H le pied de la hauteur issue de

— 1
C et a la mesure de 'angle géométrique BAC' : on a A(ABC) = 3 AB x CH,or CH = AC sina et

sina = ‘sin(ﬁ,@)‘ (cf. la remarque 10.1.3) d’ou le résultat. "

A(ABC)

FIGURE 10.6 — Déterminant et aire d’un triangle

10.2.3 Expressions dans un repére orthonormal direct

Les bases orthonormales sont adaptées au calcul du produit scalaire, du déterminant et aux applications
correspondantes en raison des deux propositions suivantes :

= =
Proposition 10.2.4. Dans toute base orthonormale (i, j ) du plan vectoriel, le produit scalaire de
/
deuz vecteurs U <‘;) et U (i,) est donné par
U7 =z + vy’
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— ——

Preuve : posons (?, ) = a27] et (_z>, V) = B[2x]. D’aprés la proposition 10.1.13 on a :
v +yy = (| W | cosa)(|| T || cosB) + (|| @ || sina)(|| T || sinp)

| ||| @ || (cosacosf + sinasinf)

= IR NNT ) cos(8 - a)

1|1 || cos(, ¥),

—

= = =
en effet, d’apreés la relation de Chasles : (W, V) = (i ,v) — (4, )[27].
Enfin on rappelle que 008(7, 7) ne dépend pas de 'orientation car la fonction cosinus est paire.
|

/
Remarque 10.2.2. Si on pose A = (;) et A = (;c,), on a également U-U = AL =

/

(z y) (;’,) et | T |I2= ‘A A

. —
Proposition 10.2.5. Dans toute base orthonormale directe ( i

/
nant de deuz vecteurs U (i) et o <

—
J
,) est donné par

) du plan vectoriel, le détermi-

)

z
)

det (0, 7) = xy’ — yx'

Preuve : la méthode est la méme. On obtient ici :

xy —yz' =|| kT4 Il v | (cosasinf — sinacos ) =|| a0 Il o | sin(b— ) =] kT4 Il KTd I sin(ﬁ)

et le signe du résultat dépend de 'orientation. [

Les deux expressions ont une certaine similitude qui est précisée dans le résultat suivant, de preuve
immédiate :

/
Proposition 10.2.6. Soient W (;) et v (;j,) dans une base orthonormale directe du plan vectoriel

et soit v Y .| le vecteur de méme norme que U tel que (7, 7’) S— [27], alors

det (W, 7)) =u -7’

On retiendra également les relations trés simples qui permettent de trouver les coordonnées dans une
base orthonormale & I’aide du produit scalaire :

- =
Proposition 10.2.7. Soit (i, j) une base orthonormale du plan vectoriel. Les coordonnées (m)

d’un vecteur U sont données par :

— —
r=- 1, yzﬂ-j

Les colonnes des coordonnées de deux vecteurs définissent une matrice de Mo(R). On pose alors la
définition suivante :
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/
Définition 10.2.3. On appelle déterminant d’une matrice carrée M = (z ';;,) d’ordre deux le réel

/ /

noté , |ou det (M), donné par : i z, =y —ya'.

Remarque 10.2.3. La notion de déterminant n’est pas réservée aux base othonormales directes. Si
- = . ‘da /
B= (i, j)estune base quelconque de ? et si dans cette base on considére (?j) et U (5,) alors

T
)
Cette quantité dépend de la base (nous n’irons pas plus loin dans ce sens) par contre, on vient de le
voir, elle est la méme dans toute base othonormale directe. On a tout de méme le résultat suivant :

on définit le déterminant du couple (¥, ¥) dans cette base par det (W, V) = =xy —y¥x.

T
y/

- = !
Proposition 10.2.8. Soit B= (i, j ) une base quelconque de B Deux vecteurs @ <:yc) et v (?j,)

(dans cette base) sont colinéaires si et seulement si det 5(, ) = 0.
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Preuve : si les vecteurs sont colinéaires, on a par exemple U=\ pour un certain réel A et donc
/ / PN 1 . / /
' = Az, y = Ay d’ott immédiatement la relation zy — yz’ = 0.

s . / / . o, . .
Réciproquement supposons que xy — yx' = 0. Si W = 0 les vecteurs sont colinéaires, sinon on a par
/ /

x x
exemple x # 0 : on pose alors A = . de sorte que 2’ = A z. Mais alors vy —yz’ =0 =3/ = - y=Ay

d’ott ¥ = A : les vecteurs sont colinéaires. n

10.2.4 Propriétés du produit scalaire et du déterminant

En utilisant les expressions du produit scalaire et du déterminant en base orthonormale on vérifie
facilement les proopriétés suivantes :

Proposition 10.2.9. Soient W, U et W des vecteurs du plan et (a, B) des réels. Alors :

— symétrie du produit scalaire :

VU =U-T

— antisymétrie du déterminant :
det (U, W) = —det (W, V)

— propriétés de bilinéarité :
T (T+B) =T T+ T,
@+7) B =T T+7 T,

(@) - ¥ =a(d- V),
v (BY) =B (U - D),

Remarque 10.2.4. Les propriétés de bilinéarité sont aussi valable pour le déterminant :
det (U, (VU + 0)) = det (U, ¥) + det (7, W),
det (7 + 0), W)) = det (7, W) + det (T, W),

det (oW, V) = adet (U, V),
det (7, 57) = Bdet (U, 7).

On déduit de la proposition précédente les identités remarquables & mémoriser :

Proposition 10.2.10.
U+ (T -7) = |[ZIP-|7 | (10.1)
(10.2)
|7+ > = [|[W|?+27 -7+ | 7 |? (10.3)
(10.4)
|7 =7 = ||| —2u- T+ V. (10.5)
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Une application géométrique : l'identité du parallélogramme

17+ P+ 17 = P=2(1 7 P+ 11 7 )
Preuve : il suffit d’ajouter les égalités (10.3) et (10.5).

AB?+ BC?+CD?+ DA? = AC? + BD?

D C

gl
+
cl

cl

Sl
|
<l

A B
U

FIGURE 10.7 — Identité du parallélogramme

Le produit scalaire peut s’exprimer de deux fagons en fonction de la norme seule :

Proposition 10.2.11.
1
1. 7~7:§(H T+ =TI =177,

2 TA= LTV -1 -T ).

Preuve : la premiére expression est une simple ré-écriture de 1'égalité (10.3). La seconde s’obtient en

soustrayant (10.3) et (10.5) membre & membre.

10.2.5 Projeté orthogonal d’un vecteur sur un axe

- =
Soit (4, j ) une base orthonormale du plan vectoriel. D’aprés la proposition 10.2.7 on a , pour tout

vecteur 7 S ? :

T=W- DT +@- T

Le vecteur p(ﬁl}z x
engendrée par i .
Le vecteur q(ﬁl}z Y

engendrée par j .

g—
= (W- i) i estle projeté orthogonal de % sur la droite vectorielle Vect(

=, =
= (7 j ) Jj estle projeté orthogonal de W sur la droite vectorielle Vect(

—r
?

<1

)
)
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Considérons maintenant un vecteur non nul 7. Le vecteur 71 = T est unitaire et si on note 72

I'un des deux vecteurs unitaires orthogonaux a 71 alors (71, 72) est une base orthonormale de B et le
vecteur p() = (- U'1) 0 est le projeté orthogonal de 7 sur la droite vectorielle Vect( ) = Vect( 1)
engendrée par 7. En remplagant g par son expression on obtient donc :

Proposition 10.2.12. Soit U un vecteur non nul du plan. Le projeté orthogonal d’un vecteur
U e ? sur la droite vectorielle engendrée par o et donné par :

@7

(D) =

FIGURE 10.8 — Projection vectorielle orthogonale

On a la propriété suivante, trés importante en pratique :

ﬁ
Proposition 10.2.13. Soient U et ¥ deux vecteurs du plan, avec K #% 0. Soit p(ﬁ) le projeté
orthogonal de 7) vectorielle sur la droite vectorielle engendrée par o, alors :

UV =p(d)-V

On peut également projeter 0 lorsqu’il est écrit sous la forme U = E et obtenir le résultat sous

forme d’un vecteur A’B’ sur une droite particuliére d = D(O, 7) : ¢’est ce qu’on fait obligatoirement
a partir du moment ol on représente cette projection sur une figure (on dessine des droites affines et
non pas des droites vectorielles). Il faut alors projeter orthogonalement sur d les points A et B et on
obtient (voir figure 10.9) :

—>:ﬁ-7

p(d)=A'B Ean HQ?

147



—
On dit que p(ﬁ) = A'B’ est le projeté orthogonal de U = B sur I’axe d. On a en outre :

AB- 7 - AB -7

FIGURE 10.9 — Projeté orthogonal sur un aze d’un vecteur défini par un bipoint

10.2.6 Calcul d’une mesure de ’angle orienté de deux vecteurs

On suppose connues les coordonnées des vecteurs U et U dans un repére orthonormal. On calcule
successivement les quatres quantités || i ||, | ¥ ||, W - ¥, det (¥, V), et on applique la formule

o
COS??Z
D) ===

la calculatrice (ou la connaissance des lignes trigonométriques usuelles) donne alors une valeur « € [0, 7]

telle que cos(a) = || HH i On sait qu’alors (ﬂ) = a[27] ou (ﬁ) = —a [27].

On conclut en utilisant le fait que le signe de sin(ﬁ) est celui de det (U, 7).

On peut aussi calculer I'unique réel o € [—g, g] tel que
, det (7, )
sina = )
dlkdl

On sait qu’alors (ﬁ) = a[27] ou (ﬁ) = — «al27].
On conclut cette fois-ci en utilisant le fait que le signe de cos(ﬁ, 7) est celui de o - .

2
= 13
003(7, 7) = ~ (0.997. La calculette donne un angle a de 0,077 radians ou 4, 4 degrés. Comme

VhV34 o
det (¢, ) < 0, on sait que le sinus de I'angle cherché est négatif, la valeur de (o, 7) est donc de
—0,077 radians a 1073 prés (ou —4,4 degrés).

Exemple : o (1), o (g) Onal|@|=V5 ||V |=V34, & -V =13, det (&, V') = —1 et donc
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10.3 Droites

On étudie ici les droites du plan a I'aide de représentations utilisant les coordonnées dans un repére
cartésien (O, i, j ) qu’on supposera implicitement orthonormal ou orthonormal direct chaque fois que
nécessaire.

10.3.1 Représentations paramétriques et équations cartésiennes d’une droite

La droite D(A, 7) passant par un point A de vecteur directeur U est par définition I’ensemble des
) —_—
points M du plan tels que AM /7

D(A, @) ={M € P;3a R, AM = 7).

LTy

Si on se donne A(z4,y4) et U (y ), on a donc

u
T=QTy +2TA

M(z,y) € D< daeR
( y) {y:ayu+yA

Définition 10.3.1.

, a€eR

T=TA+ QIy
Y=9Ya+ay,

s’appelle une représentation paramétrique de la droite D(A, 7) a s’appelle le paramétre.

Attention : il est indispensable de préciser dans quel ensemble varie le paramétre.
Si on omet « o € R », la représentation est incompléte.
Si on remplace « « € R » par « « € [a,b] », par exemple, on obtient un segment etc...

Exemple : soit D la droite passant par le point A(1,2) de vecteur directeur @ = (1,—1). On obtient

{x:1+a , a€cR.
y=2—-«

—
Une autre facon d’écrire que AM // 7 est d’utiliser le déterminant :

T— XA Xy

MeD e det(AM,7) =0 <
Y—Ya Yu

=0

On trouve
M(z,y) € D < yu(r —24) — zu(y —ya) = 0.

Cette derniére expression s’appelle une équation cartésienne de la droite D. Aprés développement,
elle est de la forme ax + by + ¢ = 0.

Exemple 1 : une équation cartésienne de la D droite passant par le point A(1,2) de vecteur directeur

-1 1
W = (1,—1) s'obtient en écrivant : :;_2 1= —(x — 1) — (y — 2) = 0. Elle est donc apreés
simplification
z+y—3=0.

Proposition 10.3.1. Soit (a,b,c) € R® et soit E = {M(x,y) € P; ax + by +c=0}. Alors :
— sta=b=c=0,ona E=P,
— sta=b=0¢etc#0, ona E =1,

— si (a,b) # (0,0) alors E est une droite de vecteur directeur o (;b).
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Preuve : les deux premiers cas sont immédiats. Supposons donc (a,b) # (0,0) : on a par exemple
a # 0 (Pautre cas se traite de maniére identique). On trouve alors facilement un élément de E, a savoir
par exemple A(xy = —c/a,ys = 0). Comme axyg +bys +c=0on a:

r—x4 —b
Yy—ya a

M(z,y) e E<=arx+by+c=axga+byat+c<=a(x—z4)+b(y—ya) =0 =0

En introduisant le vecteur <_ab> onadonc: M(x,y) € E <= m//ﬁ, d’ot le résultat. "

—
Remarque 10.3.1. z — x4 et y — y4 sont les coordonnées du vecteur AM, or ce vecteur parcourt
. . . —b
Vect@ quand M parourt E. On en déduit que la droite vectorielle engendrée par o ( a ) a pour
équation az + by = 0.

Définition 10.3.2. On appelle vecteur normal & une droite tout vecteur orthogonal & un vecteur
directeur de cette droite.

Attention : il ne s’agit pas nécessairement d’un vecteur unitaire (ou vecteur normé). Prendre garde
a la confusion.

Le vecteur 77 (Z) vérifie W - W = 0, on a donc :

Corollaire 10.3.1. Soit (a,b,c) € R avec (a,b) # (0,0).

La droite d’équation cartésienne ax+by—+c = 0 en repére orthonormal a pour vecteur normal w (a) .

b

On a vu que I'équation az + by + ¢ = 0 d’une droite peut s’écrire a (x —x4) +b(y —ya) = 0 ot A est
un point fixé de la droite. Ceci s’écrit aussi 7 - AM = 0. Inversement, cette relation permet d’obtenir
une équation cartésienne de la droite passant par A et de vecteur normal .

Exemple 2 : quel est 'ensemble des points M (x,y) tels que —2y =1+ 3z 7
Réponse : I'équation —2y = 1 + 3z s’écrit ax + by +c =0 avec a = 3, b = 2, ¢ = 1. 1l s’agit donc
3

. Un vecteur normal est 77

3

2) et elle passe par le

d’une droite dont un vecteur directeur est (
point A(0,—1/2).
Exemple 3 : Donner I’équation cartésienne de la droite passant par A(1,3) et de vecteur normal
-1
%
7 ( ; )
. L = T .
Réponse : on écrit @ - AM =0, soit —(x — 1) +2(y — 3) =0, on trouve —z + 2y — 7 = 0.

Autre méthode : la droite admet une équation cartésienne de la forme —x 4+ 2y + ¢ = 0. Elle passe par
A, donc —1 4 2.3+ ¢ =0 ce qui donne ¢ = —7, I’équation cherchée est —x + 2y — 7 = 0.

L’équation cartésienne d’une droite n’est pas unique : il est immédiat, par exemple, que t+y+1 =0
et 2z 4 2y + 2 = 0 sont les équations d’une méme droite. Précisons ce point :

Proposition 10.3.2. Soient (a,b,c) € R? et (a’,b,c) € R3, avec (a,b) # (0,0) et (a’,b) # (0,0).
Les équations cartésiennes ax +by—+c =0 et a'z +b'y+ = 0 sont les équations d’une méme droite
si et seulement si (a,b,c) et (a',b',c") sont proportionnels.
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Preuve : il est clair que si les coefficients sont proportionnels, les équations sont équivalentes, il s’agit
donc de la méme droite. Réciproquement, si les deux équations décrivent la méme droite D les vecteurs

U (=b,a) et u' (—b,a') sont tous deux directeurs de D, ils sont donc colinéaires et il existe A # 0 tel

que U = A’ on en déduit a = Ad', b= \b. Soit M (z,y) un point quelconque de D, il vérifie les deux
équations, on a donc ¢ = —(ax + by) et ¢ = —(a’z + b'y), on obtient ¢ = \c'.

10.3.2 Intersection de droites

Soient D1 et Dy deux droites du plan, on sait qu’en général D; N Dy est un ensemble réduit & un point
mais qu'il est possible que D; N Dy soit vide, c’est la définition de droites strictement paralléles (au
moins dans le plan), ou que D1 N Dy = Dy = Do, les droites sont alors confondues. Vérifions tout cela
par le calcul. On suppose donné un repére et on introduit les équations cartésiennes :

Dy ={M(z,y) € P; ax + by + e =0},
Dy ={M(x,y) € P; cx+dy+ f =0},

On a alors
DiNDy={M(z,y) € P;ax+by+e=0et cx+dy+ f =0},
C’est donc I'ensemble des points dont les coordonnées (z,y) sont solution du systéme :

ar +by = —e
(S){ cx+dy=—f

Si la matrice (CCL d) de ce systéme est inversible, c’est a dire si det A # 0, il y a unicité de la solution,

sinon soit il n’y a pas de solution, soit il y a une infinité de solutions (cf chapitre 9). Plus précisément :

e SidetA =0:oubien (a,b,e) et (b,d, f) sont proportionnels et les droites sont confondues, ou bien
ils ne le sont pas et l'intersection est vide (les droites sont strictement paralléles).

Observons d’ailleurs que det A = est le déterminant des vecteurs directeurs de Dy et Ds.

a
L’égalité det A = 0 signifie donc que les vecteurs directeurs sont colinéaires.

e Sidet A # 0, la solution est unique et donnée par les formules de Cramer (9.1) :

—e b a —e
—f d c —f
€Tr = T, = —-—
a b a b
c d c d
Exemple : trouver l'intersection des droites d’équations 2x +y+3 =0et 3z —y+ 1 =0.
. 2 1 . . . .
Réponse : le déterminant 2 1| = —2 — 3 = —5 est non nul, il existe donc un unique point
d’intersection dont les coordonnées sont
-3 1 2 -3
-1 -1 4 3 -1 1
T Ty YT T3 T

Exercice type : on donne trois points du plan par leurs coordonnées. Vous devez savoir répondre aux
questions suivantes : sont-ils alignés ? Déterminent-ils un triangle rectangle 7 Quelle est 'aire du triangle
qu’ils constituent 7 Quelles sont les équations cartésiennes des droites passant par ces points ? Quelles
sont les équations cartésiennes des hauteurs du triangle qu’ils constituent ? Et, avec évenuellement
I’aide d’une calculette, quelles sont les mesures des angles de ce triangle ?
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10.3.3 Angles de droites

Une idée naturelle pour définir I’angle orienté d’un couple (D, D’) de droites est d’utiliser un vecteur

directeur de chacune d’elles, @ € 3 pour D, ¥ € B pour D’ et de considérer 'angle (7, 7)
La difficulté est que cet angle ne devrait pas dépendre du choix de ces vecteurs directeurs. Or, a une

modification des normes prés, on a quatre choix possibles : (ﬂ), (—7, 7), (7, —7) et (—7, —7)
La relation de Chasles implique par exemple

(@, 7)) = (T, - @) + (2, 7) =n+ (—2, D),

et on vérifierait ainsi que les mesures de ces quatre angles différent de km, avec k entier. Ceci améne
aux définitions suivante :

Définition 10.3.3. Soient B et B’ deux droites vectorielles engendrées respectivement par U et

7. Une mesure de 'angle orienté (B, D ) est donnée par (U, ?) [r] et ne dépend pas du choix des
vecteurs directeurs.

Soient D et D' deux droit/es\afﬁnes dirigées respectivement par U et W'. Une mesure de I’angle orienté
(ﬁ) est donnée par (o, V) [x].

Il existe un unique réel a € [0, 7| tel que (D/,E) = «/[rr] : on Pappelle la mesure principale de 1'angle
du couple de droites (vectorielles ou affines).

On a alors immédiatement :

Proposition 10.3.3. Soient D et D' deux droites du plan, alors :

D//D' < (D,D')=0[r] et DLD <= (D,D')= =[x

T
2

FIGURE 10.10 — Angle orienté d’un couple de droites
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En appliquant les résultat du chapitre 4 sur les angles (proposition 4.3.4) on obtient :

Proposition 10.3.4. Soient quatre points A(z4), B(zp), C(z¢), D(zp) deux a deux distincts et les
droites D = (AB), D' = (CD). Alors :

(D, D) = arg -2 —2C [x]
7B — ZA

10.3.4 Distance d’un point & une droite

La distance d’un point A a une droite D, notée d(A, D), est définie comme la plus courte distance
entre A et un point M de D. Le théoréme de Pythagore établit qu’on l'obtient de fagcon unique en
prenant M = H ou H est le projeté orthogonal de A sur D.

On distinguera les cas ou la droite est donnée par une équation cartésienne et celui ou elle est définie
par un point et un vecteur directeur.

Proposition 10.3.5. Soit D une droite du plan et A(xa,ya) un point.
— st la droite est définie par une équation cartésienne ax + by + ¢ = 0, alors la distance de A a

la droite D vérifie :
_Jaxza 4 bya + ¢

A4, D) = =

— si la droite est définie par un point B et un vecteur directeur U, alors la distance de A @ la

droite D vérifie : ?
det (AB, W
it 0) = B

Preuve : on doit donc calculer || AH || ot H est le point tel que H € D et AH L D. Siune équation
cartésienne de D est ax+by = ¢, on a vu qu’'un vecteur orthogonal & D est W(a, b), on a donc zﬁ // K
et :

AH 7| =|| AH ||| 7 ||= d(A, D) Va? + b2

donc :

AH - 7|
N

D’autre part, si B(zp,yp) est un point quelconque de D, le projeté orthogonal de 1@ sur la droite

d(A, D) =

(AH), qui est dirigée par W, est AH, donc :
ﬁ-ﬁ:ﬁ-ﬁ:a(xB—wA)—i—b(yB—yA):—aa:A—byA—c,

laz 4 + bya + ¢
va? + b2

Si la droite est définie par un point B et un vecteur directeur 7, on considere le vecteur 77 de méme

en effet B € D = axp + byp = —c. On a donc finalement d(A, D) =|| AH =

norme que U et tel que (7, @) = —g [27]. C’est un vecteur normal & D et on a AB-T = det (xﬁ, )
(cf. proposition 10.2.6), ce qui donne la seconde formule. n
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FIGURE 10.11 — Distance d’un point a une droite

Exemple : soit D la droite d’équation 3x — 4y — 7 =0 et A(—2,—1), on a
—23+4-7 9
SSREL RN |
V25 5
En prenant le point B(1,—1), qui est sur D, et v <§>’ qui dirige D, on vérifiera en exercice que 1’on

a bien aussi d(A, D) = %@.

10.4 Cercles

Par définition, le cercle C de centre A et de rayon R est
C={MeP; AM =r}.
Une équation cartésienne de C dans un repére orthonormal est donc, si A(x4,y4) et M(x,y),
(x—za)’ + (y—ya)® = R?,

ce qui équivaut & AM? = R?, soit, en développant :

x2+y2—2:ch:—2yAy+x124+yi—R2:0

qui est une expression de la forme 22 + y? — 2ax — 2by + ¢ = 0.

Il faut savoir établir I’équation d’un cercle et, sur des exemples, reconnaitre & partir d’une expression
de la forme précédente s’il s’agit de I’équation d’un cercle et trouver, le cas échéant, ses éléments
caractéristiques (centre, rayon).

Exemple 10.4.1.
22 +y? —6z+2y —6=0.

On écrit 22 — 6z = (z — 3)2 =9 et y? + 2y = (y + 1)? — 1. L’équation devient alors :
(=3 +(y+1)?>=16
cest a dire AM? = 16, avec A(3,—1) et M(z,y). Il s’agit donc de I'équation du cercle C(A,4).

Exemple 10.4.2.
22+t —22+4=0.

On écrit 2% — 22 = (z — 1)* — 1. L’équation devient alors :
(z—1)2+y* = -3.

L’ensemble des points M (x,y) satisfaisant 1’équation est donc vide.
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10.5 Translations, Homothéties, Rotations, Projections, Symétries

10.5.1 Introduction

On va présenter quelques exemples importants d’applications du plan affine dans lui méme qui pos-
sédent des propriétés remarquable, par exemple :

e la conservation de ’alignement : des points alignés sont transformés en points alignés,

e la conservation du milieu : le milieu I d’un bipoint (A, B) a pour image le milieu du bipoint
image,

e un parallélogramme est transformé en un autre parallélogramme, ce qui équivaut a la conservation
du milieu,

e et plus généralement la conservation des barycentres (pour ceux qui connaissent ...)

De telles applications sont dites affines.

Il existe une caractérisation des applications affines que nous allons utiliser, basée sur la notion d’ap-
plication linéaire déja évoquée en introduction du chapitre 9 dans un cadre différent. Aucune théorie
générale ne sera faite ici.

Définition 10.5.1 (Applications linéaires du plan vectoriel dans lui-méme).

Une application ¢ : — P est dite linéaire si elle vérifie :
Y@, T) e P x P, o(@+7)=o(@)+o(T),
— VU e P,YAER, oAW)=Xp(W).

Une application linéaire se reconnait immeédiatement sur les coordonnées grace au résultat suivant :

Proposition 10.5.1. Le plan vectoriel 3 étant muni d’une base (i, j) (pas nécessairement or-
—
thonormale), une application ¢ : ! est linéaire si et seulement si il existe
) pp @ 7(96) N <x/>

Y Y

/
une matrice M € My(R) telle que (';,) =M (g)
La matrice M s’appelle la matrice de ¢ dans la base (_z>, 7)

-
Preuve : supposons que ¢ soit linéaire et soit (O, i, j

Y

—
) un repére cartésien. On pose p( i ) <Z> et

/

@(7) <§> Si W a pour coordonnées (g) et @(7) =’ <§,> alors, par linéarité :

W =p@i +yi)=ao(7)+ye(7) (m N yc)

b+ yd
x a c¢ T T
ce qui s’écrit aussi : = =M .
q () =5 a) ()= ()

La réciproque est une simple vérification sur les coordonnées. [
On donne trois exemples d’applications linéaires de B dans B :
Exemples :
— L’application identique de B, c’est a dire 'application [ dﬁ : {
La justification est triviale.

La matrice, dans n’importe quelle base, est la matrice identité Io =

N
O =
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P

kd

0

A r
— La projection vectorielle orthogonale sur la droite vectorielle Vect(?), qu’on notera ici T pour
éviter la confusion avec la projection étudiée plus bas.

— L’homothétie vectorielle de rapport k, définie par hy : { g : , ol k est un réel non

nul. La encore, la justification est triviale.
La matrice, dans n’importe quelle base, est la matrice k I = ( 0

C’est I’application 7 : B — ? telle que 7r(7) = H : E . Vérifions la linéarité :

P G 40 i AN A 1Y, ,
o (U + ') = = 7_||7H27+W H27_7r(7)+7r(7).
.W(A7)2A7'77=A7'77:M(7).

[l I |

La matrice n’est pas simple en général, sauf dans une base adaptée. Aini on vérifiera en exercice
N / N .
que dans la base (7, o’ ), ol ' est un vecteur non nul et orthogonal a 7, la matrice de 7 est

10
0 0 /)
Définition 10.5.2 (Applications affines du plan dans lui-méme).
Une application f : P — P est dite affine s’il existe une application linéaire ¢ : 3 — 3 telle que :

V(A,B)€P x P, [(A)[(B) = p(AB).

Définition 10.5.3 (Transformations affines du plan).
Une application affine bijective du plan dans lui-méme s’appelle une transformation affine du plan.

On admettra ici que ¢ est unique : on dit que c’est 'application linéaire associée a f et on la note
couramment f .
On retiendra bien que f agit sur les points et 7 sur les vecteurs : voir les exemples qui suivent.

Lorsqu’un point est sa propre image, on dit qu’il est invariant et I’ensemble de ces points joue toujours
un roéle essentiel dans la description et les propriétés d’une application affine.

Définition 10.5.4. Soit f : P — P. On dit qu’'un point M est invariant par f si f(M) = M.

10.5.2 Les translations

Définition 10.5.5. Soit 7 € 3 On appelle translation de vecteur 0 I’application ¢t de P dans
lui-méme qui & tout point M associe le point M’ tel que

—
MM =7.
y

-
-

Q| =
.

Fi1GURE 10.12 — Translations
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Proposition 10.5.2. Une translation est une transformation affine du plan. L’application linéaire
associée est lapplication identique du plan vectoriel Idg LU e .

Preuve : soient A, B deux points, A’ = t-(A) et B’ = t-(B) leurs images. On a
— — —_—  — —
A'B = AA+AB+ BB = ~AA' + AB+ BB = @ + AB + @ = AB = Id(AB)

. —
ce qui prouve que t est affine, avec ¢ 5 =1 d7—>>.
L’application vectorielle associée est 'identité. Enfin une translation est une bijection, de bijection
réciproque t—» (vérification immédiate). L]

Proposition 10.5.3 (Expression analytique).

Ty,

Si U a pour coordonnées et M pour coordonnées (x,y) dans un repére cartésien, alors les

Yu
i ! -
coordonnées de M’ sont données par

{x’ = I+ Xy
Y = Yyt

. . ’
Preuve : c’est juste la traduction de M M" = U en termes de coordonnées. [
Propriétés des translations (exercice) :

1. Une translation de vecteur non nul n’a pas de point invariant. La translation de vecteur nul est
I'identité. Tout les points du plan sont alors invariants.

2. Une translation conserve la distance entre deux points, les angles entre les vecteurs, ’alignement
de points.

3. L’image d’une droite par une translation est la droite elle-méme si son vecteur directeur est

colinéaire au vecteur de la translation.

4. I’image d’une droite par une translation est une droite paralléle si son vecteur directeur n’est
pas colinéaire au vecteur de la translation.

5. L’image d’'un cercle par une translation est le cercle de méme rayon et dont le centre est le

translaté du centre initial : ¢ (C(A, R)) = C(A", R) avec A’ =t (A).
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10.5.3 Les homothéties

Définition 10.5.6. Soit §2 un point du plan et k un réel non nul. On appelle homothétie de centre 2
et de rapport k Papplication h(€, k) de P dans lui-méme qui & tout point M associe le point M’ tel

que oM =k QM.

M

M’

Q| ~u
had? )

FIGURE 10.13 — Homothéties

Proposition 10.5.4. Une homothétie h(Q2, k) est une transformation affine du plan. L’application
linéaire associée est I’homothétie vectorielle hy, : U — k.

Preuve : soient A, B deux points, A" = h(Q,k)(A) et B’ = h(,k)(B). On a
— = — —  —
AB = AQ+ QB = —QA' + QB = —kQA + kQB = kAB = hy(AD)

ce qui prouve le caractére affine de h(€2, k) et donne l'application linéaire associée. Enfin, h(£2, k) est

bijective, de bijection réciproque h(2, %) (exercice). "

Proposition 10.5.5 (Expression analytique).
Si Q a pour coordonnées (xy,,y,) et M a pour coordonnées (x,y), alors les coordonnées (z',y') de
M’ wvérifient :

{az’ = xu+k(x— )
Y o= Yot k-

. . pa; =
Preuve : c’est juste la traduction de QM = k QM en termes de coordonnées. [
Propriétés des homothéties (exercice) :
1. Si k # 1, le seul point invariant est le centre de I’homothétie 2.

2. Si k=1 on a de nouveau affaire & 'identité.

3. Une homothétie multiplie par |k| la distance entre deux points. Elle conserve les angles orientés
et I'alignement.

4. L’image d’une droite passant par le centre de I'homothétie est la droite elle-méme.
5. L’image d’une droite ne passant pas par le centre de I’homothétie est une droite paralléle.

6. L'image d'un cercle de centre A et de rayon R par I'homothétie est le cercle de centreA’ =
h(€2,k)(A) et de rayon |k| R.
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10.5.4 Les rotations

Définition 10.5.7. Soient €2 un point du plan et # un réel. On appelle rotation de centre (2 et
d’angle 6 lapplication 7(2,0) de P dans lui-méme qui & tout point M associe le point M’ tel que :
— si M =Qalors M =Q
— ——

— si M # Q alors QM = QM et (QM,QM’) = 0 [27].

vh M I
0
A
Q

A
J

- -
ol 7 x

FIGURE 10.14 — Rotations planes

Proposition 10.5.6. Une rotation r(2,0) est une transformation affine du plan. L’application
linéaire associée est la rotation vectorielle d’angle 68 qui est Uapplication linéaire rg : —

cosf —sin 9>

sinf cosf

définie dans toute base orthonormale directe par sa matrice (

N — —
Preuve : soit M un point, d’image M’. On pose @ = QM, @' = QM’, on a donc (U, W') = 0 [27]
et || ||=| . On en déduit

U-U =) U |? cos(d), det(w, ") =|| || sin(6).

— !/
Si W <§£>, et u’ (ig,) dans un repére orthonormal direct, on en déduit

XX +YY' =|| W |? cos(h),
XY' - X'Y =|| & ||? sin(6).
On cherche & exprimer (X', Y”) en fonction de (X,Y) et 6, on écrit donc le systéme d’équations

XX 4+ YY' = (X2+Y?) cos(h),
-YX' + XY = (X?24Y?) sin(d).

On résout ce systéme d’inconnue (X', Y”) a I'aide des formules 9.1, par exemple, et on trouve

/ _ o .
{X = Xcosf —Ysinf (10.6)

Y' = Xsinf+ Y cosé

X' _[cosf —sinf X
Y']  \sinf® cos6 Y )
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sinf cos@

cos —sin 0)

Soit alors ry 'application linéaire de B dans lui-méme définie par la matrice Ry = (

ona U =rg(W). Si A et B sont deux points d’images A’ et B’ on a donc :
e e e
AL = QB — QA = ry(QB) — ro(QA) = ro(UB — QA) = ro(AD)

ce qui prouve le caractere affine de r(£2,6) et donne son application linéaire associée ry.
Enfin on vérifie facilement que (€2, 8) est bijective, avec (€2, 0) 1 = r(Q, —6)
(« pour revenir au point de départ, on tourne de I'angle opposé autour du méme centre »). [

Proposition 10.5.7 (Expression analytique dans un repére orthonormal direct).
Si Q a pour coordonnées (z,,y.,) et si M a pour coordonnées (x,y) alors les coordonnées (z',4y') de
M’ sont données par :

¥ = zy+ (x—x,) cosh— (y—y,) sind
Y = Yot (z—zy)sinb+(y—y,) cost

Preuve : c’est la conséquance immeédiate de la formule (10.6). "

Propriétés des rotations :

1. Si 0 # 0[27], le seul point invariant est le centre de la rotation €.
2. Si 0 =0[2n], f est égal a I'identité.

3. Une rotation conserve la distance entre deux points, les angles orientés de vecteurs, ’alignement
de points.

4. I’image d’une droite par une rotation est une droite.
5. L’image d’un cercle par une rotation est un cercle de méme rayon.

6. Une rotation d’angle 7 est une symétrie par rapport a €.

10.5.5 Les projections et symétries axiales

Soient une droite D(A, @) et D' une droite ¥ non colinéaire & .

Définition 10.5.8. On appelle projection sur D parallélement & D’ I'application p du plan dans
lui-méme qui associe & tout point M le point p(M) = M’ tel que

o %D’ —

— MM eD' (i.e. MM')]T).

Définition 10.5.9. On appelle symétrie par rapport a D parallélement & D’ I'application s du
plan dans lui-méme qui associe & tout point M le point s(M) = M’ tel que
— le milieu du bipoint (M, M') appartient & D,
) B/
— MM e D"
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s(M)
FIGURE 10.15 — Projections et symétries

Le point essentiel est que (A, , 7) est un repére du plan. Avant de poursuivre, précisons les notions
de projection et symétrie vectorielles.

Définition 10.5.10. Soit (¥, ¥) une base de P.On appelle projection vectorielle sur D= Vect ()

parallélement & D= Vect(7') Papplication 7 : { B = ot 1 57 : o

Définition 10.5.11. Soit (7, 7) une base de B On appelle symétrie vectorielle par rapport & B =
—

Vect(W) parallelement a D= Vect(7') Papplication o : { B=a® 07 — a@ 67
Avec ces définitions, si m —auW +pBV,ona:

Ap(M; =ad :ﬁ(m) et As(M; =ad — BV :a(m)

On verra sur des exemples que ces définitions permettent facilement de trouver les coordonnées de M’
en fonction de celles de M. La méthode est la suivante :

si A, W, ¥ et M ont pour coordonnées (xa,y4), <zu), <z”) et (x,y), on écrit a priori :
u v
T—TA = axy+ BTy
Y—ya = yu+ By

On calcule alors « et 5 en fonction de x et y en résolvant le systéme, puis on obtient les coordonnées
du projeté et du symétrique de M.

Proposition 10.5.8. La projection sur D parallélement a D’ est une application affine. L’ application
linéaire associée est la projection vectorielle sur B parallélement a D’.
Ce n’est pas une transformation du plan.

Proposition 10.5.9. La symétrie par rapport & D parallélement o D' est une transformation affine

du plan. L’application linéaire associée est la symétrie vectorielle par rapport a parallélement a
/

Quand les directions de D et D’ sont orthogonales, on parle de projection et de symétrie ortho-
gonales :
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Définition 10.5.12. On appelle projection orthogonale sur D(A, 7) la projection sur D parallélement
a la direction orthogonale & D. Cette application associe & tout point M le point p(M) = M’ tel que
- ]\E b, —
— MM'1D (i e. MM'L0).
On appelle symétrie orthogonale par rapport & D la symétrie par rapport a D parallelement a la
direction orthogonale a D. Cette application associe a tout point M le point s(M) = M’ tel que D
soit la médiatrice du segment [M, M.

D
i—l D
1 p(M)

R

Vﬁl

s(M)

FIGURE 10.16 — Projections et symétries orthogonales

On peut aller plus loin dans les formules dans ce cas : soit v (Z) dans une base orthonormale

o /
et soit W’ ( b) de sorte que le repére (A, %—, L ) est orthonormal. On a alors Zﬂ\? =ad —1—57/
a T

e —
avec o = AM - et =AM - et ainsi :
AR I |

Proposition 10.5.10. Soit D(A, 7) une droite du plan. Le projeté othogonal p(M) et le symétrique
orthogonal s(M) d’un point M sont donnée par les formules :

() = ()™ 00 = () T - ()

Remarque 10.5.1. En pratique, il suffit de connaitre la premiére des deux formules. Quand on a

trouvé le projeté p(M) on obtient le symétrique s(M) en écrivant que Ms(M) = 2Mp(M).
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Propriétés des projections et des symétries :

1. Une projection est caractérisée par le fait que p o p = p. La droite sur laquelle on projette est
I’ensemble des point invariants.

2. Une symétrie axiale est caractérisée par le fait que s o s = Id. La droite D est 'ensemble des
points invariants.

3. Une symétrie orthogonale conserve la distance entre deux points, change les angles en leur

opposés et transforme une droite en une autre droite, un cercle en un autre cercle, de méme
rayon.

Exemple 1 Soient A(1,2) et B(—1,3). Déterminer les coordonnées de M'(x',y') image de M (x,y)
par la symétrie orthogonale par rapport & D = (AB).
On va d’abord appliquer la formule précédente, puis donner une méthode plus rapide.

Un vecteur directeur de D est 1@ <_12

1 - - [—
directeur de D de norme 1 en prenant U = zﬁ On a donc @ 2/\/5 et u 1/\/5 .
I D I 1/V5 —2/V5
1

(2 =1+ =2) = S=(-2a+9)

). Ce vecteur n’est pas de norme 1, on obtient un vecteur

Alors :
AM - =

Sl

- 1
cu = —=(—z—2y+5)

V5
—
et la relation AM' = (m W)W - (ZJ\_/[ ") W' 'écrit alors

=

1 1
-1 = —(20+y)(-2) — —(—z—2y+5)(-1)
-2 = L(2ty) - (co-2y+5)(-2)
et on obtient le résultat cherché :
3 4
¥ = 5x—gy—|—2
I éiﬁ § +
Yy = 5 51/

Variante : conformément & la remarque précédente, on peut commencer par déterminer le projeté

p(M) :
Ap(M = (AM - D) T

4 2 2 1
ce qui donne p(M) (1 + =T Y 2— =% + gy) et on trouve (2,y’) en écrivant que p(M) est le milieu
de (M, s(M)) :
x+a 4 2 y+y 2 1
2 TEETEY 2 57T 5Y
On retrouve bien str le résultat précédent.
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La seconde méthode consiste & exprimer la définition du symétrique de M. Le milieu de (M, M")

—
appartient & D et MM’ L E On calcule I'équation cartésienne de D : un point X (z,y) appartient
a D si et seulement si det (ﬁ , ﬁ) =0, soit

(—1)+2y—2)=x+2y—5=0,

/ /
Le milieu I de (M, M') a pour coordonnées (w —; v , Y —; Y

), on en déduit une premiére équation :
(x+2)+2(y+y)—10=0.
On a aussi MM" - xﬁ = 0 qui fournit une seconde équation :
=202’ —2) + (¥ —y) =0,

On cherche (2, y") en fonction de (z,y), on écrit donc le systéme de deux équations & deux inconnues
obtenu de la fagon suivante :

Y + 2 = 10—x-2y
22 + o = —2x+y

On résout alors ce systéme et on retrouve le résultat précédent.

Exemple 2 Soient A(1,2) et B(—1,3). Déterminer les coordonnées de M'(x’,3') projection de M (z,y)

o . / Py : .
sur D = (AB) selon la direction de ¥ (1,2). On sait que M’ € D et MM'//W, ces deux informations
se traduiront par deux équations : (z’,y") satisfait I’équation cartésienne de D qu’on a déja calculée :

2 +2y -3=0,

et
—
det (MM', ) =0,
soit
(z' —2)2—(y —y) =0.

On obtient le systéme linéaire

2 4+ 2 = 3
20 — oy = 22—y
qu’on résout pour trouver finalement
, 4 2 1
TS TR
, 2 n 1 n 6
= ——X —_ —_
Y 57 5V 75
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10.6 Compléments (*)

(*) Cette section traite de notions qui sont hors programme de ce cours mais qui peuvent étre étudiées
avec profit par les futurs étudiants de mathématiques et les éléves ingénieurs.

10.6.1 Cercles

On a vu en section 10.4 que le cercle C de centre A et de rayon R admet pour équation cartésienne

x2+y2—2xAx—2yAy+x?4+y%—R2 =0,
qui est une expression de la forme z? + y* — 2ax — 2by + ¢ = 0. On s’intéresse ici & la réciproque.

On pourra reconnaitre qu'un ensemble décrit par son équation cartésienne dans un repére orthonormal
est un cercle a l'aide de la proposition suivante :

Proposition 10.6.1. Soient a, b, ¢ des réels. L’ensemble
E={M(z,y) € P; 2* +y* —2ax — 2by +c = 0}

est soit l’ensemble vide, soit un point, soit un cercle.
C’est un cercle si et seulement si a®> +b* > ¢, c’est alors le cercle de centre A(a,b) et de rayon

a?+b2 —c.

Preuve : on écrit le membre de gauche sous la forme (z — a)? + (y — b)® — a® — b* + ¢, donc
M€ E < (z—a)®+ (y — b)* = a® + b* — c. Alors

Sia?+b*—c<0, E=0,

Sia?4+b?—c=0, F={A(a,b) = C(A,0).

Sia?4+b? —¢c>0, M(x,y) € E <= AM? = a®> +b* — c et ainsi E = C(A, Va2 + b2 —¢). "

Exemples :

222 + y? — 1 = 0 n’est pas I'équation d’un cercle.

322 4 3y* — 22 — 1 = 0 est équation d’un cercle car elle équivaut a 2 + y* — 2(1/3)z —1/3 =0 :
a=1/3,b=0,c=—1/3 et (1/3)>+1/3 =4/9 > 0. Son centre est A(1/3,0) et son rayon est 2/3.

. L. N . -
Une représentation paramétriques dans un repére orthonormal direct (O, i, j ) est

{x:xA—i-RCOSG

Yy=ya+ Rsinf ’ 0 €l —mm]

ce qui donne la position de M sur le cercle en fonction de 6 sachant que

| AM =R et (

10.6.2 Propriétés du cercle

On rappelle sans démonstration quelques résultats :

Théoréme 10.6.1. Soient A et B deuz points du plan et 6 un réel, alors l’ensemble des points du

g ——
plan tels que (M A, Mg) =0 [n] est :
— la droite (AB) privée de A et B si § = 0[x],
— un cercle passant par A et B, privé de ces deux points, sinon.
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Remarque 10.6.1. C’est un résultat qui s’écrit en fait en termes d’angles de droites (M A, M B) :
voir figure 10.17 ci-dessous. On obtient le méme résultat avec un angle géométrique AM B.

(NA,NB) = 0[r]

FIGURE 10.17 — Arc capable (angle de droites)

Théoréme 10.6.2. Soient A et B deux points du plan et 8 un réel, alors ’'ensemble des points du
A B
plan tels que (M A, MB) = 0 [27] est :
— lensemble]lA, B[ si 0 = 0 [27],
— la droite (AB) privée du segment [A, B] si 0 = m [27],
— un arc de cercle d’extrémités A et B, privé de ces deux points, sinon.

FIGURE 10.18 — Arc capable (angle de vecteurs)

On observera bien quelle est la différence entre les caractérisations des ensembles cherchés dans ces
deux énoncés.

On dit que des points sont cocycliques s’ils sont sur un méme cercle. Alors :

Corollaire 10.6.1. Quatre points A, B, C, D distincts sont alignés ou cocycliques si et seulement

i (DA, DB) = (CA,CB) [x].

166



Théoréme 10.6.3 (Théoréme de I'angle inscrit ). Soit C un cercle de centre O, passant par deux
points distincts A et B, alors pour tout point M du plan :

M € C\{A, B} «— (MA, MB) =

FIGURE 10.19 — Angle au centre et angle inscrit

Corollaire 10.6.2. Soient A et B deuz points distincts, I le milieu de [A, B] et C le cercle de centre
I passant par A et B, alors

M eC s (MAMB) =" [n]
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10.6.3 Nombres complexes et géométrie plane

Les nombres complexes permettent de représenter analytiquement toutes les transformations usuelles
du plan telles que les translations, les homothéties, les rotations et bien d’autres encore. A titre
d’exemple nous passons en revue les trois cas qui viennent d’étre cités.

me si c’est seulement utile pour les

On suppose dans tout ce qui suit que le plan est orient_é> (mé

Y

SJE

rotations) et rapporté a un repére orthonormal direct (O,

Translations et homothéties

Soit = la translation de vecteur . Notons u laffixe de @, z (resp. 2') celui de M (resp. de M’). On
a immédiatement :

M =t3(M) =2 =z2+u

2" = 2+ u est la forme complexe de la translation t-.
Soit (€, k) 'homothétie de centre Q et de rapport k € R*. Notons w affixe de €, z (resp. 2’) celui
de M (resp. de M'). La relation de définition s’écrit

2 —w=k(z—-w).

On peut retenir (ou mieux, retrouver immédiatement) le résultat sous cette forme. Il s’écrit aussi :

M =h(Q k(M) <=2 =kz+(1-k)w

2 =kz+ (1 —k)w est la forme complexe de "homothétie h($, k).

Pour reconnaitre une translation ou une homothétie :
Proposition 10.6.2. Soient k € R* et b € C. Soit f lapplication du plan dans lui méme qui associe
au point M(z) le point M'(2') tels que 2’ = kz +b.

— Si k=1, f est la translation de vecteur 4 d’affize b.

— Si k # 1, f est homothétie de rapport k dont le centre est l'unique point Q0 invariant (i.e.

b
solution de f(M) = M, c’est a dire aussi 2’ = z) d’affize w = %

Rotations
Soient € un point, § € R et r(€2,0) la rotation de centre €2 et d’angle . On rappelle que pour M # Q :

QM = QM,

r(Q,0) (M) = M' <= { @0 — 62

Les deux relations de définition s’écrivent en termes d’aflixes sous la forme :

' —w| = |z — wl,

arg(z — w) — arg(z — w) = 0[27]
ce qui se traduit en une seule relation équivalente :
2 —w=e%2—-w)

ou encore :

M =r(Q0) (M) = 2 =2+ (1—e)w
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2 =e? 24 (1 —e?)w est la forme complexe de la rotation (€2, 6).

. . 7T .
Exemple : 2/ = iz est la forme complexe de la rotation de centre O et d’angle 5 Ceci donne
une interprétation utile de la multiplication par ¢. Ainsi, deux rotations successives de centre O et

7
d’angle 5 appliquées & un point transforment ce point en son sysmétrique par rapport & O : c’est une

interprétation de la relation i = —1.

Pour reconnaitre une rotation :

Proposition 10.6.3. Soient a € U (i.e. |a] =1) et b € C. Soit f Uapplication du plan dans lui méme
qui associe au point M(z) le point M'(2') tels que 2’ = az +b.

— Sia=1, f estla translation de vecteur 4 d’affize b.

— Sia#1, f est la rotation d’angle @ = arg(a) et de centre est l'unique point 2 invariant d’affize

wzl—a'
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Chapitre 11

Géomeétrie élémentaire de 'espace

Objectifs : dans le contexte de la géométrie dans ’espace étudiée au lycée, sans construction théorique
préliminaire, donner la maitrise de quelques outils indispensables et de leurs applications : produit
scalaire, produit vectoriel, produit mixte, calculs d’angles, de distances, d’aires et de volumes...

11.1 Contexte général et rappels

On étudie dans ce chapitre la géométrie dans un ensemble £ qui est un modéle de notre espace physique
a trois dimensions et qu’on appellera « espace affine », ou plus simplement « espace ». On I'aborde dans
le méme esprit que dans ’enseignement secondaire, comme une donnée basée sur l'intuition. Il est en
lien étroit avec I'espace vectoriel R? via les coordonnées, de méme que le plan étudié au chapitre
précédent est en lien avec R?, comme on l'a vu.

Les objets de base sont ici les points, les droites et les plans, avec les notions de parallélisme et
d’othogonalité. L’espace est muni d’une distance telle que dans chaque plan on peut appliquer tous les
résultats du chapitre 10.

On étend a & les notions de bipoint, de vecteur, de vecteurs colinéaires et de norme d’un vecteur. Les
vecteurs de ’espace forment un ensemble noté ? et on définit pour ces vecteurs ’addition et le produit
par un réel, avec les méme régles de calcul que dans le plan : pour ces opérations, £ est un espace
vectoriel réel.

11.1.1 Droites et plans dans ’espace

Les droites, affines ou vectorielles, sont définies comme au chapitre précédent : U étant un vecteur non
nul, ’ensemble Vect = {A 7; A € R} est la droite vectorielle engendrée par . Lorsqu’on se donne
un point A et un vecteur non nul W Densemble

D(A, W) = {M €€, 3aeR, AM = a7},

est la droite affine dirigée par U et passant par A. Sa direction, par définition, est B = Vect .
On précise maintenent quelques notions utiles & I’étude des plans :

Définition 11.1.1. Soient @ et ¥ deux vecteurs de ? On appelle combinaison linéaire de Uet W
tout vecteur de la forme @ = a@ + b0 avec (a,b) € R2.

Définition 11.1.2. Soient @ et ¢ deux vecteurs non colinéaires de ? On appelle plan vectoriel
engendré par o et ¥ Pensemble Vect(ﬁ, 7) des combinaisons linéaires de ces vecteurs :

Vect(W, ¥) = {a + b7 ; (a,b) € R?}
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Proposition 11.1.1. Soient @', ¥’ deuz vecteurs d’un méme plan vectoriel P = Vect(ﬁ, 7) Si ces
vecteurs ne sont pas colinéaires, alors P = Vect(ﬁ’, 7')

/ —
Preuve : il existe des réels «,5, v et 0 tels que { g, B :g i ?77 Comme les vecteurs ne sont

pas colinéaires, on a , en vertu de la proposition 10.2.8,

:f g ‘ # 0 et on déduit du systéme précédent

0
(méme méthode que pour les systémes linéaires de réels) les égalités U = 53 U — 5 p 5 o’
ad — By ad — By
et U = T U — e 2. On en déduit alors qu’un vecteur W € B est combinaisin linéaire
ad — By ad — By
de U et ¥ si et seulement si il est combinaison linéaire de @’ et ¥, dou Vect(w’, ') = Vect(W, 7).
L]

Définition 11.1.3. On dit que trois vecteurs sont coplanaires s’il existe un méme plan vectoriel qui
les contient.

Remarque 11.1.1. Il résulte de la proposition 11.1.1 que si trois vecteurs sont coplanaires, deux
quelconques d’entre eux qui ne sont pas colinéaires engendrent un plan qui les contient tous les trois.

Définition 11.1.4. Soient A € £ et W, U des vecteurs non colinéaires. On appelle plan affine passant
par A et dirigé par Vect(ﬁ, 7) (ou plus simplement « par les vecteurs U et U ») 'ensemble

P(A,T,T)={Me€;3(a, ) R, AM = ol + 7).
On dit que des points sont coplanaires s’ils sont contenus dans un méme plan affine.

Remarque 11.1.2. Un plan affine est aussi décrit par la donnée de trois points non alignés. Le plan
(ABC) est alors le plan passant par A dirigé par (E,ﬁ) . A noter que l'ordre des points n’a pas
d’importance (exercice).

On a le résultat suivant, bien connu :

Proposition 11.1.2. Etant donnés une droite D et un point A non situé sur D. Il existe un unique
plan affine qui contient A et D.

Preuve : exercice.
Le lien entre vecteurs coplanaires et points coplanaires est celui-ci :

Proposition 11.1.3. Soit O uwmt queconque de &€ et 7, 7, W trois vecteurs. Soient alors A, B
et C les points définis par U =0A, ¥ = O?, W= O?>' Alors :

7, 7, w coplanaires <= O, A, B, C coplanaires

Preuve : supposons que les vecteurs soint coplanaires. Si v // 7 alors les points O, A et B sont
alignés, c’est a dire sur une méme droite D. Comme il existe un plan qui contient D et C' (unique
si C ¢ D) on conclut que les quatre points sont coplanaires. Si au contraire U et U ne sont pas
colinéaires, alors ils engendrent un plan vectoriel ? auquel appartient w par hypothese. Il existe donc
des réels a et B tels que W = a, vectu + BV, clest a dire OC = a OA + S0OC, ce qui prouve que
C € P(O, A, B) et donc que les quatre points sont coplanaires.

La réciproque est laissée en exercice. [
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FIGURE 11.1 — Points et vecteurs coplanaires

11.1.2 Bases, repéres cartésiens de ’espace

Les notions rappelées au chapitre 10 s’étendent comme suit :
e N L , . — = Ty .
Définition 11.1.5. Un repére cartis>1en de l'espace & est un triplet (O, i, j, k) ot O est un point,
— =
J,k

appelé origine du repére et (i, ) un triplet vecteurs non coplanaires, appelé base de ?

- = =
Proposition 11.1.4. Soit (O, i, j, k) un repére cartésien de l’espace. Alors :

e - = =
(a) pour tout point M € & il existe un unique triplet de réels (z,y, z) tel que OM =x i +y j +=z i,
- 75
(b) pour tout vecteur U e ? il existe un unique triplet de réels (x,y, z) tel que U=z +y j+z k.
x
On notera (de préférence) M(z,y,z) et U | y
z

On ne démontrera pas ces résultats.

11.1.3 Produit scalaire

Comme dans le plan, le produit scalaire euclidien de deux vecteurs U et U est le réel noté o - ¥ défini
par
77:{0 517:6>0117:6>7
I 4 I K | cos@  sinon,

ou 0 est I’écart angulaire (ou angle géométrique) de ces vecteurs dans tout plan les contenant (ce plan
vectoriel est unique si les vecteurs sont non colinéaires). Rappelons que cet écart angulaire est noté
(ﬂ) L’inégalité de Cauchy-Schwarz (proposition 10.2.1) reste bien star valable.

On rappelle que les résultats de géométrie plane sont supposés valables dans tout plan (vectoriel ou

affine) de I'espace. On a toujours :
Ul =W -V =0.

Projection d’un vecteur sur un axe : les définitions et formules de la section 10.2.5 du chapitre
10 sont valables, sans changement, dans I’espace.

11.1.4 Mesures d’angles dans ’espace

I1 existe une obstruction théorique a la définition et la mesure d’un angle orienté (7, 7) : observons
simplement que si on dessine un angle droit direct sur une vitre (avec 'orientation qui nous semble
usuelle), il nous apparaitra comme indirect si on I'observe depuis l'autre coté ...

Il nous faudra donc une méthode pour décider de l'orientation d’'un plan de ’espace et ainsi lever
I’ambiguité.

Par contre, on a vu que ’on sait définir un écart angulaire, ou angle géométrique (celui du rapporteur!).
En utilisant le produit scalaire on a immédiatement le résultat suivant, applicable pour des calculs
effectifs :
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Proposition 11.1.5. Soient U et U deux vecteurs non nuls de l’espace. L’écart angulaire, ou angle

géométrique, de ces vecteurs est 'unique réel 6 de l'intervalle [0, | tel que cosf = EACAR

On peut également définir un écart angulaire (ou angle géométrique) de deux droites D(A,ﬁ) et

77
D'(B, ') comme l'unique réel 6 de Dintervalle [0, I] tel que cos = | , en effet ce nombre
2 1 17 |

ne dépend pas du choix du couple (7, ¥') de vecteurs directeurs (exercice). On le note (D, D).

On notera qu’il s’agit toujours d’ un « angle aigu ».
Deux droites D et D’ sont orthogonales si et seulement si (D, D’) = 3
Deux droites D et D’ sont paralléles si et seulement si (D, D) = 0.

11.1.5 Bases et repére orthonormaux

%
Unebase(z,j,
%
Un repére (O, i ,
Une base (i, j, k) est orthonormale si elle est orthogonale et si les vecteurs de base i, j, k sont
de norme 1. Un repére est orthonormal si la base correspondante est orthonormale.

En appliquant le théoréme de Pythagore deux fois, on démontre, que dans une base orthonormale,

on a pour  (z,y, 2),
I [l= v/a? +y? + 22

- = = : :
Si dans une base orthonormale (7, j, k), on a @ (z,y,2) et ¥ (z,y/,2'), on a immédiatement

),
e=T -, y=T-F, =17 F.

. - =
) est orthogonale si les vecteurs 7 , ] et k sont deux a deux orthogonaux.
— . —
, k) est orthogonal si la base (4 ] k:) est orthogonale.

t (admis)
’7-7:xx'+yy'+zz'
x 2
Remarque 11.1.3. Sionpose A = [y | et A = [ v/ |, on a également @ - ¥ = fAA =
z 2
x/
( x oy z ) y' | ainsi que | W ||?= TAA.
/
z

11.1.6 Orientation de P’espace, repére orthonormaux directs

On observe expérlmentalement (la théorie sera faite plus tard) que si on veut superposer deux repéres
orthogonaux (O, 1,7, k) et (O, i _'>’ J', k') sans les déformer, alors une fois qu'on a amené O’ sur
O, puis 7' sur 7) puis j sur j, onasmt k= ?, soit k'=—k.

Une fois fixé un repére orthogonal, on peut donc classer tous les autres en deux catégories : ceux pour
lesquel_s> k' = k, et on dit que les deux repéres définissent la méme orientation, et ceux pour les
quels k' = — k.

On oriente l'espace en fixant arbitrairement un repére orthogonal, et on dit qu'un repére est ortho-
normal direct ¢’il a la méme orientation que le repére de référence.

L’orientation usuelle est définie par la régle du bonhomme d’Ampére ou, de maniére équivalente, par la
régle des trois doigts ou celle du tire-bouchon : http://uel.unisciel.fr/physique/outils_nancy/
outils_nancy_ch03/co/apprendre_03_03.html
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Par exelﬂale, le bonhomme d’ampére qui est imaginé debout sur le plan (O, ?, 7) et pour lequel le
vecteur k pointe vers le haut, a le vecteur j a sa gauche s’il regarde dans la direction de i .

Sur la figure 11.2 ci dessous les repéres (A,E,E,ﬁ) et (E, ﬁ, ﬁ,E—ﬁ), par exemple, sont
directs pour l'orientation usuelle. Le repére (C,CG,C ,Cﬁ) est indirect.

H G

A B

FIGURE 11.2 — Repeéres orthonormauz directs

Abréviations : on écrira parfois « b.o.n.d. » pour base orthonormale directe et « r.o.n.d. » pour
repére orthonormal direct.

11.1.7 Orientation d’un plan de I’espace

Définition 11.1.6. Soit P un plan de £. Un vecteur non nul 77 est dit normal a P s'il est orthogonal
a tous les vecteurs de P.

Pour orienter un plan, on commence par se donner une orientation de ’espace, puis on choisit un

vecteur unitaire 77 normal au plan (deux choix possibles). On oriente alors le plan a 'aide du repére

orthonormal (i, j ) tel que (i, j ,ﬁ) soit une base orthonormale directe de ’espace.

On dit que le plan est orienté par le vecteur normal 7. En fait, on peut se donner un vecteur
qui n’est pas de norme 1 pour définir 'orientation : on se raméne facilement au cas précédent.

_>
7

La phrase « La mesure de ’angle (7, 7) dans le plan orienté par 7 est —w/3 » a alors un sens précis.

i

FIGURE 11.3 — Orientation d’un plan par un vecteur normal de l’espace orienté

 —

On dit plus généralement que (7, o, ﬁ)) est une base directe si 'angle (7, 7) dans le plan orienté
par 7 est dans l'intervalle [0, 7].
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%
Le bonhomme d’Ampére, debout sur le plan dans la direction verticale donnée par k et regardant
dans la direction de ¥ a le vecteur o qui pointe dans le demi-plan qui est & sa gauche.

Nous utiliserons cette généralisation dans la définition du produit vectoriel.

11.2 Produit vectoriel

Définition 11.2.1. Le produit vectoriel dans ? est I’application ? X ? — ? qui associe & un couple
(¥, ) un vecteur noté¢ @ A v défini comme suit :

— si I'un des vecteurs 7, 7 est nul alors W A ¥ = ﬁ,
— sinon, W="TuUAT est tel que :

(a) W Lu, WL,

(b) (W, 7, ) est une base directe,

(© 1% = @ || ¥ || sinb, on 6 = (T, 7).

Remarque 11.2.1. On peut aussi écrire | @ ||=| o ||| 7 | ‘sin(ﬁ, )|, ot (¥, V) est une mesure

de I’'angle orienté du couple (7, 7) dans un plan les contenant et orienté de fagon arbitraire (bien
noter la présence de la valeur absolue).
Si les vecteurs ne sont pas colinéaires, ils engendrent un plan que 'on peut orienter & 'aide de W

comme (7, o, E?) est une base directe, la mesure principale 6 de I’angle (7, 7) est dans [0, 7] et donc
sin@ > 0, ce qui permet dans ce cas d’omettre la valeur absolue.

Interprétation géométrique : aire d’un parallélogramme ou d’un triangle

Proposition 11.2.1. Soit ABDC' un parallélogramme d’un plan P de ’espace. Son aire est donnée
par :

A(ABDC) =|| AB A AC |

L’aire du triangle ABC' est donnée par :

A(ABC) = % | AB A AC |

Preuwve : la preuve peut étre calquée sur celle de la proposition 10.2.3 ot on calcule I'aire du triangle.
On remarque simplement que 'aire du parallélogramme est le double de celle du triangle. [
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= Nl < |7 cosd

FIGURE 11.4 — Produit vectoriel

Exemple : soient A(1,0, I)E> (2, ), (0,4, ) le trlangle ABC est-il rectangle en B 7 Quelle est
son aire ? Réponse : On a BA(1 ) @
— — -8
BABC =—-11#0, BAABC = | -2
3

|
-

1
Le triangle ABC n’est donc pas rectangle en B et son aire est —v/82 + 22 + 32 =

Une autre application géométrique : construction d’un vecteur normal & un plan

Proposition 11.2.2.
Soit P(A, 7, 7) un plan. Le vecteur W =UNT est un vecteur normal a ce plan.

Preuve : tout vecteur de ce plan est de laforme W =a W +b7.Or - W =a®W - U +b7W -7 =0
car LW et WLV, n

On étudie maintenant les propriétés du produit vectoriel.

Proposition 11.2.3.
Si W et U sont orthogonauz et unitaires, alors (7, v, U A 7) est une b.o.n.d. de ?

Le produit vectoriel est donc un outil pour construire facilement des bases orthonormales directes.
On vérifiera par exemple que si (i, j, k) est une b.o.n.d. alors :

- = = = = = = = =
iNf=K, jAk=1,kANi=7].

A A\ N

9 9

Comme conséquence directe de la définition on a :

Proposition 11.2.4. Deux vecteurs de l’espace sont colinéaires si et seulement si leur produit vec-

toriel est nul :
UV = UANT =

Voici les régles permettant de manipuler le produit vectoriel :
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Proposition 11.2.5. Soient 7, U et W des vecteurs de Uespace et (o, B) des réels. Alors :
— antisymétrie du produit vectoriel :

TAU=-UNY

(le produit vectoriel n’est donc pas commutatif)
— propriétés de bilinéarité :

UNTV+TB)=TdAT +U AN,
(U+NANT=UANT+T A,

(distributivité par rapport a l’addition)
(a)AT =a(d ANT),
UN(BY)=B(AT),

Preuve : la premiére propriété et les deux derniéres sont aisément justifiables & partir de la définition.

Nous admettrons les autres. ]

Exercice : on vérifiera a partir des définitions que l'on a :

| AT PP - (- )

/

x x
Proposition 11.2.6. Soient v y |, o y' | dans une b.o.n.d., alors
/
z z

— - —
UNT =2 —y'2) i + (22’ —22) j + (xy) —2'y) K
c’est a dire encore :

— z z
1+
x

TAT |V Y
z Z/

Preuve : on applique les propriétés de bilinéarité en tenant compte de aAnd =0 :
- = > - =
UNYT = (i +yj+zk)n(@ @ +y j+2 k)
- T - T - - - L - T T
= axy i ANjHxz i ANk +yxr' j ANt +yz g ANk +zo bk ANi +2zy kAN j

et on termine en calculant chaque produit vectoriel avec 'aide du bonhomme d’Ampére, toujours
serviable. -

Exemple : on présentera souvent les calculs, par commodité, en ne faisant figurer que les matrices
colonnes des coordonnées. Ainsi,

2 2
1 -1
1 0 0
2 1Al 2 | = 151 =11
1 -1 2
1 0
-2 2
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Comme le produit vectoriel de deux vecteurs est un vecteur, cela a un sens de se poser la question de
I’associativité, or on a le résultat suivant :

Proposition 11.2.7 (Double produit vectoriel). Soient U, U et W des vecteurs de l’espace, alors :

UNTAD =" - )V —(d- )W

Preuve : on peut établir ce résultat en la vérifiant a partir d’'un calcul de coordonnées utilisant la
proposition 11.2.6. Les calculs sont fastidieux sauf si on utilise une b.o.n.d adaptée, construite & partir
des vecteurs donnés. [

On peut en déduire la non associativité du produit vectoriel car on a par exemple :

— —

TAGAR) =T A=) =—Fk,

tandis que SN N
(TAANE)=0AKE =0.

11.3 Produit mixte, déterminant

Définition 11.3.1. On appelle produit mixte I’application ? X ? X ? — R qui & un triplet (7, , E?)
de vecteurs de I'espace associe le réel

(W, 7, W)= (dAY) W

Remarque 11.3.1. Le produit mixte, comme le produit vectoriel, dépend de 'orientation : un chan-
gement d’orientation change le produit mixte en son opposé.

Une interprétation géométrique : volume d’un parallélépipéde

Proposition 11.3.1. Soit (ABCDEFGH) un parallélépipéde, avec ﬁ = ﬁ = C@ = ﬁ;

Ez@zﬁzﬁ,’A =ﬁ=ﬁ=ﬁ. Son volume est donné par :

V(ABCDEFGH) = |[AB, AD, AE)|

FIGURE 11.5 — Volume d’un parallélépipede
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Preuve : le volume du parallélépipéde est donné par le produit de l'aire de la base (ABCD) par la
hauteur relative & cette base :
V = A(ABCD) x AK

Or on a : A(ABCD) x AK =| AB A AD || xAK = |(AB A AD) - AK| = |(AB n AD) - AE| =
[4B, 4D, AE]|. .

Le produit mixte donne un critére simple pour savoir si des vecteurs sont coplanaires :

Proposition 11.3.2. Trois vecteurs 7, 7, W sont coplanaires si et seulement si [7, 7, w] =0.

Preuwve : si U AT = 0 , 'équivalence est immédiate. Sinon la nullité du produit mixte équivaut a
WL WAV, done a I’orthogonalité des trois vecteurs 7, 7, 7 4 un méme vecteur non nul @ = AV
donc au fait d’étre dans le méme plan vectoriel de vecteur normal . [

En utilisant les propriétés du produit scalaire et du produit vectoriel on onbtient immédiatement :

Proposition 11.3.3.
Soient @, W', U, V', W et W' des vecteurs de Uespace et (a, B) des réels. Alors :

— [’échange de deux vecteurs change le signe du produit mizte.
Par ezemple [7,7, ﬁ] = —[7,7, ﬁ],

— le produit mizte est invariant par permutation circulaire :
(7,7, W) = [V, 0, d] = [W,d, V]
— propriétés de trilinéarité
[0 + U, U, W] =a[W, 7, W)+ p[', 7, D),

(@, + A7, W) =a[W, 7, W)+ B[, V', &),
(7,7, oW + '] = o[W, V, W) + B[, U, W]

Remarque 11.3.2. L’invariance du produit mixte par les permutations circulaires et la commutativité
du produit scalaire permettent de I’écrire indifféremment sous les formes suivantes :

(7,7, W) =AY B =7 (VAT

De la proposition 11.2.6 et de la définition du produit mixte on déduit le calcul du produit mixte dans
une b.o.n.d. :

T T x
Proposition 11.3.4. Soient, dans une b.o.n.d., les vecteurs 0 y |, o v, W y" |. Alors :
2 Z/ Z”
@, 7, 8] == y 4| ? 4 L7 z’ (11.1)
’ ’ Z/ T SU/ y Z/ .
En développant, on trouve
(W, 0, W] = ay' 2" +y'a" + za'y — a2y —ya' 2" — 22 (11.2)
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r x T
Définition 11.3.2. On appelle déterminant de la matrice M = [ y 3 " | € M3(R) le réel noté
z z oz

T x/ x//
detMou|y v " |défini par :
= Z/ Z//
y z 2 x 2
detM = 2" 7 |+ 2 , (11.3)
z z y z
— xylzll + yzlxll + Z.I'/y// _ ley// _ yxlzll _ zylmll (114)

Remarque 11.3.3. Dans la formule (11.3), les deuxiéme et troisiéme termes s’obtiennent a partir du
premier par permutations ciculaires de la forme z — y — z — .

Ce déterminant peut donc s’interpréter comme le produit mixte des vecteurs dont les coordonnées dans
une b.o.n.d. sont données par les trois colonnes de M.
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On constate facilement a partir de la formule développée (11.4) que det M = det *M :

r r x r Yy z
y y Y=l Y 7 (11.5)
~ ZI Z// x// y/l Z”

L’écriture du déterminant sous la forme (11.3) s’appelle « développement suivant la troisiéme colonne ».
On peut en fait avoir des formules analogues en développant suivant n’importe quelle ligne ou colonne
suivant le principe suivant :

— On affecte a chacun des 9 emplacements dans le tableau du déterminant un signe obtenu en
affectant le signe + en ligne 1-colonne 1 (L;C1) et en parcourant le tableau d’une ligne ou
colonne & la fois en changeant le signe : le signe affecté a L;C; est (—1)"*7. On obtient :

+ - +
— _.I_ —
+ - +
— si on décide par exemple de développer suivant la deuxiéme ligne, on écrit le déterminant, en
tenant compte de ces signes, sous la forme det M = —ya+y b —y" c avec :
xl ” T I'” T ZL'/
a fry = pr
Z/ 1! o Z” P Z/

Le coefficient de y, terme de (LyoC1), est le déterminant obtenu quand on a rayé la ligne L2 et
la colonne C] etc...

Remarque : la formulation (11.3) ne comporte que des signes + car on a préféré modifier le détermi-
nant en échangeant les deux lignes, de facon a procéder par permutations circulaires. Chacun utilisera
la méthode qui lui convient.

N’importe laquelle des formules obtenues donne (11.4) a lordre prés des termes, ce qui suffit a les
justifier.

Conformément & ce qui a été vu pour le produit mixte :

- quand on permute deux lignes ou deux colonnes, on change seulement le signe du déterminant,

- si on fait des permutations circulaires des lignes ou des colonnes, on garde la méme valeur.

De la propriété suivante du produit vectoriel
UNT =U ANV +adl)

on déduit qu'on peut ajouter a une colonne un multiple d’une autre sans changer la valeur
du déterminant.

Gréce a (11.5), on a la méme propriété avec les lignes.

182



11.4 Droites et plans en géométrie analytique

11.4.1 Représentations paramétriques

Il découle immeédiablement des définitions vues en section 11.1.1 qu’une représentation paramétrique
Ty

de la droite passant par A(xa,ya,z4) de vecteur directeur w0 Yu | est donnée par
2y

T=TA+Qxy,
M(az,y,z)GD(A,ﬁ)@ElozER, Y =1yYa+ayy
Z2=2ZA+ 2y

De méme, on a

T=TA+axy+ By
M(SE,y,Z)EP(A,ﬁ,?)@H(O&,IB)€R2, y:yA+ayu+6yv
z=za+azy+ B2z

ce qui est par définition une représentation paramétrique du plan P(A, u, 7)
Pour les plans, on a donc besoin de deux paramétres indépendants.

11.4.2 Equations cartésiennes

Par « équation(s) cartésienne(s) » on entend une condition nécessaire et suffisante portant sur les
coodonnées d’un point pour que ce point appartiennent a ’ensemble étudié (ici, droite ou plan).

On a deux fagons d’obtenir de telles équations. L’une consiste & écrire les équations paramétriques et
éliminer les paramétres, 'autre a écrire des relations de colinéarité ou d’orthogonalité en utilisant les
outils que sont le produit scalaire, le produit vectoriel et le produit mixte.

On a choisi de les présenter sur des exemples :

1
Exemple 1 : soit D(A, 7) avec A(1,2,3) et % | —1 |. Une représentation paramétrique est alors
2
r=14+a«
y=2—-—a ,a€eR
z =342«

Il s’agit de trouver nécessaire et suffisante sur les coordonnées pour que le point M(x,y,z) appar-
tiennent & D, donc pour que « existe. On considére donc le systéme ci dessus comme un systéme de
trois équations linéaires a une inconnue «. Il équivaut a

a=x—1
y=2-(z-1)
z2=3+2(xz—-1)

Il admet donc la solution unique o = x — 1 si et seulement si les conditions de compatibilité données
par les deux derniéres équations sont satisfaites. Autrement dit :

r+y—3=0

Ce systéme de deux équations constitue un systéme d’équations cartésiennes de D.
Cette méthode d’élimination du paramétre est la plus efficace pour les équations de droites dans
I’espace.
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Exemple 2 : soit P(B,ﬁ,?) avec B(1,2,-3), 4 =1-1] 7= 1 |. Une représentation
1 1
paramétrique de ce plan est :
r=14+a—-p
y=2—a+p ,aelR
z=-3+a+p

Un point M(zx,y, z) donné est dans le plan si et seulement si il existe un couple (o, 3) solution de ce
systéme de trois équations linéaires a deux inconnues. Il équivaut &

20=x—1+2+3 (L1+L3)
26=z+3—xz+1 (Ls— L)

1 1
y:2—§(x+z+2)+§(—:c+z+4)

La condition de compatibilité est donnée par la derniére équation qui se simplifie en x +y —3 = 0. On
a montré

M(z,y,z) e P(B,d, V) e x+y—3=0

Cette derniére équation, obtenue par élimination des paramétres « et (3, est une équation cartésienne
de P. Observons que si on n’avait su qu’on obtiendrait a priori une seule équation, ce qui sera établi
plus loin, U'opération Ly + Lo aurait directement fourni I’équation cherchée.

Exposons maintenant une autre méthode ne passant pas par une représentation paramétrique. On sait
que M € P(B, 7, 7) si et seulement si BM, 7, o sont coplanaires et donc si et seulement si

[BM,d, V] =0
C’est a dire
T —TB Ty Ty

Y—YB Yu Yo |=0
22— 2B Zy 2y

qui fournit, en le développant suivant la premiére ligne :

Yu Yo
Zy 2y

Zu  Rv
Ty Ty

(x—2zB) + (v — yB) + (2 — zB) =

Ty Ty
Yu Yo

Ceci est une équation cartésienne du plan. On pourra poursuivre les calculs et constater qu’on obtient
une équation équivalente a la précédente.

Exemple 3 : trouver une équation cartésienne du plan P passant par A(1,—1,2), B(2,1,3), C(1,1,1).

La question sous-entend que les trois points définissent bien un plan, donc ne sont pas alignés, ce qu’il
1

faudra vérifier. On calcule deux vecteurs directeurs, par exemple zﬁ 2 | et z@ 2 |. On calcule
1 -1

les coordonnées de E A 1@ :

1 0
E/\m: 2 1Af 2 = 1

1 -1 2

Le produit vectoriel n’est pas nul, les trois points ne sont donc pas alignés et définissent
bien un plan. On a alors

[AM,AB,AC) = AM - (AB AAC) = ( — 1)(—4) + (y + 1)1 + (2 — 2)2
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-
On obtient donc une équation cartésienne du plan en écrivant la condition pour que les vecteurs AM,
ﬁ et 1@ sont coplanaires :

M(z,y,2) € P<= —4x+y+22+1=0.

Remarque 11.4.1. Posons = E A 1@ : on a obtenu une équation cartésienne du plan passant
pas A et de vecteur normal 7 car la relation [AM, B, zﬁ} = 0 équivaut & AM - 7 =0. On peut
partir de cette relation pour obtenir une équation cartésienne.

On a obtenu & chaque fois une expression du type ax 4+ by + cz + d = 0, ce qui est général :

Proposition 11.4.1.  Soit (a,b,¢,d) € R et E = {M(x,y,2) € £; ax +by+cz+d = 0}. Alors :

— si (a,b,¢) =(0,0,0) et d#0 on a E =10,
— si (a,b,¢) =(0,0,0) etd=0o0onaE=E¢,
— si (a,b,¢) #(0,0,0) alors E est un plan de vecteur normal W(a, b,c).

Preuve : les deux premiers points sont immédiats. Pour le troisiéme, si par exemple a # 0 on trouve

un point de FE sous la forme A(——,0,0) et en retranchant membre & membre I’équation de E et I’égalité

arg + bys + cza +d =0 on obtient
a(r—z4)+b(y—ya)+c(z—24)=0

—
que l'on peut interpréter sous la forme - AM = 0, ce qui permet de conclure. [

Un plan donné n’a pas une seule équation cartésienne, en effet :

Proposition 11.4.2. Deux équations cartésiennes ax +by+cz+d=0cetdx+by+dz+d =0
avec (a,b,c) # (0,0,0) et (a',b', ") # (0,0,0) définissent le méme plan si et seulement si (a,b,c,d)
et (a',V',c,d") sont proportionnels

Preuve : méme démonstration que dans le plan, avec une coordonnée en plus (exercice). [

On peut maintenant interpréter les équations cartésiennes d’'une droite. On a vu que ces équations
consistent en un systéme :
ar +by+cz+d=0
(S)S o
adr+by+cz+d =0

Elles consistent donc & écrire que la droite est ’intersection de deux plans : le plan P d’équation
cartésienne ax + by + cz = 0 et le plan P’ d’équation a’z + b’y + ¢’z +d = 0. Comme tout vecteur de
P est orthogonal a ﬁ}(a, b,c) et tout vecteur de P’ est orthogonal & ﬁ’(a' U, '), on obtient que tout
vecteur directeur de D est orthogonal & ﬁ(a, b,c) et a ! (a',¥,c), donc colinéaire & ﬁ = AT
On a donc obtenu :

!/
a a
Le vecteur Nz b | Al b | estun vecteur directeur de la droite représentée par (S).
/
c

Ceci fournit un moyen, pour une droite, de passer facilement des équations cartésiennes & une repré-
sentation paramétrique.
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Exemple : on considére la droite D représentée par le systéme d’équations cartésiennes

2r+y—2+1=0
r—y+z2+2=0.

En donner une représentation paramétrique.
Pour trouver un point de D, on choisit une coordonnée z = 0 par exemple, et on résout le systéme
obtenu :

20 4+y=—1
T—y=—-2
soit z = —1, y = 1. Le point A(—1, 1,0) appartient donc & D. Puis on calcule un vecteur directeur
2 1 0
1 |Al -1 )|=1|-3
-1 1 -3

et, éventuellement, on choisit un vecteur directeur plus simple, ici 7(0, 1,1). On obtient alors une
représentation paramétrique de D (cf le paragraphe 11.4.1) :

z=-—1
y=14+a ,aeR
zZ=«

La méthode aboutit si le vecteur directeur trouvé n’est pas nul. Dans le cas contraire on a 70 // 7 et
les plans sont paralléles ou confondus. On en déduit

Proposition 11.4.3. Le systéme

(S) ar+by+cz+d=0
dr+by+dz+d =0

représente une droite si et seulement si (a,b,c) et (a’,b',c') ne sont pas proportionnels. C’est a dire

a a
Al Y | #

ol

Preuve : elle sera faite dans la section suivante.
Attention : dans un plan, une droite est définie par deux équations paramétriques avec un paramétre
ou par une équation cartésienne.
Dans 'espace, une droite est définie par trois équations paramétriques avec un paramétre ou par deux
équations cartésiennes.
Dans l’espace, un plan est défini par trois équations paramétriques avec deux parameétres ou par une
équation cartésienne.
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11.4.3 Intersections : plans et droites

Intersection de deux plans

Proposition 11.4.4. Soient P un plan d’équation ax + by + cz +d = 0 et P' un plan d’équation
dz+by+dz+d =0, alors :

/!

a a
— si(a,b,c) et (a',V,c) ne sont pas proportionnels, i.e. si ﬁ =7 | b AT [V | £ 0, alors
/
c c

PN P est une droite D dirigée par ﬁ et admettant comme systéme d’équations cartésiennes

ax +by+cz+d=0
dr+Vy+dz+d =0

— si(a,b,c,d) et (a',b, ', d') sont proportionnels, les deuz plans sont confondus : PNP' = P =
P

— si (a,b,c) et (a',b,c") sont proportionnels et si (a,b,c,d) et (a',b',c,d’) ne sont pas propor-
tionnels, on a PN P’ =0 : les plans sont strictement paralléles.

P//P  PNP =

FIGURE 11.6 — Intersection de deux plans

b v

Preuve : si (a,b,c) et (a/,b,c") ne sont pas proportionnels, un des déterminants p
c c

)

a
b v

!/
a
)

!/ !/

ou est différent de 0. Si par exemple = 0, on écrit que le systéme est équivalent &

a
C

a a
/ /
C C

ar +cz = —by —d
{ de+dz=-by—d
On a vu (chapitre 9) qu’alors on peut exprimer (z,y) en fonction de z qui joue le role de paramétre.
On vérifie ainsi qu’il y a une infinité de solutions dépendant d’un paramétre : c’est une droite.
Si (a,b,c) et (a',b', ) sont proportionnels, il existe k # 0 tel que a’ = ka, b’ = kb, ¢’ = ke, le systéme
d’équation est équivalent a

ax+by+cz+d = 0
d—kd = 0 Ly—kIL;

Sid —kd =0, alors (a,b,c,d) et (a',V/,c,d') sont proportionnels, les deux équations sont équivalentes,
les deux plans sont confondus.
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Si d — kd # 0, le systéme n’a pas de solution, l'intersection des deux plans est vide, les plans sont
strictement paralléles. [

Intersection d’un plan et d’une droite

Soient P un plan d’équation ax + By + vz + & = 0 et D une droite ayant pour systéme d’équations
cartésiennes
ar +by+cz+d=0
{ dr+by+cdz+d =0

Un point M(x,y, z) est commun & P et & D s’il vérifie le systéme de trois équations linéaires & trois
inconnues

ar+Py+yz+0=0
ax +by+cz+d=0
dr+Vy+dz+d =0,

les deux derniéres n’étant pas équivalentes.

On résoudra ce systéme par la méthode de Gauss.
On sait (cf chapitre 9) qu’un tel systéme a soit une unique solution, soit aucune soit une infinité
dépendant d’un paramétre, on retrouve ainsi que :
Dans l’espace, l'intersection d’un plan et d’une droite est soit
— un point : la droite et le plan sont sécants,
— la droite elle méme : la droite est incluse dans le plan,
— D’ensemble vide : la droite et le plan sont strictement paralléles.

D
/D
/ / DcCP / /A
P P P
PND=10 PnD=D PHDZ{A}
P//D P//D

FIGURE 11.7 — Intersection d’une droite et d’un plan

On dispose d’un critére simple pour savoir si une droite et un plan sont sécants, sans nécessairement
trouver le point d’intersection :

Proposition 11.4.5. Avec les notations précédentes, le plan et de la droite sont sécants si et seule-
ment st

a B v
a b c¢l|#0
ad b

Preuve : on sait qu'un vecteur directeur U de la droite est donné par U =T AT avec T et
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a Q@
7' | ¥ |. Soient ﬁ B | un vecteur normal au plan, A un point de la droite, B un point du plan.

c gl
MePND < 3aeR, AM = @ et BM - N =0.
En écrivant B—]\>/[ :EMW on en déduit :
MePND<=3aeR BA-N+a@-N =0

L’existence et I'unicité de M équivaut a ’existence et 'unicité de «, ce qui est réalisé si et seulement

si le coefficient de «, c’est & dire o - N), est non nul. Ce coefficient est le produit mixte [N), it _>'] il
a a d

est donc égal au déterminant | 3 b b |. [
v oc

On en déduit un résultat important :

Proposition 11.4.6. Une matrice A de taille 3 x 3 est inversible si et seulement si det A # 0. ‘

Preuve : on sait qu'une matrice A est inversible si et seulement si le systéme linéaire AX = B
admet une et une seule solution pour tout second membre B. Il suffit d’interpréter ce systéme comme
I'intersection d’un plan donné par la premiére équation et d’une droite donnée par les deux autres.

Corollaire 11.4.1. Un systéme linéaire AX = B de taille 3 x 3admet une solution unique si et
seulement si det A # 0.

Intersection de deux droites dans ’espace

Deux droites de I’espace D et D' ne se coupent pas en général. En effet :

Proposition 11.4.7. Si deuz droites de l’espace sont sécantes, elles sont coplanaires.

Preuve : soient A = DN D, W un vecteur directeur de D, U un vecteur directeur de D’ , il est
immédiat que D et D' sont dans le plan P (A4, U, 7) n

Il existe un critére simple pour savoir si deux droites sont coplanaires.

Proposition 11.4.8. Soient l_)_(il ) et D (A/ V) deuz droites de l’espace. Alors D et D' sont
coplanaires si et seulement si [AA', W, V] =

Preuve : si les droites sont coplanaires alors les vecteurs AA U et U le sont et donc leur produit

mixte est nul. Réciproquement supposons que [AA’ U, V] = 0. Si W//V les droites sont paral-
leles donc coplanaires, sinon on considére le plan P(A, 7, 7) Ce plan contient évidemment la droite
D(A, ) et on veut montrer qu’il contient aussi D'(A", 7).

—
Soit donc M € D' : INeR, AAM =\" eton a:
(A4, 7, T = [AM — AM, 7, 7] = [AM =T, 2,7 = [AM, 7, 7] = 0

ce qui prouve que M € D’ et ainsi on a D’ C P. Les deux droites sont dans P donc coplanaires.
|
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Si les droites sont coplanaires, il y a deux cas de figures : si U // o les droites sont dites paralléles,
sinon, elles sont séantes et ont un et un seul point d’intersection.

Exemple 1 soient D donnée par les équations cartésiennes

r+y+2+1=0
2r—y+2—1=0

et D' donnée par
r—2y+324+1=0
r—y+2z—-2=0

/ .
D et D’ sont-elles sécantes 7
On est conduit a considérer le systéme de 4 équations linéaires & 3 inconnues

r4+y+z+1=0

2t —y+2—1=0
r—2y+324+1=0
r—y+2z—2=0

qu’on résout par la méthode de Gauss

T 4+ y + z 4+ 1 =0
-3y + =z — 1 = 0 Ly—2I,4
-3y + 2z = 0 Ls—1Iy
-2y + =z — 2 =0 Ls—1I4
permutation de y et z :
r + z + =z + 1 =0
z 4+ =3y — 1 =0
2z + =3y =0
z 4+ 2y — 2 =0
élimination de z :
zr + 2z + =z + 1 =0
z + 3y — 1 =0
-3y + 2 = 0 L3—2Ls
Y -3 =0 L4 — LQ

Les deux derniéres équations sont incompatibles : D et D’ ne se coupent pas.

L’utilisation du produit mixte nécessite de
1. Calculer les coordonnées d'un point A de D et d’un point A" de D’
2. Calculer les vecteurs directeurs de D et D’
3. Calculer le produit mixte.

et peut s’avérer plus longue que 'approche directe qu’on vient de voir :

5
—
1. on trouve facilement A(0,—1,0) € D, A’(5,3,0) € D" et donc AA" | 4
0
1 2 2
2. coordonnées d’un vecteur directeurde D : | 1 | A | =1 | = 1
1 1 -3



3. coordonnées d’un vecteur directeur de D' : | =2 | A | =1 | = 1
3 2 1
) ) > 1 1 -1 2 1
4. Calcul du produit mixte : |4 1 —1|=5 —4 = —33.
0 -3 9 -3 2 -3 2

Conclusion : le produit mixte est différent de 0, les droites ne se coupent pas.
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Exemple 2

Soient D(A, ) avec A(1,2,1), ©(1,2,—3) et D'(B, V) avec B(1,—1,2), ¥ (2,-2,1), D et D' sont-
elles sécantes 7

On a
r=14+«
M(z,y,2) € DA, ) < 3aeR, { y=2+2a
z=1-3«
x=14+20
M(z,y,2) e D(B, 7)< 3BeR,{ y=—-1-28
z=2+p

On en déduit que sM € DN D’ si et seulement si il existe (a, 3) € R? tels que

l+a=1+28
2420 =-1-283
1-3a=2+0

qui est un systéme de 3 équations linéaires & 2 inconnues :

a—26=1
20+ 28 = -3
3a—f=2

On obtient :

a — 28 =1
68 = —5 Lo—2L
56 = —1 L3—3L;

Les deux derniéres équations sont incompatibles : D et D' ne se coupent pas.

L’utilisation du produit mixte est ici plus rapide.

1 2 —4
On calcule WA W = 2 IN|l =2 |=|-7]4# ﬁ : les droites ne sont pas paralléles. On calcule
-3 1 —6
0
alors AB | —3 | et le produit mixte [ﬁ, U, V] = 0.(=4) 4 (=3).(=7) + 1.(=6) = 15 # 0 : les droites
1

ne sont pas coplanaires, donc pas concourantes.

11.4.4 Droites et plans : orthogonalité et perpendicularité

Il y a souvent une certaine confusion entre les notions d’orthogonalité et de perpendicularité. On se
propose de les préciser et de donner des critéres. On pourra aussi consulter :

https://fr.wikipedia.org/wiki/Perpendicularité

Nous commengons par des exemples puis nous énoncons les définitions et les critéres pratiques.

192


https://fr.wikipedia.org/wiki/Perpendicularite

=
N
&>

‘------

A B

— Les droites (AB) et (BC) sont orthogonales et perpendiculaires en B.

— Les droites (AB) et (FG) sont orthogonales mais ne sont pas perpendiculaires.

— La droite (AB) et le plan (CF@G) sont perpendiculaires en B. Ils sont orthogonaux.

— Les plans (ABC) (le sol) et (ABF) (un mur) sont perpendiculaires, d’intersection la droite
(AB).

— Les plans (ABC) (le sol) et (BDF') sont perpendiculaires, d’intersection la droite (BD).

Définition 11.4.1. Deux sous ensembles de vecteurs de ’espace qui sont des directions de plans ou
de droites sont dits orthogonaux si tout vecteur de I'un est orthogonal & tout vecteur de 'autre.

Définition 11.4.2. Deux doites D et D’ de l'espace sont orthogonales (D_LD’) si elles forment un
angle droit : (D, D’) = g
En particulier D(A, @) et D'(B, ") sont orthogonales si et seulement si @ - @' = 0. En fait :

Proposition 11.4.9. Deuz doites D et D’ de I’espace sont orthogonales si et seulement si leurs direc-
tions D et B’ sont orthogonales.

Définition 11.4.3. Deux doites D et D’ de l'espace sont perpendiculaires si elles sont sécantes et
orthogonales : DN D’ # () et D1D'. Si alors DN D" = {A} on dit que D et D" sont perpendiculaires
en A.

Dans le cas d’une droite et d’un plan les deux notions coincident car une droite qui n’est pas paralléle
A un plan est toujours sécante a ce plan.

Définition 11.4.4. Une doite D et un plan P sont perpendiculaires (ou orthogonales) si D est ortho-
gonale & deux droites sécantes de P

Proposition 11.4.10. Une doite D et un plan P sont perpendiculaires si et seulement si leurs direc-
tions B et ? sont orthogonales.

On a un critére trés simple :

Proposition 11.4.11. Une doite D dirigée par U et un plan P sont perpendiculaires si et seulement
si W est un vecteur normal & P.

Définition 11.4.5. Un plan P est perpendiculaire a un plan P’ s’il contient une droite perpendiculaire
a P'. On démontre que cette relation est symétrique (i.e. on peut énoncer les plans dans un ordre
quelconque). On écrit P1 P’
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Attention : les directions de deux plans perpendiculaires ne sont pas orthogonales car il est faux que
tout vecteur de ? est orthogonal & tout vecteur de P’ : un vecteur directeur de la droite d’intersection
n’est pas orthogonal & lui-méme!

On a le critére pratique suivant :

Proposition 11.4.12. Deux plans sont perpendiculaires si et seulement si leur vecteurs normaux sont
orthogonauz.

Citons Wikipedia pour finir (on pourra faire des figures pour illustrer) :

« Il faut se méfier de la notion de plans perpendiculaires. Par exemple :

deux plans perpendiculaires peuvent contenir des droites paralléles,

deux plans perpendiculaires a un troisiéme ne sont pas forcément paralléles (voir les faces du cube).
Il reste cependant quelques propriétés :

Si deux plans sont perpendiculaires, un plan paralléle a I'un est perpendiculaire a 'autre

Si deux plans sont paralléles, un plan perpendiculaire & I’'un est perpendiculaire a 'autre. »

11.5 Calculs de distances

On va examiner trois types de problémes : calcul de la distance d’un point & un plan, d’un point a une
droite et entre deux droites.

11.5.1 Distance d’un point & un plan

Soient A(xA,ya,24) un point de £ et P un plan. Soit H la projection orthogonale de A sur P : on
déduit facilement du théoréme de Pythagore que la plus courte distance entre A et un point quelconque
de P est || AH ||. C’est la distance de A au plan P, on la note d(A, P). Pour la calculer, on distinguera
les cas ot le plan est donnée par une équation cartésienne et celui ou il est défini par un point et deux
vecteurs directeurs.

Proposition 11.5.1. Soient P un plan de l’espace et A(xa,ya,z4) un point.
— si le plan est défini par une équation cartésienne ax + by + cz+d =0, alors la distance de A
au plan P est donnée par :

laxa + bya + cza +d
d(4, P) = a2 2 2
a’+b*+c

— si le plan est défini par un point B et un couple (7, 7) de vecteurs non colinéaires, ou encore
par trois points non alignés (B, C, D), alors la distance de A au plan P est donnée par :

‘[zﬁ,ﬁ,?]‘ B ([Ei,f?&fﬁ]\
I ZAT | | BCABD|

d(A, P) =

Preuve : le cas d’une équation cartésienne s’établit comme pour la distance d’un point & une droite
en géométrie plane (formule 10.3.5), avec une coordonnée de plus. Le détail est laissé en exercice.
Lorsque le plan est défini par la donnée d’un point B et d’un couple (7, 7) de vecteurs non colinéaires,
ou encore par trois points non alignés (B, C, D), on peut interpréter la distance d(A, P) comme la

— —
hauteur du paralléllépipéde construit sur les vecteurs (7, 7,BA) (ou (B?,ﬁ,BA) au dessus du
parallélogramme de base construit sur (7, 7') (ou (B? , ﬁ)) dont Paire est | @ AV ||.
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V = A(BCED) x AH

On a donc :

11.5.2 Distance d’un point a une droite

Cette notion de distance est la méme qu’au chapitre 10, d’ailleurs une droite et un point sont toujours
dans un méme plan.

Proposition 11.5.2. Soient A(z4,ya, 24) un point de & et D(B, W) une droite. La distance de A

a D est donnée par :
| AB AT ||
WA D) ="

Preuve : on se place dans le plan défini par A, B et U, on peut alors construire H la projection
orthogonale de A sur D (voir la figure 11.8 ci-dessous). La distance de A a D, c’est a dire la plus petite

distance de A & un point de D est donnée par d(A4, D) =|| AH | (garanti par Pythagore). Soit C' le
1
point de D tel que ¥ = BC : Paire du triangle ABC' est donnée par A(ABC') = B I AB A BC I|I=

1
5 I AH Il BC ||. Le résultat s’en suit immédiatement. "

e

FIGURE 11.8 — Distance d’un point a une droite de l’espace
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Exemple : calculer la distance du point A(1, —1,2) a la droite D d’équations cartésiennes

r—y+2+1=0
2r —y—2—1=0

On calcule un vecteur directeur @ de D :

1 2 2
U=|-1|nl-1]=13
1 ~1 1

On calcule les coordonnées d’un point B de D en faisant = 0 par exemple et en calculant (y, z), on
trouve y = 0, z = —1 donc B(0,0,—1). On a alors zﬁ(—l, 1,—3), on calcule alors

1 2 10
aerz =1 |al3])=(-5],
3 1 5

d(AD)_HE/\7||_\/102+52+52_5\/6
T T V2R+3r+1 VI

=/10.
)
11.5.3 Distance entre deux droites

Soient D(A, ) et D'(A’, ') deux droites de l'espace :
— si D//D’, ce qui équivaut a 7//7’, la distance d’un point de D & D’ ne dépend pas du point
considéré, c’est par définition aussi la distance de D & D', elle est donnée par la formule de la
proposition 11.5.2 :

|AX AT | | AA A |
d(D,D') = = (11.6)
i 1 |

— si les deux droites sont sécantes, alors d(D, D’) = 0.

— si on est dans le cas général de droites non coplanaires, on définit alors la distance entre D et
D' comme la plus petite distance entre un point de D et un point de D’. C’est I'objet de la
proposition qui suit.

Proposition 11.5.3. Soient D(A, W) et D'(A’", W') deuz droites non coplanaires de Uespace. La
distance entre ces droites est donnée par :

—

AL )|
d(D,D') = Sl (11.7)

Preuve : grace au théoréme de Pythagore, on montre que la distance est atteinte pour H € D et
!/ / ! ! / : !/ / [N
H' € D' tels que HH' L D et HH' 1 D' (voir la figure 11.9). On a donc HH'//(d A ') d’ou, en

y 1
!/
posant 1 = T AT TN/

—
d(D,D') =| HH' |= |HH' - 7|
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. ‘iz A — I b = a4 =
mais le projeté orthogonal du vecteur AA" sur Vect(7) est HH', donc HH'- W = AA"- 7 et la formule

s’en suit. -

Remarque 11.5.1. Cette derniére formule donne aussi le résultat correct (distance nulle) quand les
droites sont sécantes.

FIGURE 11.9 — Perpendiculaire commune et distance entre deuz droites

Exemple :
soient A(1,2,3), B(—1,1,2), C(1,1,1) et D(—2,1,4), calculer la distance de la droite (AB) a la droite
(CD).

-2 -3
On applique le résultat avec D(A,E) et D'(C, C"ﬁ) On caleule AB | —2 | et CD | 0 les
-1 3
—6
vecteurs directeurs des deux droites, puis ﬁ A @ 3 qui n’est pas nul, les droites ne sont
—6
0
donc pas paralleles. On calcule alors || ABACD |= V624 32+62 =9, puis AC [ 1| et enfin
—2

[ﬁ,ﬁ,@] =0-(—6)+(—1)-34+(=2) - (—6) = —15. On trouve donc

11.6 Translations, Homothéties, Projections, Symétries.

11.6.1 Introduction

On peut reprendre intégralement 'introduction 10.5.1 en remplacant P par £ et ? par ?
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11.6.2 Les translations

Elle est définie comme dans le plan : la translation de vecteur @ est la transformation t= de £ qui, &
tout point M associe le point M’ tel que

—
MM =4d.

Si @ a pour coordonnées (Za, Ya, 2a) €6 M pour coordonnées (z,y,z) dans un repére, alors les coor-
A !
données de M’ sont

r = T+x,
Y = y+ua
2 = 24+ zq

e Propriétés des translations : en plus des propriétés qu’on a donné dans le chapitre 10, on a

1. L’image par une translation d’un plan est le plan lui-méme si les vecteurs directeurs du plan et
le vecteur de la translation sont coplanaires.

2. L’image par une translation d’un plan est un plan paralléle si les vecteurs directeurs du plan et
le vecteur de la translation ne sont pas coplanaires.

L’application vectorielle associée & la translation est I'identité, la démonstration est la méme que dans
le plan.

11.6.3 Les homothéties

Soit Q un point du plan et k£ un réel non nul. Comme dans le plan, I’homothétie de centre 2 et de
—
rapport k la transformation h(£, k) de £ qui, a tout point M associe le point M’ tel que QM’ = kQM

Si © a pour coordonnées (g, ya, 2z et M a pour coordonnées (x,y, z, alors les coordonnées (z', v/, ')
de M’ vérifient :

¥ = zy+k(x—xy)
Y = Yotk —uw)
2= ozt k(z—2)

e Propriétés des homothéties : comme pour la translation, il faut ajouter aux propriétés déja
vues

1. L’image d’un plan passant par le centre de 'homothétie est le plan lui-méme.

2. L’image d’un plan ne passant pas par le centre de I’homothétie est un plan paralléle.

L’homothétie vectorielle, associée a h(£2, k), est la transformation linéaire U — k7 donnée par :

¥ = kx
y = ky
2 = kz
ou encore :
x E 0 0 x
v =10 %k 0 Y
2 0 0 k z
La matrice associée & 'homothétie vectorielle est k I3.

11.6.4 Les projections et les symétries

On va maintenant projeter sur une droite suivant la direction d’un plan ou projeter sur un plan suivant
la direction d’une droite. Idem pour les symétries.
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Projection sur une droite parallélement & un plan

Définition 11.6.1. Soient une droite D(A, 7) et ? un plan vectoriel de vecteurs directeurs 7, W tels

que 7, 7, W ne sont pas coplanaires. On appelle projection sur D parallélement a ﬁ I’application
p de l'espace dans lui-méme qui a tout point M associe le point p(M) tel que

— p(M) e D,

— Mp(M ) €

=

Pour trouver les coordonnées (z’,',2’) de p(M) en fonction de celles de M (z,y, 2), on calcule I'inter-
section du plan P(M, 7, E?) avec la droite D. Cette intersection est un point car 7, 7, W ne sont
pas coplanaires.

Symétrie par rapport a une droite parallélement a un plan

Définition 11.6.2. On appelle symétrie par rapport a D parallélement a ? I’application s de
I'espace dans lui-méme qui & tout point M associe le point s(M) tel que

— le milieu I du segment [M, s(M)] appartient a D (I = p(M),

— Ms(M ) €

FIGURE 11.10 — Projections et symétries par rapport a une droite parallelement & un plan
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r+2 y+vy z+2’)
2 7 2 72
est un point de d et I’équation [M s(M ;, , 7] = 0 qui exprime que Ms(M ;, W, U sont coplanaires :

on a un systéme de trois équations & trois inconnues.

Pour trouver s(M)(z',y,2'), on écrit les deux équations qui expriment que I(

Projection sur un plan parallélement & une droite

Définition 11.6.3. Soient un plan P(A, u, 7) et B(E?) la direction d’une droite tels que &, ¥, W
ne sont pas coplanaires. On appelle projection sur P parallélement a B I’application p de ’espace
dans lui-méme qui & tout point M associe le point p(M) tel que

— p(M) € P,

— Mp(M) €

M
v D

. —g—/ /
A/
Foon
/ /

Pour trouver les coordonnées (2,3, 2") de p(M) en fonction de celles de M (x,y,2), on calcule l'in-
tersection du plan P(A,?,ﬁ) avec la droite D(M, ?) . C’est un point car @, ¥, W ne sont pas
coplanaires.

P

Symétrie par rapport a un plan parallélement a une droite

Définition 11.6.4. On appelle symétrie par rapport a4 P parallélement a B I’application s de
I'espace dans lui-méme qui & tout point M associe le point s(M) tel que

— le milieu I du segment [M, s(M)] appartient a P (I = p(M),

— Ms(M ) €

I=p(M) P

s(M)

FIGURE 11.11 — Projections et symétries par rapport & un plan parallélement & une droite
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r+x y+y z2+7

2 7 92 7 2 )
est un point de P et la relation Ms(M) = aT. On a un systéme de quatre équations a quatre inconntes
(2,9, 7, ) a résoudre.

/ / / 2 . 2 . L . . .
Pour trouver s(M)(x",y’, 2"), on écrit I’ équation cartésienne qui exprime que I(

e Projections et symétries orthogonales :
Ces transformations sont dites orthogonales si la droite et le plan qui les définissent sont orthogonaux.

e Propriétés des projections et des symétries :

1. Une projection est caractérisée par le fait que p o p = p. La droite ou le plan sur lequel on
projette est ’ensemble des points invariants.

2. Une symétrie est caractérisée par le fait que so s = Id. La droite ou le plan par rapport auquel
on fait la symétrie est ’ensemble des points invariants.

3. L’image d’une droite ou d’un plan par une symétrie est une droite ou un plan.

4. Une symétrie orthogonale conserve la distance entre deux points, change les angles en leurs
opposés et transforme une droite en une autre droite, un cercle en un autre cercle.

Exemple
Soient A(1,2,3) et B(—1,3,1), C(2,1,3), D(4,1,—2). Calculer les coordonnées de D’ symétrique or-
thogonal de D par rapport au plan (ABC).

Soit (2,1, 2") les coordonnées de D’. On a une symétrie orthogonale par rapport au plan (ABC), la

-2 1
direction de la symétrie est donc donnée par /ﬁ A ﬁ, on a E 1 |, zﬁ —1 |, on en déduit
-2 0
-2
ABAAC | —2 ). DD'//@/\@ s’écrit :
1
¥ = 4-2k
JdkeR, S Yy = 1+k
7 = —2-2k
4 "1 ) !
Le milieu I de (D, D') a pour coordonnées ( —;x , —;y , 2—1—2 ).
I € (ABC) s’écrit Al - (E A ﬁ) =0.
/ / 3 /
On a ﬂ(% +1, % ~ 3 % — 4) et on obtient finalement, aprés calcul :

2 -y +7,2-3=0.

On a a résoudre

¥ = 42k

y = 1+k

o= —2-2k
2=y +7,2-3 = 0

On calcule k avec la derniére ligne —4 +2k — 1 —k — 14+ k — 3 = 0 soit 2k = 9 et on obtient les
coordonnées de D’ :

¥ = =5

y = =
2

J = —11

d’ot D'(—5,11, 2,—11).
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