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Chapitre 1

Éléments du langage mathématique

L’utilisation du langage courant en mathématiques peut conduire à des ambiguités et de nombreux
paradoxes bien connus résultant d’une utilisation trop intuitive de la notion d’ensemble (« l’ensemble de
tous les ensembles » par exemple ...). D’un autre côté, une formalisation complète des mathématiques
conduirait à des énoncés illisibles et finalement à une pratique stérile. Nous proposons dans ce chapitre
de mettre en place les éléments de langage rigoureux utilisés par tous les mathématiciens et utilisateurs
des mathématiques, en évitant ces écueils. Leur appropriation et leur bon usage est une question de
pratique (guidée). Nous donnons ci-dessous quelques définitions concernant les énoncés mathématiques
et les ensembles, les relations entres ces objets avec leurs règles d’emploi.

1.1 Opérations logiques

Un énoncé mathématique est soit vrai soit faux (on parle de « principe du tiers exclu » et nous passons
sous silence la question de l’existence d’énoncés « indécidables »).
• Assertion ou proposition : énoncé susceptible d’être vrai (V) ou faux (F) sans ambiguïté.
Notée A, B ou encore A(x) si elle dépend d’une variable x.

Exemples :
— A : « 4 est un entier pair ». Cette assertion est vraie.
— A(n) : « tout entier n ≥ 2 admet au moins un diviseur premier ». Cette assertion est vraie.
— B : «

√
2 est un nombre rationnel » (c’est à dire peut s’écrire sous la forme

p

q
avec p et q entiers

naturels). Cette assertion est fausse : on dit que
√

2 est irrationnel. La preuve est faite plus bas
à titre d’exemple de démonstration par l’absurde.

— C : « pour tout entier n » n’est pas une assertion !

• Négation : (nonA) est l’assertion qui est vraie quand A est fausse et fausse quand A est vraie.
On peut résumer cela sous forme d’une « table de vérité » :

A nonA

V F

F V

Exemple : (nonB) est vraie.

• Conjonction : A etB. Cette assertion est vraie uniquement si les deux assertions A, B sont vraies.
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A B A etB

V V V

V F F

F V F

F F F

Exemples :
« 9 est impair et 9 est multiple de 3 » : assertion vraie.
« 9 est pair et 9 est multiple de 3 » : assertion fausse.

• Disjonction : (A ouB). Cette assertion est vraie uniquement si l’une au moins des assertions A,
B est vraie. Il y a donc trois cas possibles :

— A vraie sans que B ne soit vraie,
— B vraie sans que A ne soit vraie,
— A et B sont vraies en même temps (on dit que le connecteur logique « ou » est inclusif).

A B A ouB

V V V

V F V

F V V

F F F

Exemples :
« 9 est impair ou 9 est multiple de 3 » : assertion vraie.
« 9 est pair ou 9 est multiple de 3 » : assertion vraie.

• Implication : l’assertion ((nonA) ouB) se note A =⇒ B. On lit : « A implique B ».
À l’aide des règles précédentes on peut construire sa table de vérité :

A B nonA A =⇒ B

V V F V

V F F F

F V V V

F F V V

Remarque 1.1.1. On voit que la seule contrainte porte sur le cas où A est vraie : B doit alors
nécessairement être vraie.

On dit que B est une condition nécessaire pour A, ou encore que A est une condition suffisante pour
B.

Exemple : « si a ∈ R alors (a ≤ −1 =⇒ a2 ≥ 1) » est une assertion vraie.

• Equivalence : on dit que les assertions A, B sont équivalentes si A =⇒ B ainsi que B =⇒ A sont
vraies. Ces deux dernières assertions sont dites réciproques l’une de l’autre. On écrit alors A⇐⇒ B
Dans le langage courant on dit que A est une condition nécessaire et suffisante de B (et vice-versa),
ou encore que A est vraie si et seulement si B est vraie (« ssi » en abrégé pour « si et seulement si »).

A B A⇐⇒ B

V V V

V F F

F V F

F F V
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Exemple : les deux assertions suivantes sont équivalentes.
A : (a ≥ 1 ou a ≤ −1) B : a2 ≥ 1
On écrit donc A⇐⇒ B.

Remarque 1.1.2. On a de manière immédiate les équivalences :
(A etB) ⇐⇒ (B etA)
(A ouB )⇐⇒ (B ouA )
et aussi les propriétés d’associativité et de distributivité :
(A ouB) ouC ⇐⇒ A ou (B ouC)
(A etB) etC ⇐⇒ A et (B etC)
A et (B ouC) ⇐⇒ (A etB) ou (A etC)
A ou (B etC) ⇐⇒ (A ouB) et (A ouC)

Les résultats suivants se montrent facilement en construisant les tables de vérité (exercice) :

Proposition 1.1.1. Soient A, B deux assertions. Alors :
non (nonA)⇐⇒ A
non (A etB)⇐⇒ ((nonA) ou (nonB))
non (A ouB)⇐⇒ ((nonA) et (nonB))
non (A =⇒ B)⇐⇒ (A et (nonB)).

En niant l’implication (quatrième énoncé), on énonce en fait que B n’est plus une conséquence de A.
Attention : ce n’est pas (nonA =⇒ nonB) et pas davantage (A =⇒ nonB) ...

• Contraposée : l’assertion nonB =⇒ nonA s’appelle la contraposée de A =⇒ B.
Le résultat qui suit, très utile dans la pratique des démonstrations, énonce qu’une implication et sa
contraposée sont équivalentes.

Proposition 1.1.2. (A =⇒ B)⇐⇒ (nonB =⇒ nonA)

Preuve : en utilisant systématiquement la proposition 1.1.1 on a successivement :

nonB =⇒ nonA ⇐⇒ (nonnonB) ou (nonA))

⇐⇒ non (nonB et A)

⇐⇒ non (A et nonB)

⇐⇒ non (non (A =⇒ B))

⇐⇒ (A =⇒ B)

À noter également :

Proposition 1.1.3 (Transitivité). Soient A, B, C trois assertions. Alors :
[(A =⇒ B) et (B =⇒ C)] =⇒ (A =⇒ C)
[(A⇐⇒ B) et (B⇐⇒ C)] =⇒ (A⇐⇒ C)

Remarque 1.1.3. Ces notions sont appliquées en électronique (portes logiques) et en informatique
(tests). On pourra consulter Wikipedia https://fr.wikipedia.org/wiki/Table_de_vérité et les liens qui
envoient vers ces notions.
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1.2 Quantificateurs

Considérons une assertion A(x) dépendant d’un objet x, par exemple (x ∈ R et x2 = −1). On écrit :

∃x, A(x)

pour exprimer que l’assertion est vraie pour au moins un x. Pour l’exemple ci-dessus on écrira plutôt :

∃x ∈ R, x2 = −1

On sait que cette assertion est fausse.
Le symbole ∃ s’appelle le quantificateur existentiel.
De même :

∀x, A(x)

exprime que A(x) est vraie pour tout x. Par exemple : ∀x ∈ R, x2 ≥ 0 est une assertion vraie.
Le symbole ∀ s’appelle le quantificateur universel.

Pour exprimer l’existence d’un unique x pour lequel A(x) est vraie on écrit :

∃!x, A(x).

Exemple : ∃!x, (x ∈ R∗+ et cosx = x), ou de façon plus compacte : ∃!x > 0, cosx = x

Attention : une expression mathématique peut contenir plusieurs quantificateurs et on veillera à ne
pas intervertir l’ordre de deux quantificateurs de natures différentes. Ainsi :

A : ∀a ∈ R, ∃x ∈ R, ln(x) ≥ a

n’a pas le même sens que
B : ∃x ∈ R, ∀a ∈ R, ln(x) ≥ a,

l’une étant trivialement vraie (laquelle ?) et l’autre fausse.
Il est indispensable de savoir écrire rapidement et correctement la négation d’une assertion telle que A
ci-dessus. Il suffit pour cela de se convaincre que l’on a :

non (∃x, A(x))⇐⇒ ∀x, nonA(x)

et aussi :
non (∀x, A(x))⇐⇒ ∃x, nonA(x)

On procède alors comme suit :

Étape 1 : A(x) est de la forme (∀a ∈ R, P(x)) où P(x) est l’assertion (∃x ∈ R, ln(x) ≥ a), on obtient
donc (nonA(x)) sous la forme : ∃a ∈ R, nonP(x),

Étape 2 : (nonP(x)) s’écrit : ∀x ∈ R, ln(x) < a. On conclut donc que (nonA(x)) est l’assertion :

∃a ∈ R, ∀x ∈ R, ln(x) < a.

En pratique on doit être capable d’écrire directement le résultat : on remplace chaque quantificateur
existentiel par un quantificateur universel et inversement, puis l’expression finale (A(x) dans notre
exemple) par sa négation.
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1.3 Principe des démonstrations

On dispose d’un ensemble d’hypothèses H et on veut aboutir à un ensemble de conclusions C.
Pour le faire, on suit un raisonnement logique fait d’implications simples entre des assertions clairement
énoncées, en utilisant en général des résultats déjà établis et des méthodes adaptées (la « boîte à
outils » !).

• Pour montrer A =⇒ B on peut faire :
— une démonstration directe : on suppose que A est vraie (voir la remarque 1.1.1) et on cherche

à montrer que B est vraie,
— une démonstration par contraposée : on suppose que B est fausse et on prouve qu’alors A

est également fausse (non B =⇒ non A).

Exemple : soit x un nombre réel. On veut montrer l’implication suivante, d’usage fréquent en analyse
mathématique :

(∀ε > 0, |x| ≤ ε)︸ ︷︷ ︸
A

=⇒ x = 0︸ ︷︷ ︸
B

(1.1)

Faisons l’hypothèse que non B est vraie, c’est à dire que x 6= 0. Soit ε =
|x|
2
, on a évidemment ε > 0

et |x| > ε, donc on a montré : ∃ε > 0, |x| > ε, c’est à dire que non A est vraie.

• Démonstration par l’absurde :
on veut montrer qu’une assertion A est vraie, on suppose qu’en fait A est fausse et on met en évidence
une certaine assertion B telle qu’on ait à la fois (non A =⇒ B) et (non A =⇒ non B).

Exemple : montrons par l’absurde que
√

2 est irrationnel (c’est l’assertion A). On suppose que
√

2
est rationnel : on sait alors qu’il existe des entiers naturels p, q premiers entre eux (c’est à dire sans
diviseur commun autre que 1) tels que

√
2 =

p

q
(c’est B). On a donc p2 = 2 q2 et on en déduit que p

est pair : p = 2 k avec k ∈ N∗.
La relation p2 = 2 q2 devient alors 4 k2 = 2 q2, c’est à dire 2 k2 = q2, de sorte que q est pair. Ceci
montre que p et q ne sont pas premiers entre eux, ce qui contredit B et termine la preuve.

• Démonstration par disjonction des cas. Cette méthode est basée sur la propriété suivante :

[(A ouB) et (A =⇒ C) et (B =⇒ C)] =⇒ C.

Autrement dit (en langage courant) s’il y a deux cas possibles (A et B = nonA) et si dans chacun de
ces cas on a C, alors C est vraie. Ceci s’étend à un nombre quelconque de cas recouvrant toutes les

éventualités. Exemple : montrons que pour tout entier naturel n on a
n(n+ 1)

2
∈ N.

— Si n est pair alors il existe un entier k tel que n = 2k et
n(n+ 1)

2
= k(n+ 1) ∈ N.

— Si n est impair alors n+1 est pair : il existe un entier k tel que n+1 = 2k et
n(n+ 1)

2
= nk ∈ N.

• Preuve par contre-exemple : pour montrer qu’une assertion du type ∀x, A(x) est fausse, il suffit
d’exhiber un contre-exemple, i.e. mettre en évidence un x particulier pour lequel A(x) est fausse.

Exemple : l’assertion A(x) : ∀x ∈ R, cosx ≥ 1/2 est fausse car elle est mise en défaut pour x = π/2.
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1.4 Les Ensembles

1.4.1 Généralités

Intuitivement, un ensemble E est une collection d’objets mathématiques muni d’une relation d’appar-
tenance notée ∈ : x ∈ E signifie que x appartient à l’ensemble E, ou encore que x est un élément de
E.
Remarque : l’assertion non (x ∈ E) s’écrit aussi x /∈ E.

Vocabulaire :
— égalité entre éléments d’un ensemble : a = b signifie que a et b sont « un même objet »,
— égalité de deux ensembles : E = F signifie que ces ensembles ont les mêmes éléments,
— singleton : c’est un ensemble { a } à un seul élément,
— ensemble vide : c’est l’ensemble noté ∅ ne contenant aucun élément (par exemple l’ensemble des

solutions de l’équation x2 = −1 dans R).

1.4.2 Relations et opérations entre les ensembles

• Inclusion : A ⊂ B si tout élément de A est un élément de B.
i.e. ∀x ∈ A, x ∈ B.
Ou encore A est une partie de B.

Méthode : Pour prouver que A ⊂ B, on prend un élément quelconque de A et on démontre qu’il
appartient à B.

Pour prouver l’égalité de deux ensembles A = B, on doit montrer A ⊂ B et B ⊂ A.

• Ensemble des parties d’un ensemble : P(E) est l’ensemble des parties de E. Bien noter que :

X ∈ P(E)⇐⇒ X ⊂ E

Exemple : soit E = {a, b, c}, alors : P(E) = {∅, { a }, { b }, { c }, { a, b }, { a, c }, { b, c }, E}. On a
{ b, c } ∈ P(E) et aussi { b, c } ⊂ E (les deux assertions sont équivalentes).

Dans l’ensemble P(E) on définit les opérations suivantes :

• Intersection : soient A ⊂ E et B ⊂ E, l’intersection de A et B est le sous-ensemble de E :

A ∩B = { x ∈ E ; x ∈ A et x ∈ B }

Les éléments de A ∩B sont ceux qui sont à la fois dans A et dans B.

• Réunion : soient A ⊂ E et B ⊂ E, la réunion de A et B est le sous-ensemble de E :

A ∪B = { x ∈ E ; x ∈ A ou x ∈ B }

Les éléments de A ∪B sont ceux qui sont dans A ou dans B. Il peuvent être de trois types : ceux qui
sont dans A mais pas dans B, ceux qui sont dans B mais pas dans A mais aussi ceux qui sont à la fois
dans A et dans B.

• Complémentaire de B dans A : soient A ⊂ E et B ⊂ E, le complémentaire de B dans A est le
sous-ensemble de E :

A\B = { x ∈ E ; x ∈ A et x 6∈ B }

C’est l’ensemble des éléments de A qui ne sont pas dans B.
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Le complémentaire de B dans l’ensemble de référence E est le sous-ensemble de E défini par :

E\B = { x ∈ E ; x 6∈ B } et noté aussi Bc

de sorte que l’on a A\B = A ∩Bc

• Différence symétrique : la différence symétrique de A et B, notée A∆B est l’ensemble des
éléments de E qui sont soit dans A soit dans B mais pas dans les deux à la fois. Plus précisément :

A∆B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B)

Exemple : dans la figure ci-dessous on a E = {a, b, c, d, e, f, g, h, i, j, k}, A = {a, b, c, d, e} et
B = {d, e, f, g}. Alors :

A ∩B = {d, e}, A ∪B = {a, b, c, d, e, f, g}

A\B = {a, b, c}, B\A = {f, g}, A∆B = {a, b, c, f, g}

Ac = {f, g, h, i, j, k}, Bc = {a, b, c, h, i, j, k}

Figure 1.1 – Opérations ensemblistes

• Produit cartésien : Soit A et B deux ensembles quelconques,
le produit cartésien de A et B est l’ensemble (de couples) suivant :

A×B = { (a, b) ; a ∈ A et b ∈ B }

Ce n’est pas une partie de E mais de E × E.

Exemple : R× R = R2 = { (x, y) ; x ∈ R et y ∈ R }.

N. B. : (a, b) = (c, d)⇐⇒ a = c et b = d, (a, b) 6= (c, d)⇐⇒ a 6= c ou b 6= d.
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1.4.3 Propriétés

Propriétés de l’intersection

(a) Commutativité : A ∩B = B ∩A
(b) Associativité : A ∩ (B ∩ C) = (A ∩B) ∩ C
(c) E est élément neutre : A ∩ E = E ∩A = A

Propriétés de la réunion

(a) Commutativité : A ∪B = B ∪A
(b) Associativité : A ∪ (B ∪ C) = (A ∪B) ∪ C
(c) ∅ est élément neutre : A ∪ ∅ = ∅ ∪A = A

Distributivité

(a) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(b) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

(c) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

(d) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Preuve : on démontre a) à titre d’exemple.
On a une double inclusion à démontrer :

A ∪ (B ∩ C)⊂(A ∪B) ∩ (A ∪ C) et (A ∪B) ∩ (A ∪ C)⊂A ∪ (B ∩ C)

A ∪ (B ∩ C)⊂(A ∪B) ∩ (A ∪ C)

Soit x ∈ A ∪ (B ∩ C),
x ∈ A ou x ∈ B ∩ C
x ∈ A ou [x ∈ B et x ∈ C]
Si x ∈ A, on a x ∈ A ∪B et x ∈ A ∪ C
donc x ∈ (A ∪B) ∩ (A ∪ C)
Si x ∈ B ∩C, on a aussi x ∈ A∪B et x ∈ A∪C
donc x ∈ (A ∪B) ∩ (A ∪ C)
La première inclusion est prouvée.

(A ∪B) ∩ (A ∪ C)⊂A ∪ (B ∩ C)

Soit x ∈ (A ∪B) ∩ (A ∪ C),
x ∈ A ∪B et x ∈ A ∪ C donc
[x ∈ A ou x ∈ B] et [x ∈ A ou x ∈ C]
Donc (x ∈ A) ou (x ∈ B et x ∈ C)
c’est-à-dire x ∈ A ∪ (B ∩ C)
La seconde inclusion est prouvée.

Propriétés du complémentaire

(a) Idempotence : (Ac)c = A

(b) Formules de De Morgan : (A ∩B)c = Ac ∪Bc et (A ∪B)c = Ac ∩Bc.

Remarque 1.4.1. Ces opérations d’intersection, réunion, complémentaire, sont en lien étroit avec,
respectivement, les connecteurs logiques « et », « ou » et la négation : il suffit d’observer les définitions
pour s’en convaincre. Les règles d’utilisation sont également en correspondance étroite.
Exemple : : (A ∪B)c = Ac ∩Bc correspond à non (P ouQ)⇐⇒ (nonP) et (nonQ).
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1.5 Relations, fonctions, applications

Étant donnés deux ensembles quelconques E et F on peut avoir à définir des relations entre des éléments
de E et des éléments de F .

Exemple : si E = {x1, x2, x3} et F = {p1, p2, p3, p4} représentent deux ensembles de personnes, on
définit la relation R qui associe à chaque individu de E la ou les personnes, dans F , auxquels il envoie
un courrier. On peut en donner une représentation schématique, où le correspondanr de x1 est p1 etc...
x2, en particulier, n’écrit à personne.

Figure 1.2 – Représentation schématique de la relation R

On peut aussi définir la relation sous la forme d’un ensemble de couples (x, p) où p reçoit un courrier
de x (on écrit alors xRp). La relation entre les ensembles E et F équivaut ainsi à la donnée d’une
partie Γ de E × F qu’on appelle le graphe de la relation :

xRp⇐⇒ (x, p) ∈ Γ.

Cette règle étant posée, toute l’information est donc obtenue par la donnée du triplet (E,F,Γ).

Pour l’exemple précédent on obtient pour Γ la partie de E × F formée des couples de couleur rouge :

HHH
HHHE
F

p1 p2 p3 p4

x1 (x1, p1) (x1, p2) (x1, p3) (x1, p4)

x2 (x2, p1) (x2, p2) (x2, p3) (x2, p4)

x3 (x3, p1) (x3, p2) (x3, p3) (x3, p4)

Figure 1.3 – Le graphe de la relation R

Γ = {(x1, p1), (x1, p3) (x3, p2) (x3, p3), (x3, p4)}.

Les fonctions, telles que vous les connaissez déjà relèvent de ce cadre : y = f(x) est une autre façon
d’écrire que x est mis en relation avec y par f et le couple (x, y), élément du graphe, va pouvoir
éventuellement être représenté par un point dans un repère (s’il s’agit de nombres réels). Toutefois,
dans le cas des fonctions, il y a une contrainte essentielle : un élément donné x de l’ensemble de départ
E ne peut être mis en relation qu’avec au plus un élément y de l’ensemble d’arrivée F et on dit que y
est l’image de x par f . Ce n’est clairement pas le cas dans l’exemple précédent et on dit que le graphe
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n’est pas fonctionnel : il faudrait qu’il y ait au plus un élément en rouge par ligne dans le tableau de
la figure 1.3.

Définition 1.5.1. Une fonction f est un triplet (E,F,Γ) où E est un ensemble appelé ensemble de
départ, F est un ensemble appelé ensemble d’arrivée et Γ ⊂ E × F un graphe par lequel tout élément
x de E est en relation avec au plus un élément y de F noté (s’il existe) f(x) et appelé image de x par
f et x est un antécédent de y (rien n’interdit qu’il y en ait plusieurs).

Remarque 1.5.1. On introduit couramment une fonction sous la forme f :

®
E −→ F
x 7−→ f(x)

où

il faut ensuite préciser ce que sont E, F et f(x). Il y a de nombreuses façons de définir f : par son

graphe, par une formule ... par exemple f :

®
R −→ R
x 7−→

√
x

sachant bien sûr que seuls les x ≥ 0

auront une image. La fonction g :

®
R+ −→ R
x 7−→

√
x

n’est pas la même que f car elle diffère par

son ensemble de départ (il faut assumer le côté précis d’une définition).

Exemple : avec les ensembles déja utilisés, voici la représentation schématique d’un exemple de
fonction :

Figure 1.4 – Un exemple de fonction

On a par exemple p2 = f(x3) et x2 n’a pas d’image, p2 a deux antécédents x3 et x4, p1 et p4 n’ont pas
d’antécédent, x2 n’a pas d’image.

Définition 1.5.2 (ensemble de définition). Soit f = (E,F,Γ) une fonction. On appelle ensemble (ou
domaine) de définition de f l’ensemble Df = {x ∈ E ; ∃y ∈ F, y = f(x)} i.e. l’ensemble des éléments
de E qui ont une image par f .

Exemples : avec les fonctions introduites dans la remarque 1.5.1 on a Df = Dg = R+.

Définition 1.5.3 (composition des fonctions). Soient f :

®
E −→ F
x 7−→ f(x)

et g :

®
F −→ G
x 7−→ g(x)

des fonctions. La composée de f et g (dans cet ordre) est la fonction g ◦ f : x → (g ◦ f)(x) définie
par : ∀x ∈ E, (g ◦ f)(x) = g[f(x)].
Son ensemble de définition est donné par : Dg◦f = {x ∈ Df ; f(x) ∈ Dg}.

Commentaire : le membre de droite de la relation de définition justifie que l’on écrive g ◦ f plutôt
que f ◦ g, ce qu’on pourrait être tenté de faire dans la mesure où f « agit » en premier et g en second.
On aura intérêt à mémoriser le petit diagramme suivant :
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Figure 1.5 – Composition de deux fonctions
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Exemple 1 :

Figure 1.6 – Un exemple de composée de fonctions

Exemple 2 : on considère les fonctions f :

®
[0, π] −→ R
x 7−→ cosx

et g :

®
R −→ R
x 7−→ lnx

. Alors g ◦ f

est la fonction :

®
[0, π] −→ R
x 7−→ ln(cosx)

.

On a Df = [0, π], Dg = R∗+ et Dg◦f = {x ∈ [0, π] ; cosx > 0} = [0, π/2[.
Que donnerait f ◦ g ?

Réponse : f ◦ g :

®
R −→ R
x 7−→ f(lnx)

dont le domaine est Df◦g = {x > 0 ; lnx ∈ [0, π]} = [1, eπ].

Alors : ∀x ∈ Df◦g, (f ◦ g)(x) = cos(lnx).

Remarque 1.5.2. Il n’est pas intéressant de prendre R comme ensemble de départ pour la fonction
g alors qu’il est connu que lnx n’est défini que pour x > 0. Prendre l’ensemble de définition comme
ensemble de départ conduit à la notion d’application :

Définition 1.5.4 (applications). Une fonction f = (E,F,Γ) est une application si son ensemble de
définition est l’ensemble de départ : Df = E.

Exemples : dans l’exemple 2 ci-dessus, f est une application, g n’est pas est une application.

Définition 1.5.5 (applications injectives). Une application f = (E,F,Γ) est dite injective (on dit
aussi que c’est une injection) si deux éléments distincts dans E ont des images distinctes dans F .

Exemples : l’application ln :

®
R∗+ −→ R
x 7−→ lnx

est injective.

Par contre la fonction h :

®
R −→ R
x 7−→ x2 ne l’est pas car (contre-exemple) on a h(−1) = h(1) = 1.
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Définition 1.5.6 (applications surjectives). Une application f = (E,F,Γ) est dite surjective (on dit
aussi que c’est une surjection) si tout élément de F a au moins un antécédent dans E.

Exemples : l’application h : x→ x2 n’est pas surjective car −1, par exemple, n’a pas d’antécédent.

Par contre la fonction k :

®
R −→ R+

x 7−→ x2 est surjective.

Définition 1.5.7 (applications bijectives). Une application f = (E,F,Γ) est bijective (on dit aussi
que c’est une bijection) si elle est à la fois injective et surjective.
On définit alors la bijection réciproque de f , notée f−1 par :

∀(a, b) ∈ E × F, f−1(b) = a⇐⇒ f(a) = b.

Voir la figure 1.7 pour un exemple (f4 et f−1
4 ).

Exemples : les applications ` :

®
R+ −→ R+

x 7−→
√
x

et m :

®
R+ −→ R+

x 7−→ x2 sont bijectives. L’appli-

cation k ne l’est pas. Voici quelques exemples sous forme de diagrammes :

Figure 1.7 – Injections, surjections, bijections

L’application f1 est ni injective ni surjective, f2 est injective mais non surjective, f3 est surjective mais
non injective, enfin f4 est bijective (on remarquera que les ensembles finis E et F ont alors le même
nombre d’éléments).

On retiendra les critères pratiques suivants :

Proposition 1.5.1. Soit f : E −→ F une application. Alors :

1. f est injective si et seulement si pour tout y ∈ F l’équation f(x) = y, d’inconnue x, admet
au plus une solution dans E (i.e. aucune ou bien une seule).

2. f est surjective si et seulement si pour tout y ∈ F l’équation f(x) = y, d’inconnue x, admet
au moins une solution dans E.

3. f est bijective si et seulement si pour tout y ∈ F l’équation f(x) = y, d’inconnue x, admet
une solution et une seule dans E .
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Image directe et image réciproque d’une partie d’un ensemble par une fonction :

Soit f : E −→ F une fonction. Si A ∈ P(E) on pose, avec un abus d’écriture usuel,

f(A) = {y ∈ F ; ∃x ∈ A, y = f(x)}

On a f(A) ∈ P(F ) et on définit ainsi une application « image directe » de P(E) dans P(F ) notée
encore f par un abus de notation usuel.
On définit également (même si f : E → F n’est pas bijective !) une application « image réciproque »
notée (abusivement, une fois de plus) f−1 :

f−1 :

{
P(F )→ P(E)

B 7→ f−1(B)
déf
= {x ∈ E ; f(x) ∈ B}

On pourra, pour comprendre ces définitions, s’aider du diagramme suivant :

Figure 1.8 – Image et image réciproque d’une partie

On a enfin les propriétés suivantes, toutes très simples à établir :

? ∀B ∈ P(F ), f(f−1(B)) ⊂ B, égalité quand f est surjective.

? Si f est une application, ∀A ∈ P(E) f−1(f(A)) ⊃ A, égalité quand f est injective.

? ∀B,B′ ∈ P(F ), f−1(B ∪B′) = f−1(B) ∪ f−1(B′).

? ∀B,B′ ∈ P(F ), f−1(B ∩B′) = f−1(B) ∩ f−1(B′).

? Si f est une application alors ∀B ∈ P(F ), f−1(Bc) = (f−1(B))c.
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Chapitre 2

Nombres entiers, nombres rationnels et
nombres réels

Ce chapitre consiste essentiellement en rappels, sauf le paragraphe 2.4.4 consacré aux notions nouvelles
et très importantes de borne supérieure et de borne inférieure.

Les ensembles de nombres (entiers, rationnels, réels) ont été introduits et utilisés dans les classes de
lycée. Nous faisons un tour d’horizon avec quelques rappels.

2.1 Entiers naturels

Cet ensemble est noté N. Sa construction mathématique est hors programme.
On rappelle que N∗ = N \ {0}.
p et q étant deux entiers tels que p ≤ q, on note Jp, qK l’ensemble des entiers compris entre p et q,
bornes comprises :

Jp, qK = {n ∈ N ; p ≤ n ≤ q}
Exemple : J2, 7K = {2, 3, 4, 5, 6, 7}.
• Division euclidienne
Il s’agit du résultat suivant, connu depuis la classe de CM1 (mais non formalisé à ce niveau !) :

Proposition 2.1.1. Pour tout couple (a, b) d’entiers naturels tel que b 6= 0 il existe un unique couple
(q, r) d’entiers tel que a = bq + r et r < b.

q et r sont respectivement appelés quotient et reste de la division euclidienne de a par b. Si r = 0 on
a a = bq : on dit que b divise a ou que a est un multiple de b et on écrit b|a.
L’unicité du couple (q, r) est assuré par la contrainte r < b : il ne faut donc pas oublier
celle-ci dans l’énoncé.

• Décomposition en produit de nombres premiers
On rappelle qu’un entier est premier si ses seuls diviseurs sont lui même et 1. Tout entier naturel n ≥ 2
possède au moins un diviseur premier et on a le résultat de décomposition suivant :

Proposition 2.1.2. Soit n un entier naturel, n ≥ 2. Il existe une unique suite finie de nombres
premiers p1 < · · · < pk et une unique suite finie d’entiers non nuls α1, · · · , αk tels que n = pα1

1 . . . pαkk .

Exemple : 87318 = 2× 34 × 72 × 11.
On a p1 = 2, p2 = 3, p3 = 7, p4 = 11, α1 = 1, α2 = 4, α3 = 2 et α4 = 1.
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Il faut utiliser ce résultat (avec des sous-calculs effectués éventuellement) pour simplifier les fractions :

il n’est pas admissible de laisser le résultat final d’un calcul sous la forme
12

3
ou

2

4
...

• Principe de démonstration par récurrence
On cherche à prouver une assertion de la forme (∀n ∈ N, P(n)) où P(n) est une proposition qui dépend
de l’entier n, autrement dit que tous les entiers vérifient la propriété P.
On montre que : 

P(0) est vraie (initialisation)

(∀n ∈ N) (P(n) =⇒ P(n + 1)) (hérédité)

On conclut : ∀n ∈ N, P(n) est vraie.

Commentaires : « P(0) vraie » est la partie la plus facile car il s’agit en général d’une simple
vérification, mais elle est indispensable.
La deuxième étape peut être source d’erreur. Il faut la comprendre ainsi : « si la propriété est vraie
pour un entier n alors elle est vraie pour l’entier suivant », le (∀n ∈ N) étant là pour signifier que cette
propriété de transmission (et non pas la propriété elle-même) doit être vraie pour tous les entiers. On
ne prend nullement comme hypothèse que P(n) est vraie pour tout n, il n’y aurait alors plus rien à
prouver !
On pourra penser à l’analogie d’une course de relai : pour que le témoin passe par toute les mains, il
faut deux conditions

— le premier coureur doit partir avec le témoin dans la main,
— tout coureur qui a son témoin en main doit le transmettre au suivant,

faute de quoi il y a élimination.

Exemple : il s’agit de montrer que la propriété :

P(n) : 02 + 12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

est vraie pour tout entier n.

i) P(0) : 0 =
0(0 + 1)(2× 0 + 1)

6
, donc P(0) est vraie,

ii) Hypothèse de récurrence : P(n) est vraie pour un certain entier n.
On doit montrer alors que P(n + 1) est vraie (P(n + 1) est obtenue en remplaçant n par n + 1 dans
l’égalité)

0 + 1 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6︸ ︷︷ ︸
hypothèse de récurrence

=⇒ (0 + 1 + 22 + · · ·+ n2)+(n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+(n+ 1)2

=
(n+ 1)

6
[2n2 + n+ 6n+ 6]

=
(n+ 1)

6
(n+ 2)(2(n+ 1) + 1)

Donc P(n + 1) est vraie.
En conclusion on a montré que P(n) est vraie pour tout entier n.

2.2 Entiers relatifs, nombres rationnels

Notations :

Z : entiers relatifs, Z∗ = Z\{0}
Q : rationnels, r =

p

q
avec p ∈ Z et q ∈ N∗

Q+ = { r ∈ Q, r ≥ 0 }, Q− = { r ∈ Q, r ≤ 0 }.
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• Division eulidienne dans Z :
Le résultat énoncé dans N s’étend ainsi :

Proposition 2.2.1. Pour tout couple (a, b) d’entiers relatifs tel que b 6= 0 il existe un unique couple
(q, r) d’entiers relatifs tel que a = bq + r et 0 ≤ r < |b|.

2.3 Symboles somme et produit, formule du binôme

• Symbole factorielle . Pour n ∈ N∗ :

n!
déf
= n× (n− 1)× · · · × 2× 1

C’est le produit des n premiers entiers non nuls. On pose 0! = 1, par convention.

Exemple : 5! = 5× 4× 3× 2× 1 = 120

On a la relation de récurrence :

∀n ∈ N, (n+ 1)! = (n+ 1)n!

• Combinaisons de p éléments parmi n :

Définition 2.3.1. On appelle combinaison de p éléments d’un ensemble à n éléments toute partie à p

éléments de cet ensemble. Le nombre de ces combinaisons est noté
Ç
n

p

å
.

Exemple : on veut choisir un groupe de 3 étudiants parmi 5

Il y a 5× 4× 3 façons de les désigner l’un(e) après l’autre, donc avec un ordre. Par exemple (a, d, b).
L’ordre ne doit pas intervenir, or on remarque qu’il y a 3 × 2 = 6 = 3! façons de les ordonner. Dans
l’exemple précédent :

(a, b, d), (a, d, b), (b, a, d), (b, d, a), (d, a, b), (d, b, a)

On conclut donc que le nombre de groupes est en fait
5× 4× 3

3× 2× 1
= 10.

On remarque que cela peut s’écrire
5× 4× 3× 2× 1

(3× 2× 1)(2× 1)
=

5!

3! 2!
: ceci est noté

Ç
5

3

å
.
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Remarque 2.3.1. C’est aussi le nombre de façons de choisir 2 étudiants parmi 5 : ceux qu’on écarte.

Plus généralement, le nombre de combinaisons de p éléments parmi n est :Ç
n

p

å
=
n× (n− 1)× · · · × (n− p− 1)

p× (p− 1)× · · · × 2× 1
: p facteurs au numérateur et au dénominateur

=
n× (n− 1)× · · · × (n− p+ 1)× (n− p)× (n− p− 1)× · · · × 2× 1

p× (p− 1)× · · · × 2× 1× (n− p)× (n− p− 1)× · · · × 2× 1

=
n!

p! (n− p)!

Quelques cas particuliers et propriétés :

∀n ∈ N,
Ç
n

0

å
=

Ç
n

n

å
= 1,

Ç
n

1

å
=

Ç
n

n− 1

å
= n,

Ç
n

2

å
=
n (n− 1)

2

(2.1)

∀n ∈ N, ∀p ∈ J0, nK,
Ç
n

p

å
=

Ç
n

n− p

å
(2.2)

(2.3)

∀n ∈ N∗, ∀p ∈ J1, nK,
Ç
n

p

å
=

Ç
n− 1

p− 1

å
+

Ç
n− 1

p

å
(2.4)

Prouvons cette dernière propriété

Dans un ensemble E à n éléments on doit choisir p éléments. On commence par en isoler un quelconque
que l’on note a.
Parmi les parties à p éléments il y a :

1. celles qui contiennent a. On les obtient en adjoignant à a p−1 éléments parmi les n−1 restants :Ç
n− 1

p− 1

å
possibilités,

2. celles qui ne contiennent pas a. On les obtient en choisissant p éléments parmi les n−1 restants :Ç
n− 1

p

å
possibilités.

Il reste à faire la somme car les deux cas s’excluent mutuellement. C’est
Ç
n

p

å
par définition.
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Exemple : n = 6, p = 3.

• Triangle de Pascal : il est construit à partir de la propriété 2.4

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4+ 6 4 1

↓
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

Ä
0

0

äÄ
1

0

ä Ä
1

1

äÄ
2

0

ä Ä
2

1
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2

2

äÄ
3
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ä Ä
3

1
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3

2
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3

3

äÄ
4

0
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4

1

ä
+

Ä
4

2

ä Ä
4

3

ä Ä
4

4

ä
↓Ä
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5

1
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2

ä Ä
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3

ä Ä
5

4

ä Ä
5

5

äÄ
6

0

ä Ä
6
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ä Ä
6

2

ä Ä
6
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ä Ä
6

4

ä Ä
6

5

ä Ä
6

6

ä
La propriété de symétrie observée dans chaque ligne correspond à la propriété 2.2.

• Symboles somme Σ (Sigma) et produit Π (Pi) :
n∑
k=0

k = 0 + 1 + 2 + · · ·+ n,
n∏
k=1

k = 1× 2× · · · × n = n!

n∑
k=1

1

k
=

1

1
+

1

2
+ · · ·+ 1

n
,

8∑
k=2

k2 = 4 + 9 + 16 + 25 + 36 + 49 + 64.

• Formule du binôme :

(a+ b)n =
n∑
k=0

Ç
n

k

å
an−k bk

Preuve : par récurrence sur n, en utilisant les propriétés 2.2 et 2.4.

Remarque : on a aussi

(a+ b)n =
n∑
k=0

Ç
n

k

å
ak bn−k

Les coefficients se lisent sur la n-ième ligne du triangle de Pascal.

Exemple : (a+ b)5 = a5 + 5a4 b+ 10a3 b2 + 10a2 b3 + 5a b4 + b5

que l’on peut aussi écrire dans l’ordre inverse.
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2.4 Nombres réels

2.4.1 Opérations

R est muni de deux opérations, la somme et le produit, qui doivent être vues comme des applications :

+ :

®
R× R −→ R
(x, y) 7−→ x+ y

et × :

®
R× R −→ R
(x, y) 7−→ x y (ou x.y ou x× y)

.

Nous listons ci dessous leurs propriétés et le vocabulaire associé :

Propriétés de la somme :

— Commutativité : ∀(x, y) ∈ R2, x+ y = y + x
— Associativité : ∀(x, y, z) ∈ R3, (x+ y) + z = x+ (y + z)
— 0 est élément neutre : ∀x ∈ R, x+ 0 = 0 + x = x
— Tout élément est symétrisable : ∀x ∈ R, ∃!y ∈ R, x+ y = y + x = 0.

On note y sous la forme −x et la notation a− b représente a+ (−b) (soustraction).

On résume ces propriétés en disant que (R,+) est un groupe commutatif.

Propriétés du produit :
— Commutativité : ∀(x, y) ∈ R2, x y = y x
— Associativité : ∀(x, y, z) ∈ R3, (x y) z = x (y z)
— 1 est élément neutre : ∀x ∈ R, x.1 = 1.x = x
— Tout élément non nul est inversible : ∀x ∈ R∗, ∃!y ∈ R∗, x y = y x = 1.

Ces propriétés font que (R∗,×) est un groupe commutatif.

On note y sous la forme
1

x
et la notation

a

b
représente a× 1

b
: on a ainsi

x

x
= 1 (avec x 6= 0).

— Distributivité sur la somme : ∀(x, y, z) ∈ R3, x (y + z) = x y + x z

On dit finalement que (R,+,×) a une structure de corps commutatif.

Remarque 2.4.1. On retrouve avec ces seules règles d’autres propriétés usuelles, par exemple :

∀x ∈ R, 0.x = 0

en effet on a 0.x = (0 + 0).x = 0.x+ 0.x et il suffit alors de soustraire 0.x à chaque membre.
Il en va de même (= exercice) des règles suivantes (on omet les quantificateurs et on suppose tous les
dénominateurs non nuls) :

• −(a b) = (−a) b = a (−b), 1

a b
=

1

a

1

b
,

• a

b
× c

d
=
a c

b d
, en particulier

a

b
=
k a

k b
pour k ∈ R∗,

• 1
a
b

=
b

a
,

• a

b
+
c

d
=
a d+ b c

b d
.

Exposants : on pose, x1 = x et, pour x 6= 0, x0 = 1.
La relation de récurrence : ∀n ∈ N, xn+1 = x.xn permet de définir xn pour tout x ∈ R et tout entier
naturel n. La propriété d’associativité du produit permet alors d’obtenir les propriétés (avec n et p
dans N) :

xn p = (xn)p = (xp)n, xn+p = xn xp

et la convention x−n =
1

xn
permet d’étendre la notion d’exposant aux exposants entiers relatifs avec

les mêmes règles de calcul.

26



Remarque 2.4.2.
Dans N, l’équation x+1 = 0 (par exemple) n’a pas de solution, c’est à dire que 1 n’est pas symétrisable
dans N, ainsi d’ailleurs que tous les entiers naturels non nuls. Ceci est à la base de la construction de
l’ensemble Z des entiers relatifs : −1 est alors la solution.
Dans Z, l’entier non nul a étant donné, l’équation x a = 1 n’a pas de solution, sauf pour a ∈ {−1, 1} :
ce problème est résolu par la construction de l’ensemble Q des nombres rationnels. On notera que
(Q,+,×) a les mêmes propriétés calculatoires que (R,+,×) : c’est aussi un corps commutatif.
Dans Q, l’équation x2 = 2 n’a pas de solution. Il y a aussi d’autres défauts, liés essentiellement à la
notion de borne supérieure (voir le paragraphe 2.4.4 ci-dessous) qui rendent nécessaire la construction
de l’ensemble (beaucoup) plus vaste des nombres réels.

2.4.2 Relation d’ordre et règles de base

Sur R, il existe une relation d’ordre ≤ qui permet de comparer les réels entre eux :

x ≤ y ⇐⇒ y − x ∈ R+ = [0,+∞[.

La terminologie « relation d’ordre » est liée aux propriétés suivantes :

1. ∀x ∈ R, x ≤ x (réflexivité),
2. ∀(x, y, z) ∈ R3, (x ≤ y et y ≤ z) =⇒ x ≤ z (transitivité),
3. ∀(x, y) ∈ R2, (x ≤ y et y ≤ x) =⇒ x = y (antisymétrie).

Si x et y sont des réels, alors on a nécessairement x ≤ y ou y ≤ x : on dit que la relation d’ordre ≤ est
totale.

Attention : la relation « < » définie par : x < y ⇐⇒ x ≤ y et x 6= y n’est pas une relation d’ordre
(pourquoi ?).

Relation d’ordre et opérations :

• On peut ajouter ou soustraire un même réel aux deux membres d’une inégalité :

x ≤ y =⇒ x+ a ≤ y + a

• On peut multiplier par un même réel positif les deux membres d’une inégalité :®
x ≤ y
a ≥ 0

=⇒ ax ≤ ay

On dit que la relation d’ordre « ≤ » est compatible avec les opérations + et ×.

• Si on multiplie par un même réel négatif les deux membres d’une inégalité, cela change le sens
des inégalités : ®

x ≤ y
a ≤ 0

=⇒ ax ≥ ay

• On peut ajouter membre à membre des inégalités de même sens :®
x ≤ y
a ≤ b =⇒ x+ a ≤ y + b
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Attention : on ne peut pas les soustraire membre à membre.

Exemple : ®
x ≤ y
a ≤ −1

⇐⇒
®
x ≤ y
1 ≤ −a d’où x+ 1 ≤ y − a

par contre on a pas x− a ≤ y + 1.

• On peut multiplier membre à membre des inégalités de même sens si tout les membres sont
positifs : ®

0 ≤ x ≤ y
0 ≤ a ≤ b =⇒ ax ≤ by

• Inverse et division :

0 < x ≤ y ⇐⇒ 0 <
1

y
≤ 1

x

D’où :
®

0 < a ≤ b
0 < x ≤ y =⇒ a

y
≤ b

x
en utilisant le produit membre à membre.

En fait, il faut toujours voir la division comme une multiplication par l’inverse (
a

x
= a

1

x
).

2.4.3 Valeur absolue

Définition 2.4.1. La valeur absolue d’un nombre réel x est le réel positif noté |x| tel que :

|x| = max(−x, x) =

®
x si x ≥ 0
−x si x < 0

Propriétés :
• | − x| = |x|,

• |x y| = |x| |y|,

• Inégalités triangulaires : ∀(x, y) ∈ R2, ||x| − |y|| ≤ |x± y| ≤ |x|+ |y|

Remarque : |x− y| mesure la distance entre x et y sur l’axe réel :

Soient x ∈ R et a ≥ 0. Alors on a :

|x| ≤ a⇐⇒ −a ≤ x ≤ a
la distance entre x et 0 est inférieure à a

|x| > a⇐⇒ x < −a ou x > a

la distance entre x et 0 est strictement supérieure
à a
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Remarque : soient x0 ∈ R, x ∈ R et a ≥ 0, alors :

|x− x0| ≤ a ⇐⇒ −a ≤ x− x0 ≤ a
⇐⇒ x0 − a ≤ x ≤ x0 + a

2.4.4 Majorants, minorants, borne supérieure et borne inférieure

Dans tout ce paragraphe, A désigne une partie (i.e. un sous-ensemble) de R.

Définition 2.4.2 (Majorant, minorant).
On appelle majorant de A tout réel M tel que : ∀x ∈ A, x ≤M .
On appelle minorant de A tout réel m tel que : ∀x ∈ A, x ≥ m.

Attention : ces éléments n’existent pas toujours ... S’il existe un majorant (resp. un minorant) on dit
que A est majorée (resp. minorée).
Un ensemble de réels à la fois majoré et minoré est dit borné. On retiendra que :

Proposition 2.4.1. A est borné si et seulement si il existe un réel M tel que : ∀x ∈ A, |x| ≤M .

Preuve : en exercice.

Exemples :
— A = N : 0 est un minorant, -10 en est un autre, il n’y a pas de majorant.
— A =]0, 1[ : -2 est un minorant, 1 est un majorant, π en est un autre.

Plus grand élément, plus petit élément : s’il existe un majorant M de A qui est élément de A,
alors il est unique. On l’appelle le plus grand élément de A. On écrit M = max(A).
De même, si un réel m est un minorant de A et est élément de A, on l’appelle le plus petit élément de
A. On écrit M = min(A).

L’unicité est très simple à obtenir : si M et M ′ sont des majorants de A et sont dans A, on a à la fois
M ≤M ′ (M ∈ A et M ′ majorant) et M ′ ≤M (M ′ ∈ A et M majorant), donc M = M ′.
Ces éléments n’existent pas toujours non plus ...
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Exemples :
— A = N : 0 est le plus petit élément, il n’y a pas de plus grand élément.
— A =]0, 1[ : ni plus petit ni plus grand élément.
— A =]0, 1] : pas de plus petit élément, 1 est le plus grand élément. max(A) = 1.
— Toute partie non vide de N admet un plus petit élément (admis mais intuitif).
— Toute partie non vide et majorée de N admet un plus grand élément (idem).
— Toute partie non vide et minorée de Z admet un plus petit élément (idem).
— Toute partie non vide et majorée de Z admet un plus grand élément (idem).

Application : partie entière d’un réel. Etant donné un réel x, l’ensemble non vide des entiers
relatifs n tels que n ≤ x est majoré (par x), il admet donc un plus grand élément qu’on appelle sa
partie entière notée bxc (ou [x] ou encoreE(x)) :

Définition 2.4.3. La partie entière d’un réel x est l’unique entier bxc vérifiant bxc ≤ x < bxc+ 1.

Exemples : b2c = 2, bπc = 3, b−2.4c = −3 (attention : ce n’est pas −2).

Remarque 2.4.3. Si a est un entier relatif et b un entier naturel non nul, alors le quotient q de la
division euclidienne de a par b n’est autre que la partie entière du rationnel

a

b
. On a en effet (voir la

proposition 2.2.1)
a

b
= q +

r

b
et 0 ≤ r

b
< 1 (r est le reste).

Notions de borne supérieure et de borne inférieure :

Soit A une partie non vide et majorée de R. On admettra que l’ensemble des majorants de A possède
un plus petit élément S : on l’appelle la borne supérieure de A (=« plus petit de tous les majorants
de A »).
S est donc unique et caractérisé par :

1. S est un majorant de A,

2. si M est un majorant quelconque de A alors M ≥ S.

On écrit S = supA.
De même, si A est non vide et minorée, l’ensemble des minorants possède un plus grand élément s
qu’on appelle borne inférieure de A et qu’on note s = inf A (=« plus grand de tous les minorants de
A ») :

1. s est un minorant de A,
2. si m est un minorant quelconque de A alors m ≤ s.

Exemples :
— A = N : 0 est le plus petit élément et la borne inférieure. Pas de borne supérieure.
— A =]0, 1[ : inf A = 0, supA = 1.
— A =]0, 1] : inf A = 0, supA = 1.

Remarque 2.4.4. Si A possède un plus grand élément, c’est aussi la borne supérieure mais la réci-
proque est fausse : voir les exemples ci-dessus. Il faut donc bien faire la différence entre max(A) et
sup(A), en particulier :

M = max(A)⇐⇒M = sup(A) et M ∈ A

Remarque analogue pour la borne inférieure et le plus petit élément.
Si A est non vide et borné, si s = inf A et S = supA, on a : ∀x ∈ A, s ≤ x ≤ S et ceci est le plus
précis des encadrements communs à tous les éléments de A à l’aide d’inégalités larges.
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La caractérisation de la borne supérieure (resp. inférieure) donnée ci-dessus admet une formulation
n’utilisant pas le langage courant et beaucoup plus efficace dans les raisonnements mathématiques. Il
faut la connaitre et apprendre à l’utiliser. Une lecture attentive de la preuve devrait éclairer
cette formulation :

Proposition 2.4.2. Soient A un ensemble non vide, s et S des réels. Alors :

S = supA⇐⇒


∀x ∈ A, x ≤ S,

∀ε > 0, A∩]S − ε, S] 6= ∅
ou encore : ∀ε > 0, ∃x ∈ A, S − ε < x ≤ S.

s = inf A⇐⇒


∀x ∈ A, x ≥ s,

∀ε > 0, A ∩ [s, s+ ε[ 6= ∅.

Preuve : nous allons traiter seulement le cas de la borne supérieure. L’autre cas est analogue. On va
voir que les deux propriétés demandées correspondent, dans le même ordre, aux propriétés 1. et 2. de
la caractérisation donnée plus haut.
Remarque : on va être amené à faire deux raisonnements par l’absurde (cf. chapitre 1).
Condition nécessaire (sens « =⇒ ») : on suppose que S est la borne supérieure de A. C’est donc
un majorant et on a bien (∀x ∈ A, x ≤ S).
Soit maintenant ε un réel strictement positif (cette façon d’écrire sous-entend qu’il est quelconque -
NDLR) et supposons que l’ensemble A∩]S−ε, S] soit vide : alors il est clair (on l’espère !) que S−ε est
un majorant de A (personne pour le dépasser), ce qui contredit le fait que S soit le plus petit majorant
(on a S − ε < S). On a donc nécessairement : ∀ε > 0, A∩]S − ε, S] 6= ∅.
Condition suffisante (sens «⇐= ») : on suppose maintenant que les deux conditions écrites après
l’accolade sont satisfaites et il s’agit de montrer que S = supA.
La première est la formulation mathématique de « S est un majorant de A ».
Soit S′ un autre majorant : on doit prouver que S′ ≥ S car ceci montrera que S est le plus petit des
majorants.
Supposons au contraire que S′ < S : on peut écrire S′ = S − ε avec ε = S − S′ > 0 et on sait qu’alors,
par hypothèse, A∩]S − ε, S] 6= ∅. Soit a un élément de cet ensemble : il vérifie a ∈ A et S′ < a ≤ S de
sorte que S′ n’est pas un majorant. Ceci est en contradiction avec l’hypothèse et on a donc S′ ≥ S, ce
qu’on voulait.
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Chapitre 3

Polynômes

Ce chapitre a pour seul objectif de préciser certaines des propriétés des polynômes qui seront utilisées
dans ce cours, à savoir essentiellement la factorisation des polynômes à coefficients réels et la division
euclidienne. Il ne sera pas fait ici de théorie approfondie comme vous pouvez en trouver dans les ma-
nuels : ce sera l’objet de cours ultérieurs.
On ne considère ici que les polynômes à coefficients réels mais tout s’étend immédiatement aux poly-
nômes à coefficients complexes, excepté la liste des polynômes irréductibles sur lesquels on reviendra
dans le chapitre sur les nombres complexes.

3.1 Introduction

Les polynômes sont des objets mathématiques qui vous sont familiers et que vous manipulez cou-
ramment (somme, produit, produit par un réel). On dit que A = 2 − 3X + X3, par exemple, est un
polynôme en une indéterminée X (que l’on peut noter aussi A(X)) : mais quel est au juste le statut
mathématique de ce « X » (qui n’est pas une variable ...) ?
Considérons deux polynômes A = a0 + a1X + a2X

2 + a3X
3 et B = b0 + b1X + b2X

2 où on suppose
a3 6= 0 et b2 6= 0 : on dit que A est de degré 3 et B de degré 2.
Étant convenu d’ordonner les polynômes suivant les puissances croissantes de X, A est déterminé sans
ambiguité par la donnée de la liste de ses coefficients (a0, a1, a2, a3) et B par (b0, b1, b2).
La somme A+B correspond alors à la liste (a0 + b0, a1 + b1, a2 + b2, a3 + b3) en posant b3 = 0.
Le produit AB va fournir un polynôme de degré 5 qui commence par a0b0 + (a0b1 + a1b0)X + (a0b2 +
a1b1 + a2b0)X2 + · · · . Plus généralement on trouve facilement que le coefficient de Xp, avec 0 ≤ p ≤ 5,

est cp =
p∑

k=0

akbp−k.

Le produit kA, où k est un réel, correspond à (ka0, ka1, ka2, ka3).
Il en résulte que les règles de calcul sur les polynômes sont en fait des règles de calcul sur les objets
mathématiques que sont les suites de réels nulles à partir d’un certain rang (les coefficients des monômes
qui ne figurent pas sont nuls. En pratique, bien sûr, on ne les écrit pas).
La théorie des polynômes à coefficients réels (ou autres) considère en fait l’ensemble de ces suites, au
statut clair, muni de ces règles de calcul posées a priori comme des définitions. La lettre X désigne
alors le polynôme associé à la suite (0, 1, 0, · · · ). Le produit XX, noté X2, fournit la suite (0, 0, 1, 0, · · · )
(vérification facile) et ainsi de suite. Ceci donne un sens à X et justifie l’écriture usuellement adoptée
pour les polynômes. Enfin, l’égalité de deux polynômes équivaut à l’égalité des deux suites de coefficients
qui les définissent.
Le degré d’un polynôme A défini par la suite nulle à partir d’un certain rang (a0, a1, · · · ) est par
définition le plus grand entier n tel que an 6= 0 et est noté deg(A). On rappelle les règles suivantes :

deg(A + B) ≤ max(deg(A), deg(B)), si AB 6= 0, deg(AB) = deg(A) + deg(B)
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On note R[X] l’ensemble des polynômes à une indéterminée X et à coefficients réels.

3.2 Division euclidienne dans R[X]

Le résultat suivant est à rapprocher de la division euclidienne dans Z.

Proposition 3.2.1. Soient A et B deux polynômes à coefficients réels avec B 6= 0. Il existe un
unique couple (Q,R) de polynômes tels que A = BQ+R et deg(R) < deg(B).
Q et R s’appellent respectivement quotient et reste de la division euclidienne de A par B.

Preuve : on prouve séparément l’existence et l’unicité du couple (Q,R).

Existence : si A = 0 il suffit de prendre Q = R = 0, sinon on procède par récurrence sur
n = deg(A). Soit B = bpX

p + · · · + a0 (écrit suivant les puissances décroissantes) avec bp 6= 0
de sorte que deg(B) = p. Lorsque n < p on pose Q = 0 et R = A, sinon on suppose la
propriété vraie pour tous les polynômes A tels que deg(A) ≤ n et on cherche à la prouver pour
A = an+1X

n+1 + · · ·+ a0 avec an+1 6= 0.
Posons Q1 =

an+1

bp
Xn+1−p : le polynôme A1 = A− BQ1 est de degré au plus n car on a “tué"

le monôme de plus haut degré dans A. Par hypothèse de récurrence on a l’existence d’un couple
(Q2, R2) tel que A1 = BQ2+R2 avec deg(R2) < p. On a alors A = A1+BQ1 = B(Q1+Q2)+R2

et il suffit de poser Q = Q1 +Q2 et R = R2.

Unicité : supposons que l’on ait A = BQ+R et A = B′Q+R′ avec deg(R) < deg(B) et deg(R′) <
deg(B). En soustrayant membre à membre les deux égalités on obtient B(Q′ −Q) = R′ −R. Si
Q′ −Q 6= 0, on a d’une part deg(B(Q′ −Q)) = deg(B) + deg(Q′ −Q) ≥ p = deg(B) et d’autre
part deg(B(Q′ − Q)) = deg(R′ − R) < max(deg(R′),deg(R)) < p : c’est contradictoire. Donc
Q′ −Q = 0 et par conséquent R′ −R = 0.

Exemple :

X3 +X2 −1 X −1

−X3 +X2 X2 +2X +2

2X2

−2X2 +2X
2X −1
−2X +2

+1

Consigne de rédaction : à l’issue du calcul on doit écrire la conclusion. Par exemple :

A = B (X2 + 2X + 2) + 1

Le quotient est X2 + 2X + 2 et le reste est 1.

Procédure : on ordonne chaque polynômes suivant les puissances décroissantes. On cherche un mo-
nôme dont le produit par le terme dominant de B (ici X) donne le terme dominant de A (ici X3).
C’est clairement X2. On effectue alors le produit X2B = X3 −X2 que l’on retranche à A : on l’écrit
sous A en changeant les signes et en respectant l’ordre décroissant des exposants, quitte à laisser un
blanc lorsqu’un exposant est absent (noter l’espace laissé entre X2 et −1 dans l’écriture de A). On
ajoute à A et on recommence alors avec le résultat obtenu.
Pour alléger, on peut se dispenser d’abaisser tous les monômes de A à chaque étape : le −1, par
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exemple, est pris en compte seulement à la fin. On peut procéder autrement si l’on préfère, de même
certains ne changent pas le signe mais retranchent... Dans tous les cas ce doit être propre, lisible et
bien sûr correct.

Remarque 3.2.1. On rappelle qu’un polynôme B divise un polynôme A s’il existe un polynôme C
tel que A = BC (on écrit B|A). Le reste de la division euclidienne de A par B est nul si et seulement
si B divise A.

3.3 Fonctions polynomiales, racines

À tout polynôme à coefficients réels P =
n∑
k=0

akX
k on associe la fonction réelle P̃ définie sur R par

P̃ (x) =
n∑
k=0

akx
k (on a remplacé l’indéterminée X par la variable x).

On dit que P̃ est la fonction polynomiale associée à P . En pratique, pour simplifier, on notera P cette
fonction, plutôt que P̃ : le contexte évite les confusions.

Définition 3.3.1. Soit P un polynôme à coefficients réels. On dit que le réel a est une racine de P si
P (a) = 0.

Dans cette définition on aurait dû écrire P̃ (a) = 0 mais on s’est permis, sans conséquence néfaste, la
simplification évoquée précédemment. On retiendra les résultats suivants, très importants en pratique :

Proposition 3.3.1. Soient P un polynôme et a un réel. a est une racine de P si et seulement si
X − a divise P .

Preuve : Si X − a divise P , il existe un polynôme P1 tel que P = (X − a)P1 et il est alors clair que
P (a) = 0. Réciproquement, supposons que a soit une racine de P et effectuons la division euclidienne
de P par X−a : P = (X−a)Q+R avec deg(R) < 1 (R est donc une constante). Comme R(a) = P (a)
la constante est nécessairement nulle et on a P = (X − a)Q i.e. X − a divise P .

Conséquence pratique : si on observe que P (a) = 0 alors on sait que l’on peut factoriser P par
X − a. Pour ce faire on dispose de deux méthodes :

- la division euclidienne : elle aboutira à P = (X − a)B (reste nul),

- les coefficients indéterminés : si deg(P) = n ≥ 2 avec coefficient dominant an on sait qu’on
peut écrire P = (X−a)(bnX

n−1 +bn−1X
n−1 + · · ·+b0. On effectue alors ce produit, on regroupe

les termes de même degré et on identifie les coefficients obtenus avec ceux de P . On remarque
tout de suite que bn = an et que ab0 = a0.

Exemple : P = X3− 4X2 +X + 2. On observe que P (1) = 0 : on pourra donc écrire P sous la forme
(X − 1)(aX2 + bX + c). On voit immédiatement que l’on aura a = 1 et c = −2 : on les remplace. En
identifiant alors les termes de degré 1 et 2 on obtient les égalités b− 1 = −4 et −2− b = 1 : une seule
de ces deux égalités suffit piuisqu’on sait qu’il y a une solution, mais cela peut faire office de contrôle.
Finalement b = −3 et on a : X3 − 4X2 +X + 2 = (X − 1)(X2 − 3X − 2).
On pourra retrouver ce résultat en effectuant la division euclidienne ...

Corollaire 3.3.1. Un polynôme non nul de degré n ≥ 0 possède au plus n racines distinctes.

Preuve : nous prouvons ce résultat par récurrence sur n. Si n = 0 le polynôme est une constante
non nulle et ne possède donc aucune racine.
Supposons le résultat vrai pour tous les polynômes de degré n, où n est un entier fixé. Soit alors
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P un polynôme de degré n + 1 possédant au moins n + 2 racines distinctes a1, · · · , an+2. D’après la
proposition 3.3.1 il existe un polynôme Q tel que P = (X − a1)Q et, les racines étant distinctes, on a
Q(a2) = · · · = Q(an+2) = 0 : Q possède au moins n+ 1 racines distinctes. Mais deg(Q) = n donc, par
hypothèse de récurrence, il est nécessairement nul et on a ainsi P = 0. Ceci achève la récurrence (on a
établi la contraposée).

Corollaire 3.3.2. Soient P, Q des polynômes, alors P̃ = Q̃⇐⇒ P = Q.

Il en résulte que deux fonctions polynomiales sont égales si et seulement si les coefficients des termes
de même degré sont égaux.

Preuve : si P̃ = Q̃ alors la fonction polynomiale P̃ − Q̃, associée au polynôme P − Q, est nulle et
ainsi P −Q possède une infinité de racines. Il est donc nul.

+ + + + + + + + ++ Pour aller plus loin : racines multiples + + + + + + + + ++

Définition 3.3.2 (ordre d’une racine). On appelle ordre de multiplicité d’une racine a d’un polynôme
P le plus grand entier m tel que (X − a)m divise P .

Lorsque m = 2 on parle de racine double et lorsque m = 3, de racine triple. Il y a un lien entre l’ordre
de multiplicité d’une racine et les racines des dérivées successives d’un polynôme, notion que nous
définissons ci-dessous :

Définition 3.3.3 (polynôme dérivé). Soit P =
n∑
k=0

akX
k, polynôme de R[X] de degré inférieur ou égal

à n. On appelle polynôme dérivé de P le polynôme P ′ =
n∑
k=1

kakX
k−1

La fonction polynômiale P̃ ′ est bien sûr la dérivée de P̃ et on définit de façon naturelle les dérivées
successives de P avec les mêmes notations que pour les fonctions. Nous n’irons pas plus loin dans cette
direction (importante) mais le lien entre ordre de multiplicité et polynômes dérivés sera abordé en TD
sur un cas particulier. Le résultat général est le suivant :

Proposition 3.3.2. Soient P un polynôme et a un réel. a est une racine de P de multiplicité m ∈ N∗
si et seulement si

P (a) = P ′(a) = · · · = P (m−1)(a) = 0 et P (m)(a) 6= 0.

3.4 Polynômes irréductibles de R[X]

Définition 3.4.1. On dit qu’un polynôme P de R[X] est irréductible s’il est non-constant et si ses seuls
diviseurs sont les polynômes constants et les polynômes de la forme λP avec λ ∈ R∗ (ces polynômes
sont dits associés à P ).

On admettra les résultats suivants. On reviendra sur les polynômes irréductibles de R[X] dans le
prochain chapitre (nombres complexes).

Proposition 3.4.1. Tout polynôme non constant est un produit de facteurs irréductibles. La décom-
position est unique, à l’ordre près des facteurs, sauf à changer certains facteurs en facteurs associés.
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Proposition 3.4.2. Les polynômes irréductibles de R[X] sont les polynômes de degré 1 et les poly-
nômes de degré 2 à discriminant strictement négatif.

Attention : il ne faut pas confondre irréductibilité et absence de racine : X4 +X2 + 1, par exemple,
n’a pas de racine (dans R) mais n’est pas irréductible : X4 +X2 + 1 = (X2 +X + 1)(X2 −X + 1).
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Chapitre 4

Les nombres complexes

4.1 Introduction

L’idée des nombres complexes est due aux mathématiciens italiens de l’université de Bologne, Dal
Ferro, Tartaglia, Cardan : ils ont imaginé, vers 1550, une « racine carrée de -1 » pour résoudre les
équations du troisième degré. On sait d’ailleurs, à un niveau plus simple, que l’équation x2 + 1 = 0
n’a pas de solution dans R. Grâce aux progrès de l’Algèbre, les nombres complexes ont acquis, depuis,
un statut mathématique précis. Leur construction n’est pas au programme de ce cours ; mentionnons
seulement qu’il est possible de la faire à partir des couples (x, y) de réels (ceux-là même qui vont donner
x+ iy) pour lesquels on étend les notions de somme et de produit de façon convenable :

(x, y) + (x′, y′) = (x+ x′, y + y′), (x, y)× (x′, y′) = (xx′ − y y′, x y′ + x′ y)

On peut vérifier que ces opérations ont les mêmes propriétés que les opérations + et × habituelles dans
R : commutativité, associativité, distributivité de × par rapport à +.
Les réels correspondent alors aux couples de la forme (x, 0) dont l’ensemble est stable par ces opéra-
tions : on note (x, 0) plus simplement x et on introduit l’élément i déf= (0, 1) qui est tel que, i2 = (−1, 0)
c’est à dire −1 avec la convention précédente. Comme (x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0) × (0, 1)
(le vérifier !), on obtient la notation usuelle x+ iy.

Ce chapitre est essentiellement consacré à des rappels.

4.2 Représentation algébrique des nombres complexes

4.2.1 Introduction basique

Conformément à ce qui a été introduit ci-dessus, l’ensemble des nombres complexes est

C = {x+ iy ; x ∈ R, y ∈ R }.

x s’appelle la partie réelle de z, notée x = Re(z)
y s’appelle la partie imaginaire de z, notée y = Im(z).

L’écriture d’un nombre complexe z sous la forme x+ iy avec x, y ∈ R s’appelle la forme algébrique
de z.

On a R ⊂ C et :

z = z′ ⇐⇒ Re (z) = Re (z′) et Im (z) = Im (z′)
z ∈ R⇐⇒ Im(z) = 0
z = 0⇐⇒ x = y = 0⇐⇒ Re(z) = Im(z) = 0
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On munit C de deux opérations :

• Addition : si z = x+ iy et z′ = x′ + iy′ alors z + z′ = x+ x′ + i(y + y′).

• Multiplication : si z = x+ iy et z′ = x′ + iy′ alors zz′ = xx′ − yy′ + i(xy′ + x′y).

Cas particulier : si k ∈ R et z = x+ iy alors kz = kx+ iky.

On a i = 0 + 1 i : en appliquant les règles ci-dessus on obtient i2 = −1.

Ces règles, appliquées aux réels, redonnent les opérations usuelles. On peut formellement calculer
comme dans R, avec la particularité liée à l’utilisation de i.

Plan complexe : grâce au lien entre C et R2 il est d’usage de représenter z = x + iy par le point
M(x, y) (ou par le vecteur −→u = x

−→
i + y

−→
j ) dans le plan rapporté à un repère orthonormal, qui prend

alors le nom de plan complexe. Précisons :

Définition 4.2.1. Soient −→u = x
−→
i + y

−→
j un vecteur et M(x, y) un point.

On appelle affixe de −→u ou du point M le nombre complexe z = x+ iy noté aussi aff(−→u ) ou aff(M).
Inversement on dit que M(x, y) est le point image de z = x+ iy. On le note aussi M(z).

On a alors le résultat très simple :

Proposition 4.2.1. Soient A et B des points d’affixes respectifs zA et zB alors :

aff(
−−→
AB) = zB − zA

L’axe Ox est l’ensemble des points M d’affixe zM = x ∈ R (axe réel),
l’axe Oy est l’ensemble des points M d’affixe zM = iy, y ∈ R ( axe des imaginaires purs)

Figure 4.1 – Somme et produit par un réel

4.2.2 Conjugaison, module

Définition 4.2.2. Soit z = x+ iy un nombre complexe (avec x, y ∈ R).
— On appelle conjugué de z, et on note z, le nombre complexe x− iy.
— On appelle module de z, et on note |z|, le réel positif

»
x2 + y2.
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Ces deux quantités sont liées, en effet :

z z = (x+ iy)(x− iy) = x2 + y2 = |z|2

Remarque : si z ∈ R on a z = x = Re z et donc |z| =
√
x2 = |x|. Le module généralise donc la notion

de valeur absolue d’un réel. D’autre part, du point de vue géométrique :

Proposition 4.2.2. Soient A et B des points d’affixes respectifs zA et zB et −→u un vecteur d’affixe z,
alors :

‖
−−→
AB ‖= |zB − zA|, ‖ −→u ‖= |z|

Figure 4.2 – Conjugué et module

• Propriétés de la conjugaison :

� z = z
� z ∈ R⇐⇒ z = z
� z est imaginaire pur ⇐⇒ z = −z

� zz′ = zz′, z + z′ = z + z′,
Å
z

z′

ã
=
z

z′

� Re(z) =
z + z

2
, Im(z) =

z − z
2i

• Propriétés du module :

� z = 0⇐⇒ |z| = 0
� |z| = |z|,

� |zz′| = |z| · |z′|,
∣∣∣∣ zz′
∣∣∣∣ =
|z|
|z′|

� |zn| = |z|n pour n ∈ N
� inégalités triangulaires (voir figure 4.3 : inégalités dans le triangle OM(z)M(z + z′))

||z| − |z′|| ≤ |z + z′| ≤ |z|+ |z′|

� |Re z| ≤ |z|, |Im z| ≤ |z| : inégalités dans le triangle OHM(z).
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Figure 4.3 – Inégalités triangulaires et module

• Calcul d’un inverse - Il est utile de savoir manipuler conjugaison et module pour calculer sans
avoir recours à la forme algébrique. Par exemple, pour l’inverse d’un nombre complexe z = x+ it 6= 0 :

1

z
=

z

z z
=

z

|z|2
=

x− iy
x2 + y2

La première égalité est obtenue « en multipliant et divisant par le conjugué »...

• Calcul de |z + z′|2 :

|z + z′|2 = (z + z′)(z + z′)

= (z + z′)(z + z′)

= z z + z′ z′ + z z′ + z′ z

= |z|2 + |z′|2 + z z′ + z z′

|z + z′|2 = |z|2 + |z′|2 + 2 Re (z z′)

Remarque 4.2.1. On a donc en particulier :

|z + z′|2 ≤ |z|2 + |z′|2 + 2 |z z′)|
≤ |z|2 + |z′|2 + 2 |z| |z′|
≤ (|z|+ |z′|)2

d’où |z + z′| ≤ |z|+ |z′| : l’inégalité triangulaire est démontrée.
En remplaçant z′ par −z′ on obtient :

|z − z′|2 = |z|2 + |z′|2 − 2 Re (z z′)

Attention : ne pas confondre z2 et |z|2 :

z2 = x2 − y2 + 2ixy tandis que |z|2 = x2 + y2

On vérifiera en exercice que l’égalité n’a lieu que pour les réels

4.3 Argument, forme trigonométrique

Cercle trigonométrique : c’est le cercle C(O, 1) de centre O et de rayon 1 dans le plan orienté (on
choisit par défaut l’orientation usuelle). C’est l’ensemble des points dont l’affixe est de module égal à
1. C’est l’image dans le plan complexe de l’ensemble

U = { z ∈ C ; |z| = 1 }
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• Si z ∈ U, son point image M(z) est sur le cercle trigonométrique et on sait y associer un réel θ,
mesure de l’angle orienté de vecteurs (

−→
i ,
−−−−→
OM(z)), définie modulo 2π c’est à dire à l’ajout près d’un

nombre quelconque de la forme 2kπ, k ∈ Z : M(z) a pour coordonnées (cos θ, sin θ) et on a

z = cos θ + i sin θ

• Si z ∈ C∗, alors u =
z

|z|
est dans U . On peut donc lui associer θ tel que u = cos θ+ i sin θ et on a :

z = |z| (cos θ + i sin θ).

Définition 4.3.1. On appelle argument du nombre complexe non nul z tout réel θ tel que
z = |z| (cos θ + i sin θ).
Si θ0 est l’un d’eux, tous les autres sont de la forme θ = θ0 + 2kπ, avec k ∈ Z quelconque.
On écrit arg(z) = θ0 [2π] (ou même arg(z) = θ0 pour simplifier, s’il n’y a pas d’ambiguité).

Remarque : si z = 0 on a |z| = 0 mais l’argument n’est pas défini. Pour passer de la forme algébrique
à la forme trogonométrique on applique les formules :

|z| =
»
x2 + y2, cos θ =

x√
x2 + y2

, sin θ =
y√

x2 + y2

D’un point de vue géométrique on a immédiatement :

Proposition 4.3.1. Soient A et B des points d’affixes respectifs zA et zB et −→u un vecteur d’affixe

z, alors : (
÷−→
i ,−→u ) = arg(z) [2π] et (

◊�−→
i ,
−−→
AB) = arg(zB − zA) [2π]

On a le résultat fondamental :

Proposition 4.3.2 (Argument d’un produit). Soient z, z′ ∈ C∗, alors :

arg(zz′) = arg(z) + arg(z′) [2π].

Preuve : si z = |z| (cos θ + i sin θ) et z′ = |z′| (cos θ′ + i sin θ′) on a :

z z′ = |z| |z|′ (cos θ + i sin θ)(cos θ′ + i sin θ′)

= |zz′| ((cos θ cos θ′ − sin θ sin θ′) + i (cos θ sin θ′ + sin θ cos θ′))

= |zz′| (cos(θ + θ′) + i sin(θ + θ′))

ce qui donne la relation annoncée.

Cette propriété justifie, à cause de la simlilitude avec les propriétés des exposants, l’introduction de la
notation

eiθ
déf
= cos θ + i sin θ.

Avec cette notation, elle s’écrit en effet simplement : eiθ eiθ
′

= ei(θ+θ
′).

En fait, il y a là plus qu’une simple convention, mais ceci dépasse le cadre du cours.

Tout nombre complexe non nul s’écrit z = r eiθ avec r = |z| et θ = arg(z) [2π]
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Figure 4.4 – Forme trigonométrique

Remarque 4.3.1. Soient r ∈ R (pas de signe a priori), θ ∈ R et z = r eiθ.
— Si r = 0 alors z = 0 et |z| = r = 0 (pas d’argument défini),
— si r > 0 alors |z| = r et arg(z) = θ [2π],
— si r < 0 alors |z| = −r et arg(z) = θ + π [2π].

On a en effet r eiθ = (−r) ei(θ+π) car eiπ = −1

Les propriétés calculatoires de la forme trigonométrique sont résumées dans la proposition suivante :

Proposition 4.3.3. Soient z = r eiθ, z′ = r′ eiθ
′
, avec r, r′ > 0 (forme trigonométrique) alors :

� z = z′ ⇐⇒ r = r′ et θ = θ′ [2π]

� zz′ = rr′ ei(θ+θ
′)

� z

z′
=
r

r′
ei(θ−θ

′), en particulier arg (
z

z′
) = arg z− arg z′ [2π],

� z = re−iθ donc arg (z) = −arg z, [2π],

� ∀z ∈ Z, zn = rneinθ, donc arg (zn) = n arg z [2π]

� z ∈ R⇐⇒ arg z = 0 ou arg z = π [2π],

� z imaginaire pur ⇐⇒ arg z =
π

2
ou arg z = −π

2
[2π]

Exemples :

z = 1 + i =
√

2

Ç√
2

2
+ i

√
2

2

å
, donc |z| =

√
2 et argz =

π

4
[2π] : 1 + i =

√
2 ei

π
4 .

z = −1 = cosπ + i sinπ donc |i| = 1 et arg(−1) = π [2π] : −1 = eiπ.

z = i = cos
π

2
+ i sin

π

2
donc |i| = 1 et arg(i) =

π

2
[2π] : i = ei

π
2 .

Du point de vue géométrique on obtient :
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Proposition 4.3.4. Soient −→u et −→u ′ des vecteurs non nuls d’affixes respectifs z et z′, alors :

(÷−→u ,−→u ′) = arg z′ − arg z [2π] = arg
z′

z
[2π]

Soient quatre points A(zA), B(zB), C(zC), D(zD) tels que A 6= B et C 6= D, alors :

(
Ÿ�−−→
AB,

−−→
CD) = arg

zD − zC

zB − zA
[2π]

4.4 Applications

4.4.1 Racines n-ièmes d’un nombre complexe non nul

Définition 4.4.1. Soient z un nombre complexe et n un entier naturel non nul. On appelle racine
n-ième de z tout nombre complexe Z tel que Zn = z.

Clairement, ceci ne présente un intérêt que pour z 6= 0 et n ≥ 2.

Proposition 4.4.1. Pour n ∈ N∗, tout nombre complexe non nul z = r eiθ, r > 0, possède exacte-
ment n racines n-ièmes (Z0, · · · , Zn−1) données par Zk = n

√
r ei(

θ
n

+ 2kπ
n

), k ∈ J0, n− 1K.

Preuve : on cherche Z sous la forme Z = ρ eiϕ, ρ > 0 : Zn = ρn einϕ et on a

Zn = z ⇐⇒ ρn = r et nϕ = θ [2π]

c’est à dire ρn = r et nϕ = θ [2π]. Or :

ρn = r ⇐⇒ ρ = n
√
r et

nϕ = θ [2π] ⇐⇒ ∃k ∈ Z, n ϕ = θ + 2kπ

⇐⇒ ∃k ∈ Z, ϕ =
θ

n
+

2kπ

n

Posons Zk = n
√
r ei(

θ
n

+ 2kπ
n

) : pour k = n on obtient comme argument
θ

n
+ 2π donc Zn = Z0 et, plus

généralement, Zk+n = Zk. Il suffit donc de prendre k ∈ J0, n− 1K.

Remarque : Les points imagesMk = M(Zk) sont sur le cercle de centre O et de rayon n
√
r et forment

les sommets d’un polygône régulier convexe à n sommets.
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Figure 4.5 – Racines n-ièmes

Cas particulier : les « racines n-ièmes de l’unité »

Proposition 4.4.2. Pour n ∈ N∗, l’équation Zn = 1 possède exactement n solutions appelées racines
n-ièmes de l’unité. Ce sont les nombres complexes (1, u, u2, · · · , un−1) avec u = e

2iπ
n .

En effet, si z = 1 on a r = 1 et θ = 0 donc Zk =
n
√

1 ei(
0
n

+ 2kπ
n

) = ei(
2kπ
n

) =
Ä
ei(

2π
n

)
äk
, k ∈ J0, n− 1K

Exemples :
♦ Racines cubiques de l’unité : z = 1 = e0i, Zk = ei(

0
3

+ 2kπ
3

), k = 0, 1, 2, on a donc trois racines

cubiques : Z0 = 1, Z1 = ei(
2π
3

) = −1

2
+ i

√
3

2
, Z2 = ei(

4π
3

) = −1

2
− i
√

3

2
= Z1.

On note parfois ei(
2π
3

) par j : les racines cubiques de 1 sont alors 1, j et j2 = j.

Figure 4.6 – Racines cubiques de 1

♦ Racines cubiques de 2 : les précédentes, multipliées par 3
√

2.
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♦ Racines 4-ièmes de 1 + i : z =
√

2 e
iπ
4 , Zk =

8
√

2 ei(
π
16

+ kπ
2

), k = 0, 1, 2, 3.

4.4.2 Racines carrées

On veut résoudre Z2 = z où z 6= 0 est donné sous la forme z = r eiθ, r > 0...

• Méthode trigonométrique : on applique ce qui précède avec n = 2 : Zk =
√
r ei(

θ
2

+kπ), k = 0, 1.
On a donc deux racines carrées opposées car Z0 =

√
r ei

θ
2 et Z1 =

√
r ei(

θ
2

+π) = ei
θ
2 eiπ = −Z0.

• Méthode algébrique : on pose z = x + iy, Z = X + iY et on déduit de l’équation Z2 = z,
d’inconnue Z, un système d’équations d’inconnues X, Y .

Z2 = z ⇐⇒ X2 − Y 2 + 2iXY = z = x+ iy

⇐⇒
®
X2 − Y 2 = x
2XY = y

On a aussi |Z|2 = |Z2| = |z| donc X2 + Y 2 =
»
x2 + y2, ce qui permet d’obtenir X2 et Y 2 :

X2 =
1

2
(
»
x2 + y2 + x), Y 2 =

1

2
(
»
x2 + y2 − x).

Cela donne quatre possibilités, mais l’équation 2XY = y donne le signe du produit XY (celui de y),
ce qui réduit les possibilités à deux ...

Exemple : z = 3 + 4i, Z = X + iY

Z2 = 3 + 4i ⇐⇒


X2 − Y 2 = 3 (1)

X2 + Y 2 =
√

9 + 16 = 5 (2)
2XY = 4

⇐⇒


X2 = 4 (1) + (2)

Y 2 = 1 (2)− (1)
XY = 2 > 0

⇐⇒ X = 2, Y = 1 ou X = −2, Y = −1
⇐⇒ Z = 2 + i ou Z = −2− i

Remarque 4.4.1. Dans le cas particulier important où z = x est un réel :
— si x > 0, on retrouve les racines usuelles

√
x et −

√
x,

— si x < 0, on écrit z = −|x| = i2|x| et on obtient les racines conjuguées ±i
»
|x| = ±i

√
−x.

4.4.3 Équations du second degré

Soient a, b, c trois nombres complexes avec a 6= 0. On veut résoudre l’équation az2 + bz + c = 0.
Le principe est le même que dans R. On part de l’identité :

az2 + bz + c = a

ÇÅ
z +

b

2a

ã2

− b2 − 4ac

4a2

å
.

Posons alors ∆ = b2− 4ac : ce nombre complexe admet dans C deux racines carrées opposées δ et −δ,
calculées par l’une des deux méthodes précédentes. L’équation équivaut alors à :Å

z +
b

2a

ã2

=

Å
δ

2a

ã2

et on obtient les solutions :

z1 =
−b+ δ

2a
et z2 =

−b− δ
2a

.
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Exemple : résoudre dans C l’équation z2 + (3− i)z + 2(1− i) = 0.

∆ = (3− i)2 − 8(1− i) = 2i = 2e
iπ
2 = (

√
2e

iπ
4 )2 = (1 + i)2.

On a donc, par exemple, δ = 1 + i et on obtient les solutions :

z1 =
−3 + i+ 1 + i

2
= −1 + i, z2 =

−3 + i− 1− i
2

= −2.

Cas particulier : a, b, c réels et ∆ < 0. Alors les racines complexes de ∆ sont ±i
√
−∆ et les solutions

de l’équations sont conjuguées l’une de l’autre :

z1 =
−b+ i

√
−∆

2a
et z2 =

−b− i
√
−∆

2a
.

Exemple : x2 + x+ 1 = 0.

On trouve ∆ = −3 et on obtient dans C les racines complexes conjuguées :

x′ =
−1− i

√
3

2
et x′′ =

−1 + i
√

3

2

Attention : écrire
−1±

√
−3

2
est une faute.

4.5 Polynômes à coefficients complexes

On peut reprendre mot pour mot les définitions et résultats du chapitre 3 en remplaçant R par C, à
l’exception du paragraphe sur les polynômes irréductibles. Il existe en effet un résultat fondamental
(dont la démonstration est hors programme) :

Théorème 4.5.1 (théorème de d’Alembert-Gauss). Tout polynôme non constant de C[X] possède
au moins une racine dans C

On en déduit immédiatement le résultat suivant :

Corollaire 4.5.1. Les polynômes irréductibles de C[X] sont les polynômes de degré 1

Considérons maintenant un polynôme P ∈ R[X] : on peut le considérer comme un élément de C[X].
On a alors une propriété intéressante et simple :

Proposition 4.5.1. Soit P ∈ R[X], alors pour tout nombre complexe α, P (α) = 0⇐⇒ P (α) = 0.

Autrement dit, si α est une racine de P alors α aussi (et réciproquement puisque α = α).
Preuve : comme α = α, il suffit de démontrer l’implication P (α) = 0 =⇒ P (α) = 0. Supposons que
P = a0 + a1X + · · · anXn avec a0, · · · , an ∈ R et que P (α) = 0 : on a a0 + a1α + · · · anαn = 0 et en
prenant le conjugué de chaque membre : a0 + a1α + · · · anαn = 0 (car les coefficients réels sont leurs
propres conjugués), c’est à direP (α) = 0.

+ + + + + + + + ++ Pour aller plus loin + + + + + + + + ++
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On suppose ici qu’on a étudié le complément sur les racines multiples au chapitre 3. Le théorème 4.5.1
a une autre conséquence :

Corollaire 4.5.2. Tout polynôme non constant de C[X] de degré n ∈ N∗ possède exactement n racines
comptées avec leur ordre de multiplicité

« comptées avec leur ordre de multiplicité » signifie qu’une racine double compte pour deux, etc ...

On peut alors justifier la proposition 3.4.2 sur les polynômes irréductibles de R[X] :

considérons une racine α d’ordre m : on a, d’après la proposition 3.3.2 P (α) = P ′(α) = · · · =
P (m−1)(α) = 0 et P (m)(α) 6= 0. Les coefficients de P et de ses dérivées étant des réels, on
a aussi, d’après la proposition 4.5.1 : P (α) = P ′(α) = · · · = P (m−1)(α) = 0 et P (m)(α) 6= 0. Il en
résulte que α est une racine de P de même ordre m que α.
Si α est réelle, on a rien de nouveau, mais dans la décomposition de P en produit de facteurs irréduc-
tibles on peut le cas échéant regrouper les facteurs correspondant à deux racines non réelles conjuguées
. On obtient des termes à coefficients réels de la forme :

(X − α)m(X − α)m = (X2 − 2Re (α)X + |α|2)m

dont le discriminant ∆ = 4(Re (α)2−|α|) est strictement négatif car |α|2 = Im (α)2+Re (α)2 > Re (α)2.
Finalement, comme indiqué au chapitre 3 3, les polynômes irréductibles de R[X] sont les polynômes
du premier degré et ceux du second degré à discriminant strictement négatif.

4.5.1 Trigonométrie

• Formule de Moivre :

(cos θ + i sin θ)n = (eiθ)n = einθ = cos(nθ) + i sin(nθ)

Cela permet d’obtenir cos(nθ) et sin(nθ) sous forme d’une expression polynômiale en cos(θ) et sin(θ).

Exemple :
(cos θ + i sin θ)3 = cos(3θ) + i sin(3θ) par la formule de Moivre. D’autre part :
(cos θ + i sin θ)3 = cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ par la formule du binôme.

En identifiant les parties réelles et imaginaires on obtient donc :
cos(3θ) = cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ

sin(3θ) = 3 cos2 θ sin θ − sin3 θ = 3 sin θ − 4 sin3 θ

• Formules d’Euler :

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i

Elles permettent de linéariser une expression une expression polynômiale en cos(θ) et sin(θ) (transfor-
mation inverse de la précédente).

Exemples :

1. Forme linéarisée de cos3 θ :
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cos3 θ =

Ç
eiθ + e−iθ

2

å3

=
e3iθ + 3e2iθe−iθ + 3eiθe−2iθ + e−3iθ

8

=
e3iθ + e−3iθ + 3eiθ + 3e−iθ

8

=
1

4
(cos(3θ) + 3 cos θ).
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2. Forme linéarisée de cos2 θ sin4 θ :

cos2 θ sin4 θ =

Ç
eiθ + e−iθ

2

å2Ç
eiθ − e−iθ

2i

å4

=
1

26
(e2iθ + 2 + e−2iθ)(e4iθ − 4e3iθe−iθ + 6e2iθe−2iθ−4eiθe−3iθ + e−4iθ)

=
1

26
(e2iθ + 2 + e−2iθ)(e4iθ − 4e2iθ + 6− 4e−2iθ + e−4iθ)

=
1

26
(e6iθ + e−6iθ − 2e4iθ − 2e−4iθ − e2iθ − e−2iθ + 4)

=
1

32
(cos(6θ)− 2 cos(4θ)− cos(2θ) + 2)
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Chapitre 5

Fonctions usuelles

Ce chapitre passe en revue les définitions et propriétés de fonctions d’usage courant vues dans les
classes de lycée. Le seul point nouveau concerne la fonction tangente.

5.1 Quelques rappels

• Intervalles de R

Définition 5.1.1. Un intervalle de R est une partie I de R qui vérifie la propriété suivante :

∀(x, y) ∈ I × I, ∀z ∈ R, x ≤ z ≤ y =⇒ z ∈ I.

Autrement dit, si un réel est compris entre deux éléments de I alors il doit lui-même être dans I.
R∗, par exemple, n’est pas un intervalle.

Les intervalles sont les sous-ensembles de R des types suivants :
— Intervalles bornés :

[a, b] = {x ∈ R, a ≤ x ≤ b } (intervalle fermé), ]a, b[= {x ∈ R, a < x < b } (intervalle ouvert).
[a, b[= {x ∈ R, a ≤ x < b } et ]a, b] = {x ∈ R, a < x ≤ b } (intervalle semi-ouvert).

— Intervalles non-bornés :
[a,+∞[= {x ∈ R, a ≤ x } et ]a,+∞[= {x ∈ R, a < x }.
]−∞, b] = {x ∈ R, x ≤ b } et ]−∞, b[= {x ∈ R, x < b }
R =]−∞,+∞[.

• Fonctions croissantes ou décroissantes sur un intervalle

Une fonction croissante « conserve l’ordre » tandis qu’une fonction décroissante « inverse l’ordre » :

Définition 5.1.2. Soit f une fonction réelle définie sur un intervalle I de R.
— On dit que f est croissante si elle vérifie :

∀(x, y) ∈ I × I, x < y =⇒ f(x) ≤ f(y)

— On dit que f est strictement croissante si elle vérifie :

∀(x, y) ∈ I × I, x < y =⇒ f(x) < f(y)

— On dit que f est décroissante si elle vérifie :

∀(x, y) ∈ I × I, x < y =⇒ f(x) ≥ f(y)
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— On dit que f est strictement décroissante si elle vérifie :

∀(x, y) ∈ I × I, x < y =⇒ f(x) > f(y)

• Quelques propriétés remarquables

Définition 5.1.3. f est une fonction paire si

∀x ∈ Df , −x ∈ Df et f(−x) = f(x).

Dans ce cas le graphe de f en repère orthogonal est symétrique par rapport à l’axe Oy.

Définition 5.1.4. f est une fonction impaire si :

∀x ∈ Df , −x ∈ Df et f(−x) = −f(x).

Dans ce cas le graphe de f est symétrique par rapport à O.

Remarque 5.1.1. Plus généralement :
— si :

∀x ∈ Df ,
(
a+ x ∈ Df =⇒ a− x ∈ Df et f(a+ x) = f(a− x)

)
alors le graphe de f est symétrique par rapport à la droite x = a.

— si :
∀x ∈ Df ,

(
a− x ∈ Df et f(a− x) = f(x)

)
alors le graphe de f en repère orthogonal est symétrique par rapport à la droite x =

a

2
.

Définition 5.1.5. f est une fonction périodique s’il existe un réel T > 0 tel que :

∀x ∈ Df , x+ T ∈ Df et f(x+ T ) = f(x)

On dit que T est une période de f . Le plus petit de ces réels T > 0, s’il existe, est appelé la période
de f .

La représentation graphique étant faite sur un intervalle quelconque de longueur T , la courbe complète
s’obtient en effectuant les translations de vecteurs nT~i avec n ∈ Z.

5.2 Logarithme népérien

5.2.1 Définition

La fonction logarithme népérien est la fonction, notée ln, définie sur ]0,+∞[ par

ln(x) =

∫ x

1

1

t
dt
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Figure 5.1 – Fonction logarithme népérien

En d’autres termes, c’est l’unique fonction f dérivable sur ]0,+∞[ telle que :

 f ′(x) =
1

x
pour tout x ∈]0,+∞[,

f(1) = 0

En particulier : ln est continue et dérivable sur son domaine Dln =]0,+∞[, ln(1) = 0 et pour tout

x > 0, (ln)′(x) =
1

x
> 0.

À partir de la définition sous forme intégrale, on a une interprétation du logarithme népérien en termes
d’aire algébrique. On pourra par exemple obtenir un encadrement de ln 2 à l’aide d’une feuille de papier

millimétré et d’un crayon, en ne calculant que des inverses pour tracer le graphe de la fonction x 7→ 1

x
.

5.2.2 Propriétés

Propriétés algébriques :

• ∀a > 0,∀b > 0, ln(a b) = ln a+ ln b

Preuve : on pose, pour x > 0, f(x) = ln(ax)− lnx− ln a. On a f ′(x) = 0, Donc f est une fonction
constante sur ]0,+∞[. De plus f(1) = 0, donc f est la fonction nulle et on a ainsi montré :
∀x ∈]0,+∞[, ln(a x) = ln a+ lnx. Il reste alors à remplacer x par b.

• Conséquences : pour a > 0 et b > 0,

ln

Å
a

b

ã
= ln a− ln b ln

Å
1

b

ã
= − ln b,

ln an = n ln a pour n ∈ N, ln a
p
q =

p

q
ln a pour p ∈ Z et q ∈ N∗,

ln
√
a =

1

2
ln a

Propriétés analytiques :

• lim
x→0+

lnx = −∞, lim
x→+∞

lnx = +∞

Preuve : (à lire après étude du chapitre 6) on montre d’abord que lim
x→+∞

lnx = +∞.
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Soit M > 0. La fonction ln étant strictement croissante, on a ln 2 > ln 1 = 0. Il existe donc un entier
n ∈ N tel que n ln 2 ≥ M . Posons alors A = 2n : on a lnA = n ln 2 ≥ M . De nouveau grâce à la
croissance de ln on a, pour x > 0 : x ≥ A =⇒ lnx ≥ lnA.
Ainsi, pour tout M > 0, on a pu trouver un A ∈]0,+∞[ tel que ∀x ≥ A, lnx ≥M .
Cela correspond à la définition de lim

x→+∞
lnx = +∞.

En posant x =
1

t
, on obtient : lim

x→0+
lnx = lim

t→+∞
− ln t = −∞.

Conséquences :
— ln est une bijection de ]0,+∞[ sur R.

En particulier, il existe un réel unique, noté e > 0, tel que ln e = 1.
— le graphe présente une asymptote verticale en x = 0.

• lim
x→+∞

lnx

x
= 0+ et lim

x→0+
x lnx = 0−.

Preuve : pour t ≥ 1 on a
1

t
≤ 1√

t
, donc :

∀x ≥ 1, 0 ≤ lnx =

∫ x

1

1

t
dt ≤

∫ x

1

1√
t
dt = 2

√
x− 2 < 2

√
x,

et ainsi : ∀x ≥ 1, 0 ≤ lnx

x
<

2
√
x

x
=

2√
x
, d’où le résultat grâce au théorème des gendarmes.

La deuxième limite est obtenue en posant x =
1

t
, ce qui donne lim

x→0+
x lnx = lim

t→+∞
− ln t

t
= 0−.

• Comme lim
x→+∞

lnx

x
= 0+, le graphe présente une branche parabolique horizontale en +∞.

• Si u : I → R∗+ est une fonction dérivable sur un intervalle I, alors

lnu : I → R
x 7→ ln(u(x))

est dérivable et (lnu)′(x) =
u′(x)

u(x)
pour tout x ∈ I.

•
Si u : I → R est une fonction dérivable sur un intervalle I ne s’annulant pas sur I, alors

ln |u| : I → R
x 7→ ln(|u(x)|)

est dérivable et (ln |u|)′(x) =
u′(x)

u(x)
pour tout x ∈ I

5.3 Fonction exponentielle

5.3.1 Définition

On a vu que la fonction logarithme népérien ln est une bijection de ]0,+∞[ sur R.
La réciproque de cette fonction s’appelle l’exponentielle (de base e). Elle est notée ex ou expx et
vérifie :

∀x ∈ R, ∀y ∈ R∗+, (y = expx⇐⇒ x = ln y)

En particulier on a : exp 0 = 1, exp 1 = e.

• Pour tout x ∈ R, ln(expx) = x et, pour tout y ∈ R∗+, exp(ln y) = y.
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• exp est continue et dérivable sur R et, pour tout x ∈ R, (ex)′ = ex > 0.
La fonction exp est donc strictement croissante sur R. C’est aussi une conséquence de la définition
puisque cette fonction est la bijection réciproque d’une fonction strictement croissante. Dans un repère
orthogonormal, les graphes de ln et exp sont symétriques par rapport à la première bissectrice (la
droite d’équation y = x).

Figure 5.2 – Fonctions logarithme et exponentielle

5.3.2 Propriétés

Propriétés algébriques :

exp(a+ b) = exp a · exp b, pour tout (a, b) ∈ R2.

exp(−a) =
1

exp a
, pour tout a ∈ R.

(exp a)r = exp(ar), pour tout a ∈ R et r ∈ Q

Propriétés analytiques :

• lim
x→+∞

expx = +∞,

lim
x→+∞

expx

x
= +∞

lim
x→−∞

expx = 0

• lim
x→+∞

x exp(−x) = 0.

•

Si u : I → R
x 7→ u(x)

est une fonction dérivable sur I, alors

f : I → R
x 7→ f(x) = exp(u(x))

est dérivable sur I et ∀x ∈ I, f ′(x) = u′(x) exp(u(x))
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5.4 Exposants réels, fonctions puissances

La définition d’une puissance entière telle que 23 déf
= 2× 2× 2 ou 2−3 déf

=
1

23
ne pose pas de difficulté.

Si r =
p

q
avec p ∈ Z et q ∈ N∗ on peut définir par exemple 2r comme l’unique réel positif X tel que

Xq = 2p en utilisant que la fonction x 7→ xq est une bijection de R+ sur R+. Ainsi, 23/2 est l’unique
réel positif X tel que X2 = 23 = 8, donc 23/2 =

√
8, mais comment définir 2

√
3 ?

Une définition raisonnable devra être cohérente avec les propriétés des exposants entiers. En particulier
on devra avoir 21 < 2

√
3 < 22 et ex, avec cette définition, devra correspondre à exp(x).

La propriété rappelée plus haut : ∀a > 0, ∀n ∈ N, ln an = n ln a équivaut à : ∀n ∈ N, an = exp(n ln a).
De même :

∀a > 0, ∀(p, q) ∈ Z× N∗, ln a
p
q =

p

q
ln a⇐⇒ a

p
q = exp(

p

q
ln a)

Par exemple a
1
2 = e

1
2

ln a = eln
√
a =
√
a.

Ceci permet facilement d’étendre la notion d’exposant aux réels en posant, pour a > 0 et α ∈ R,
aα := exp(α ln a). Le membre de droite est défini dès que a > 0 et donne un sens au membre de gauche.
On aura ainsi 2

√
3 = exp(

√
3 ln 2 ' 3, 32.

De plus pour a = e et α = x on obtient bien ex = exp(x ln e) = exp(x).

5.4.1 Exposants réels

Pour a > 0 et b ∈ R on pose ab = eb ln a

Grâce aux propriétés algébriques des fonctions logarithme et exponentielle on montre alors facilement
que les propriétés usuelles des exposants entiers ou rationnels s’étendent aux exposants réels en général :

Pour a > 0, a′ > 0, b ∈ R et b′ ∈ R,

1b = 1, ((a)b)
b′

= ab b
′
, ab ab

′
= ab+b

′
,

ab

ab′
= ab−b

′
, (a a′)b = ab a′b,

Å
a

a′

ãb
=
ab

a′b

5.4.2 Fonctions puissances xα, avec α ∈ R. Fonctions racines n-ièmes

Définition 5.4.1. Soit α ∈ R. On appelle fonction puissance α la fonction, que nous noterons hα,
définie sur ]0,+∞[ par hα(x) = xα :

hα(x) = xα
déf
= eα lnx

Proposition 5.4.1. La fonction hα : x 7→ xα est dérivable sur ]0,+∞[ et (xα)′ = αxα−1.

En effet, pour x > 0 : (xα)′ = (eα lnx)′ =
α

x
eα lnx =

α

x
xα = αxα−1.

Le comportement de la fonction puissance dépend donc du signe de α mais pour α > 0 il dépend aussi
de la position de α par rapport à 1. Une bonne façon de retenir l’ensemble consiste à penser aux cas
usuels α = −1 (pour α < 0), α = 1/2 (i.e.

√
x, pour 0 < α < 1) et α = 2 (pour α > 1).
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• Si α < 0 :
h est strictement décroissante sur ]0,+∞[, lim

x→0
hα(x) = +∞ et lim

x→+∞
hα(x) = 0.

On peut alors prolonger hα par continuité en x = 0 en posant hα(0) = 0.
• Si α > 0 :
h est strictement croissante sur ]0,+∞[, lim

x→0
hα(x) = 0 et lim

x→+∞
hα(x) = +∞.

— Si α ∈]0, 1[ : lim
x→0

h′α(x) = lim
x→0

αxα−1 = +∞, donc la courbe de la fonction hα prolongée en 0

présente une tangente verticale en x = 0.
— Si α > 1 : lim

x→0
h′(x) = lim

x→0
αxα−1 = 0, donc la courbe de la fonction hα prolongée en 0 présente

une tangente horizontale en x = 0.

Remarque 5.4.1. lim
x→+∞

hα(x)

x
= lim

x→+∞
xα−1 =

®
0 si 0 < α < 1,

+∞ si α > 1
Dans le premier cas, la fonction hα croît moint vite que x en +∞, dans le second il croît plus vite.
Graphiquement cela se traduit par une « branche infinie » du type « branche parabolique » tournée
respectivement dans la direction Ox et Oy, comme dans les cas x1/2 =

√
x et x2.

Figure 5.3 – Fonctions puissances hα

Proposition 5.4.2 (Croissances comparées). Si α > 0, alors :

lim
x→+∞

lnx

xα
= 0, lim

x→+∞

ex

xα
= +∞, lim

x→+∞

ex

lnx
= +∞, lim

x→+∞
xαe−x = 0

Cette règle peut être retenue de la façon suivante :
« En cas de forme indéterminée, c’est l’exponentielle de x qui l’emporte sur les puissances de x qui
elles même l’emportent sur le logarithme de x »

Proposition 5.4.3 (Dérivée de uα). Si u :

®
I −→ R∗+
x 7−→ u(x)

est une fonction dérivable sur I, alors

f :

®
I −→ R∗+
x 7−→ f(x) = u(x)α

est dérivable sur I et

f ′(x) = (u(x)α)′ = αu(x)α−1u′(x)

59



ATTENTION : ne pas confondre x 7→ xa et x 7→ ax.
Par exemple, si f(x) = 2x = ex ln 2, on a f ′(x) = ex ln 2 ln 2 = 2x ln 2, tandis que (x2)′ = 2x.

De façon générale :

∀a > 0, ∀x ∈ R, (ax)′ = ax ln a et ∀a ∈ R, ∀x > 0, (xa)′ = a xa−1

Définition 5.4.2. La fonction définie sur R par x 7→ ax = ex ln a, où a > 0, s’appelle la fonction
exponentielle de base a. Pour a = e on retrouve l’exponentielle usuelle.

On s’intéresse enfin aux fonctions racines n-ièmes, parmi lesquelles se trouve la fonction racine carrée
bien connue. La définition suivante s’appuie sur le fait que pour n ∈ N∗ la fonction X 7→ Xn est une
bijection strictement croissante de R+ sur R+ :

Définition 5.4.3. Pour n ∈ N \ {0, 1} et x ≥ 0, n
√
x est l’unique réel X ≥ 0 tel que Xn = x.

Pour x > 0 on vérifie immédiatement que :

n
√
x = x

1
n = e

1
n

lnx

La fonction racine carrée corresponda à n = 2 (on écrit alors plus simplement
√
x). On rappelle à son

sujet la propriété très importante :
∀x ∈ R,

√
x2 = |x|.

Le résultat suivant est un cas particulier de la proposition 5.4.3. On l’énonce tout de même en raison
de son importance :

Proposition 5.4.4. Pour n ∈ N \ {0, 1} la fonction x 7→ n
√
x est dérivable sur R∗+ et

( n
√
x)′ =

1

n
x

1
n
−1

On notera bien que ces fonctions ne sont pas dérivables en zéro.

Exemples : (
√
x)′ =

1

2
x−

1
2 =

1

2
√
x
, ( 3
√
x)′ =

1

3
x−

2
3 =

1

3
3
√
x2

.

Remarque 5.4.2. Lorsque α est un entier strictement positif, la fonction xα est bien sûr définie sur
R au sens usuel (produit de α réels égaux à x) et si α est un entier strictement négatif, xα est définie
sur R∗ comme inverse de x−α. On vient de voir que les fonctions x

1
n sont définies pour x > 0.

La définition donnée plus haut est la seule qui convienne dans tous les cas, pour x > 0.

5.5 Fonctions trigonométriques

5.5.1 Définition des fonctions trigonométriques

Soit x un réel. Le plan étant orienté, on peut lui associer un unique pointM du cercle trigonométriques

C(0, 1) tel que x soit une mesure de l’angle orienté (
ÿ�−→
i ,
−−→
OM) : voir figure 5.4 ci-dessous.

Définition 5.5.1.
Les fonctions cosinus et sinus sont les fonctions de R dans R qui à tout réel x associent respectivement

l’abscisse et l’ordonnée du point M du cercle C(0, 1) défini par (
ÿ�−→
i ,
−−→
OM) = x [2π].
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Sur la figure 5.4 on a donc cosx = OC, sinx = OS et le théorème de Pythagore dans le triangle
OMC donne une première relation : OM2 = 1 = OC2 +OS2 =⇒ cos2 x+ sin2 x = 1.

Figure 5.4 – Cercle trigonométrique

On retiendra les « lignes trigonométriques » usuelles vues au lycée :

θ 0
π

6

π

4

π

3

π

2
π

cos θ 1

√
3

2

√
2

2

1

2
0 −1

sin θ 0
1

2

√
2

2

√
3

2
1 0

tan θ 0
1√
3

1
√

3 +∞ 0

• La fonction sinus, notée sin est une fonction
périodique de période 2π, continue et dérivable
sur R.
∀x ∈ R, (sinx)′ = cosx

• La fonction cosinus, notée cos, est une fonc-
tion périodique de période 2π, continue et déri-
vable sur R.
∀x ∈ R, (cosx)′ = − sinx

Figure 5.5 – Fonctions sinus et cosinus

Définition 5.5.2.
La fonction tangente, notée tan, est la fonction définie sur R \ { π

2
+ kπ, k ∈ Z } par tanx =

sinx

cosx
.
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Le domaine exclut les réels x qui annulent cosx.
Sur la figure 5.4 on a, grâce au théorème de Thalès : tanx = HT .

Proposition 5.5.1. La fonction tangente est une fonction périodique de période π, continue et
dérivable sur son domaine. Sa dérivée est donnée par :

∀x ∈ R \ { π
2

+ kπ, k ∈ Z }, (tanx)′ = 1 + tan2 x =
1

cos2 x

Cette fonction est donc strictement croissante sur tout intervalle de son domaine.
On vérifie sans peine, à partir de la définition et avec les théorèmes usuels sur les limites, que

lim
x→−π

2
+

tanx = −∞ et lim
x→π

2
−

tanx = +∞,

il en résulte que la fonction tan définit une bijection strictement croissante de ]− π

2
,
π

2
[ sur R.

Les droites x =
π

2
+ kπ, k ∈ Z, sont asymptotes verticales à la courbe.

Figure 5.6 – Fonction tangente
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5.5.2 Formulaire

Toutes les formules trigonométriques se retrouvent à partir d’un petit nombre d’entre elles.

Ce premier groupe de formules se retrouve aisément à l’aide du cercle trigonométrique :

sin(−x) = − sinx, cos(−x) = cosx,
sin(x+ π) = − sinx, cos(x+ π) = − cosx,
sin(π − x) = sinx, cos(π − x) = − cosx,

sin(x+
π

2
) = cosx, cos(x+

π

2
) = − sinx,

sin(
π

2
− x) = cosx, cos(

π

2
− x) = sinx.

La définition de la tangente : tanx =
sinx

cosx
permet de retrouver les formules analogues la concernant

(voir ci-dessous).

Il est recommandé de mémoriser les cinq formules suivantes, si possible en les visualisant telles qu’écrites
ci-dessous :

cos2 a+ sin2 a = 1, (5.1)
cos(a+ b) = cos a cos b− sin a sin b, (5.2)
cos(a− b) = cos a cos b+ sin a sin b, (5.3)
sin(a+ b) = sin a cos b+ cos a sin b, (5.4)
sin(a− b) = sin a cos b− cos a sin b. (5.5)

Elles permettent de retrouver toutes les autres formules à l’aide de calculs simples. C’est un exercice
à faire plusieurs fois jusqu’à maitriser ces calculs. Une autre méthode consiste à utiliser les nombres
complexes (voir chapitre 4).

Exemples de calculs :

tan(a+b) =
sin(a+ b)

cos(a+ b)
=

sin a cos b+ cos a sin b

cos a cos b− sin a sin b
=

tan a+ tan b

1− tan a tan b
(diviser numérateur et dénominateur

par le produit cos a cosb),
cos(2a) = cos(a+ a) = cos2 a− sin2 a = 2 cos2 a− 1 = 1− 2 sin2 a,

• Pour transformer cos a × cos b sous forme d’une somme, il suffit d’ajouter membre à membre les

égalités (5.2) et (5.3) et on obtient : cos a× cos b =
1

2
(cos(a+ b) + cos(a− b)).

On obtient ainsi le groupe de formules :

cos a× cos b =
1

2
(cos(a+ b) + cos(a− b) sin a× sin b =

1

2
(cos(a− b)− cos(a+ b)

sin a× cos b =
1

2
(sin(a+ b) + sin(a− b)
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• Pour transformer cos p + cos q sous forme d’un produit, on utilise à nouveau (5.2) et (5.3) en les
ajoutant :

cos(a+ b) + cos(a− b) = 2 cos a cos b.

On pose alors
®
a+ b = p
a− b = q

soit, de manière équivalente :


a =

p+ q

2

b =
p− q

2

,

ce qui donne : cos p+ cos q = 2 cos(
p+ q

2
) cos(

p− q
2

).

On obtient ainsi le groupe de formules :

cos p+ cos q = 2 cos
p+ q

2
cos

p− q
2

cos p− cos q = −2 sin
p+ q

2
sin

p− q
2

sin p+ sin q = 2 sin
p+ q

2
cos

p− q
2

sin p− sin q = 2 cos
p+ q

2
sin

p− q
2

• Autres formules usuelles :

tan(a+ b) =
tan a+ tan b

1− tan a tan b
, tan(a− b) =

tan a− tan b

1 + tan a tan b

cos(2x) = cos2 x− sin2 x, sin(2x) = 2 cosx sinx,

= 2 cos2 x− 1, tan(2x) =
2 tanx

1− tan2 x
,

= 1− 2 sin2 x,

cos2 x =
1 + cos 2x

2
, sin2 x =

1− cos 2x

2

ou, de façon équivalente :

1 + cosx = 2 cos2 x

2
, 1− cosx = 2 sin2 x

2

Si, pour x 6= π + 2kπ, on pose t = tan
x

2
, on a :

cosx =
1− t2

1 + t2
, sinx =

2t

1 + t2
, tanx =

2t

1− t2

Par exemple : cosx = cos2 x

2
− sin2 x

2
=

cos2 x
2 − sin2 x

2

cos2 x
2 + sin2 x

2

et on divise numérateur et dénominateur par cos2 x

2
...
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5.5.3 Résolution d’équation et d’inéquations

cosx = cosα ⇐⇒ x = α+ 2kπ ou x = −α+ 2`π avec (k, `) ∈ Z2

sinx = sinα ⇐⇒ x = α+ 2kπ ou x = π − α+ 2`π avec (k, `) ∈ Z2

tanx = tanα ⇐⇒ x = α+ kπ avec k ∈ Z

cosx = 0 ⇐⇒ x =
π

2
+ kπ, k ∈ Z

sinx = 0 ⇐⇒ x = kπ, k ∈ Z

tanx = 0 ⇐⇒ x = kπ, k ∈ Z

Soit α ∈ [0, π]. Alors : cosx ≥ cosα⇐⇒ x ∈ [−α+ 2kπ, α+ 2kπ] avec k ∈ Z.

Soit α ∈ [−π
2
,
π

2
]. Alors : sinx ≥ sinα⇐⇒ x ∈ [α+ 2kπ, π − α+ 2kπ] avec k ∈ Z.

Exemple d’équation : cosx+ cos 2x = 0 sur ]− π, π].

Première méthode

cosx+ cos 2x = 0⇐⇒ cos 2x = − cosx⇐⇒ cos 2x = cos(x+ π)

On a donc :
2x = x+ π + 2kπ ou 2x = −x− π + 2kπ, k ∈ Z

Soit :

x = π + 2kπ ou x = −π
3

+
2kπ

3
, k ∈ Z.

Sur ]− π, π], on obtient S =

ß
−π

3
;
π

3
;π

™
Remarque : la première famille de solutions est contenue dans la deuxième. En effet, en prenant
k = 2 + 3` dans la deuxième, (` ∈ Z) on obtient x = π + 2`π.
On le voit plus simplement avec les points images des solutions :
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Deuxième méthode : changement d’inconnue

On a cos 2x = 2 cos2 x− 1 donc, en posant X = cosx, on est ramené à résoudre l’équation

2X2 +X − 1 = 0

Les solutions sont X1 = −1 et X2 =
1

2
et résout ensuite successivement les équations

cosx = −1 et cosx =
1

2

Sur ]− π, π], on obtient à nouveau
ß
−π

3
;
π

3
;π

™
Troisième méthode : transformation de somme en produit

cosx+ cos 2x = 0 ⇐⇒ 2 cos

Å
x+ 2x

2

ã
cos

Å
x− 2x

2

ã
= 0

⇐⇒ 2 cos

Å
3x

2

ã
cos

Å
x

2

ã
= 0

⇐⇒ cos

Å
3x

2

ã
= 0 ou cos

Å
x

2

ã
= 0

⇐⇒ 3x

2
=
π

2
+ kπ ou

x

2
=
π

2
+ kπ

⇐⇒ x =
π

3
+

2kπ

3
ou x = π + 2kπ

Sur ]− π, π], on retrouve bien
ß
−π

3
;
π

3
;π

™
Exemple d’inéquation : cosx+ cos 2x ≥ 0 sur l’intervalle ]− π, π].

Le changement d’inconnue X = cosx vu auparavant nous ramène à l’inéquation 2X2 +X − 1 ≥ 0.

En appliquant la règle sur le signe du trinôme on obtient X ≤ −1 ou X ≥ 1

2
. Ensuite :

cosx ≤ −1⇐⇒ cosx = −1⇐⇒ x = π + 2kπ, k ∈ Z
cosx ≥ 1

2
⇐⇒ cosx ≥ cos

π

3
⇐⇒ x ∈

ï
−π

3
+ 2kπ,

π

3
+ 2kπ

ò
.

L’ensemble des solutions sur ]− π, π] est
ï
−π

3
,
π

3

ò
∪ {π}.

On peut aussi reprendre la factorisation issue de la transformation de somme en produit et faire un
tableau de signes en s’aidant du cercle trigonométrique.

cosx+ cos 2x ≥ 0⇐⇒ 2 cos

Å
3x

2

ã
cos

Å
x

2

ã
≥ 0

On retrouve l’ensemble
ï
−π

3
,
π

3

ò
] ∪ {π}.
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Chapitre 6

Limites et continuité

L’objectif de ce chapitre est de consolider et compléter des notions utilisées dans les classes de lycée.

6.1 Généralités

• Fonctions majorées, minorées, bornées

Définition 6.1.1. Une fonction réelle définie sur une partieD de R est dite majorée surD si l’ensemble
f(D) est une partie majorée de R, c’est à dire si : ∃M ∈ R, ∀x ∈ D, f(x) ≤M .

On définit les notions de fonction minorée, bornée sur le même modèle :

f minorée : ∃m ∈ R, ∀x ∈ D, f(x) ≥ m.
f bornée : f majorée et minorée, i.e. ∃(m,M) ∈ R×R, ∀x ∈ D, m ≤ f(x) ≤M .

On dit que M est un majorant et m un minorant de la fonction.
Il n’y a pas unicité des minorants et des majorants.
Une façon équivalente d’écrire qu’une fonction est bornée :

Proposition 6.1.1. f bornée sur D ⇐⇒ ∃A ∈ R, ∀x ∈ D, |f(x)| ≤ A

Exemples : la fonction x 7→ cosx est bornée sur R : on a ∀x ∈ R, | cosx| ≤ 1. La fonction x 7→ lnx
n’est ni majorée ni minorée sur son domaine R∗+, la fonction x 7→

√
x est minorée (par 0) mais non

majorée sur R+. La fonction x 7→ 1

x
est bornée sur [1, 2] mais pas sur ]0,+∞[.

• Borne supérieure, borne inférieure d’une fonction

Définition 6.1.2. Si l’ensemble f(D) admet une borne supérieure S dans R alors on dit que S est la
borne supérieure de f et on note S = sup

x∈D
f(x) ou même S = sup

D
f .

Cela signifie que S est un majorant de f et que, si M est un majorant de f , on a S ≤M . Ou encore :

∀x ∈ D, f(x) ≤ S et ∀ε > 0, ∃x ∈ D, S − ε < f(x) ≤ S (6.1)

On définit la borne inférieure de f suivant le même modèle.

Attention : la borne inférieure et la borne supérieure n’existent pas toujours.
Si elles existent, elles sont uniques.
Si une fonction n’est pas majorée (resp.minorée) sur D, on écrit éventuellement : sup

D
f = +∞

(resp. inf
D
f = −∞).
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Figure 6.1 – Exemple de bornes supérieures et inférieures pour une fonction croissante

6.2 Définitions des limites et de la continuité

La notion de limite (qui inclus celle de continuité comme cas particulier) a été abordée au lycée d’un
point de vue intuitif. Quitte à admettre un certain nombre de résultats, ce que nous continuerons
largement à faire dans ce cours introductif, on a les outils suffisants pour déterminer effectivement des
limites dans les cas usuels.
Toutefois, des expressions telles que :

Quand x se rapproche de 0, f(x) se rapproche aussi de 0,

ou encore :

si on veut que f(x) soit très proche de 0, il suffit de prendre x suffisamment proche de 0,

censées exprimer que f admet pour limite 0 en x = 0 sont au mieux beaucoup trop vagues et, en fait,
incorrectes. Comme on l’a vu au chapitre 1, une expression mathématique doit être dépourvue de toute
ambiguité et permettre de s’insérer dans des démonstrations.

6.2.1 Limite finie en un point a

Dans ce paragraphe, f est une fonction réelle définie sur D ⊂ R, a est un réel qui possède la propriété
suivante :

a ∈ D ou (∀ε > 0, D∩]a− ε, a+ ε[6= ∅). (6.2)

On dit alors que a est dans l’adhérence de D et on écrit a ∈ D.

Cela signifie que si f n’est pas définie en a, elle doit être définie en des points arbitrairement proches
de a : il faut pouvoir « faire tendre x vers a » en restant dans le domaine de f .

En pratique f sera définie au moins sur un intervalle dont a est une borne ou sur un
intervalle ouvert contenant a.

Exemples : f(x) =
√
x et a = 0, f(x) =

√
x et a = 3, f(x) =

x3 + 2x2 − x− 2

x− 1
et a = 1. Par contre

chercher la limite de
√
x en a = −1 n’a aucun sens.
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Définition 6.2.1. Soit ` ∈ R. On dit que f admet pour limite ` en a (ou que f(x) tend vers ` quand
x tend vers a) si :

∀ε > 0, ∃α > 0, ∀x ∈ D, (|x− a| ≤ α =⇒ |f(x)− `| ≤ ε). (6.3)

Explication : quel que soit le réel strictement positif ε donné, même très petit, on doit pouvoir relever
le défi suivant : trouver un intervalle [a − α, a + α] sur lequel f(x) et ` seront distants de moins de ε
(avec x ∈ D, bien sûr).

Figure 6.2 – Limite finie en un point

Notation : lim
a
f = ` ou lim

x→a
f(x) = ` (ne pas mélanger les deux).

• Exemples usuels : x 7→ x, x 7→ x2, x 7→ x3, x 7→ xn, n ∈ N∗, x 7→
√
x, x 7→ 3

√
x : toutes ces

fonctions ont pour limite 0 en x = 0.

lim
x→0

sinx

x
= 1, lim

x→π
2

cosx = 0.

Remarque : la notation lim
x→a

f(x) = `+ signifie que l’on a lim
x→a

f(x) = ` et f(x) ≥ ` « au voisinage de
a », c’est à dire sur au moins un ensemble D ∩ [x− α, x+ α] avec α > 0.

« On dit : f(x) tend vers ` par valeurs supérieures quand x tend vers a »

• Lorsque f admet une limite en un point a de son domaine (a ∈ D), la situation peut être précisée :

Proposition 6.2.1. Si une fonction f admet une limite ` en un point a de son domaine, alors
` = f(a)

On dit alors que f est continue en a. Ceci fait l’objet d’une autre section.

Preuve : soit ε > 0 (cette expression sous-entend que ε est quelconque). D’après (6.3) il existe un
réel α > 0 tel que :

∀x ∈ D, (|x− a| ≤ α =⇒ |f(x)− `| ≤ ε),

or, pour x = a on a |x− a| = 0 ≤ α, donc nécessairement|f(a)− `| ≤ ε. Ainsi :

∀ε > 0, |f(a)− `| ≤ ε,

ce qui équivaut à |f(a)− `| = 0 (voir la propriété (1.1) prouvée au chapitre 1) , c’est à dire f(a) = `.
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• Limite à droite, limite à gauche : on obtient ces notions en remplaçant dans la relation de
définition (6.3) le terme |x−a| ≤ α, c’est à dire aussi a−α ≤ x ≤ a+α, respectivement par a<x ≤ a+α,
a− α ≤ x<a. Ainsi, par exemple :

Définition 6.2.2. Soit ` ∈ R. On dit que f admet ` pour limite à gauche en a (ou que f(x) tend vers
` quand x tend vers a par valeurs inférieures) si :

∀ε > 0, ∃α > 0, ∀x ∈ D, (a− α ≤ x<a =⇒ |f(x)− `| ≤ ε). (6.4)

On remarquera que x = a n’est pas concerné.

Exercice : écrire la définition de la limite à droite.

Notations : lim
x→a
x>a

= ` ou lim
x→a+

f(x) = ` pour la limite à droite et lim
x→a
x<a

= ` ou lim
x→a−

f(x) = ` pour la

limite à gauche.

Exemple : lim
x→1+

E(x) = 1, lim
x→1−

E(x) = 0 (E est la fonction partie entière).

Figure 6.3 – Fonction partie entière

À titre d’exemple, nous donnons le résultat suivant, illustré figure 6.1 :

Proposition 6.2.2. Soit f une fonction croissante sur un intervalle ]a, b[ et majorée. Alors f admet
une limite à gauche en b donnée par lim

x→b−
f(x) = sup

]a,b[
f .

Preuve : f(]a, b[) est une partie non vide de R et, par hypothèse, majorée, elle admet donc une borne
supérieure ` = sup

]a,b[
f . Montrons que ` est la limite de f à gauche en b.

Soit ε > 0 : d’après la caractérisation de la borne supérieure (6.1) il existe un réel x0 ∈]a, b[ tel que
`− ε < f(x0) ≤ `. Comme f est croissante et majorée par ` on a :

∀x ∈]a, b[, x ≥ x0 =⇒ `− ε < f(x) ≤ `.

Posons α = b− x0, alors d’après ce qui précède :

∀x ∈]a, b[, b− α ≤ x < b =⇒ |f(x)− `| ≤ ε.

Le réel ε > 0 étant a priori quelconque, on en déduit que :

∀ε > 0, ∃α > 0, ∀x ∈]a, b[, b− α ≤ x < b =⇒ |f(x)− `| ≤ ε.

et ceci établit le résultat annoncé.
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Le lien entre ces notions est précisé dans la proposition suivante :

Proposition 6.2.3.
Si f n’est pas définie en a alors f admet une limite en a si et seulement si f admet des limites à
droite et à gauche en a qui sont égales, on a alors lim

x→a
f(x) = lim

x→a−
f(x) = lim

x→a+
f(x).

Si f est définie en a alors f admet une limite en a si et seulement si f admet des limites à droite
et à gauche en a qui sont égales à f(a).

Cette caractérisation de la limite permet de prouver qu’une limite n’existe pas. Par exemple, si on
trouve deux limites différentes à gauche et à droite en a, alors la limite en a n’existe pas.

Exemples :

1. La fonction partie entière E n’a pas de limite en a = 1 (voir exemple précédent). En fait elle
n’a pas de limite aux points de Z.

2. La fonction f(x) =

®
x2 + 1, si x ≥ 0

x2 − 1, si x < 0
n’admet pas de limite en 0 car lim

x→0+
f(x) = 1 et

lim
x→0−

f(x) = −1.

3. Considérons la fonction f définie sur R par f(0) = 1 et f(x) = 0 pour tout réel x 6= 0 : on a
lim
x→0+

f(x) = lim
x→0−

f(x) = 0 et cependant la limite en zéro n’existe pas (ce devrait être 1 = f(0)).

Remarque 6.2.1. Ce dernier exemple peut dérouter : on aimerait pouvoir dire que la limite de f en
zéro est ` = 0. Ceci est le résultat d’un choix dans la façon de définir la limite en un point (inégalité
|x−a| ≤ α plutôt que 0 < |x−a| ≤ α dans (6.3)) , choix qui n’a pas toujours été celui-ci dans le passé.
L’une de ses raisons d’être est la forme simple que prend le résultat 6.3.1 sur la limite d’une fonction
composée qui, sinon, exige des précautions un peu lourdes). Notons que ces subtilités n’ont pas
à être prises en compte dès que f n’est pas définie en a, ce qui est le cas de la majorité
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des situations intéressantes.
Pour pallier ce petit désagrément on a la notion de limite suivant une partie, que vous avez déjà utilisée
sans l’avoir formulée précisément ni nommée comme telle :

Définition 6.2.3. Soient A ⊂ R et ` ∈ R. On dit que f admet pour limite ` en a suivant A (ou que
f(x) tend vers ` quand x tend vers a, x appartenant à A) si :

∀ε > 0, ∃α > 0, ∀x ∈ A ∩D, (|x− a| ≤ α =⇒ |f(x)− `| ≤ ε). (6.5)

On écrit : lim
x→a
x∈A

f(x) = `.

Exemples :
— Reprenons la fonction nulle sur R∗ et valant 1 en x = 0 : il n’y a pas de limite en 0 mais on a

lim
x→0

x∈R∗
f(x) = 0, que l’on écrit usuellement lim

x→0

x 6=0

f(x) = 0.

— Anticipons sur la définition du nombre dérivé en un point a (chapitre 7) :

f ′(a) = lim
x→a
x 6=a

f(x)− f(a)

x− a

Ici A = R \ {a}.
— Dérivée à droite en a : c’est la limlite en a suivant A =]a,+∞[.
— Dérivée à gauche en a : c’est la limlite en a suivant A =]−∞, a[.

6.2.2 Limite infinie en un point a

Dans ce paragraphe on garde les mêmes hypothèses sur f .

Définition 6.2.4.
On dit que f a pour limite +∞ en a si elle satisfait la propriété suivante :

∀A ∈ R, ∃α > 0, ∀x ∈ D, (|x− a| ≤ α =⇒ f(x) ≥ A). (6.6)

On dit que f a pour limite −∞ en a si elle satisfait la propriété suivante :

∀A ∈ R, ∃α > 0, ∀x ∈ D, (|x− a| ≤ α =⇒ f(x) ≤ A). (6.7)

Remarque 6.2.2.
— Dans le premier cas on peut se restreindre à A > 0 et dans le second à A < 0.
— On peut définir des limites infinies en a en se ramenant à la limite nulle en a :

lim
x→a

f(x) = +∞ si et seulement si lim
x→a

1

f(x)
= 0+

lim
x→0

f(x) = −∞ si et seulement si lim
x→0

1

f(x)
= 0−

— Il résulte des définitions que si lim
x→a

f(x) = −∞ ou +∞ alors f ne peut pas être définie en a.

Exemple : lim
x→0

1

x2
= +∞.

• On peut encore parler de limite à gauche et de limites à droite. Par exemple :

Définition 6.2.5.
On dit que f a pour limite +∞ à gauche en a si elle satisfait la propriété suivante :

∀A ∈ R, ∃α > 0, ∀x ∈ D, (a− α ≤ x < a =⇒ f(x) ≥ A). (6.8)
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Figure 6.4 – Limite infinie à gauche en un point

Exemples : lim
x→0+

1

x
= +∞ et lim

x→0−

1

x
= −∞, donc la limite de

1

x
quand x tend vers 0 n’existe pas.

lim
x→0+

1√
x

= +∞.

Une situation classique :

Proposition 6.2.4. Soit f une fonction croissante sur un intervalle ]a, b[ et non minorée, alors
lim
x→a+

f(x) = −∞. Si cette fonction est non majorée alors lim
x→b−

f(x) = −∞.

La fonction représentée figure 6.1 relève de la première partie de cette proposition.

Remarque 6.2.3. On peut se ramener en a = 0 en posant x = a+ t : on a alors t tend vers 0 quand
x tend vers a et vice versa.

• lim
x→a

f(x) = l ∈ R si et seulement si lim
t→0

f(a+ t) = l.

• lim
x→a

f(x) = +∞ si et seulement si lim
t→0

f(a+ t) = +∞.

• lim
x→a

f(x) = −∞ si et seulement si lim
t→0

f(a+ t) = −∞.

Exemple : f(x) =
x2 − 2x+ 1

x2 − 3x+ 2
en a = 1. On pose x = 1 + t.

f(x) =
(1 + t)2 − 2(1 + t) + 1

(1 + t)2 − 3(1 + t) + 2
=

t2

t2 − t
=

t

t− 1

Donc lim
x→1

x2 − 2x+ 1

x2 − 3x+ 2
= lim

t→0

t

t− 1
= 0.

6.2.3 Limite en +∞ et en −∞

On suppose ici, pour simplifier, que le domaine D de f contient un intervalle de la forme [a,+∞[ (pour
le cas d’une limite en +∞) ou de la forme ]−∞, a] (pour le cas d’une limite en −∞).

Définition 6.2.6. On dit que f a pour limite ` en +∞ si elle satisfait la propriété :

∀ε > 0, ∃A > 0, ∀x ∈ D, (x ≥ A =⇒ |f(x)− `| ≤ ε). (6.9)
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Figure 6.5 – Limite finie en +∞

Définition 6.2.7. On dit que f a pour limite +∞ en +∞ si elle satisfait la propriété :

∀M > 0, ∃A > 0, ∀x ∈ D, (x ≥ A =⇒ f(x) ≥M). (6.10)

Remarque : on peut se ramener au cas d’une limite en a = 0 en posant x =
1

t
.

On a alors t tend vers 0+ si et seulement si x tend vers +∞ et t tend vers 0− si et seulement si x tend
vers −∞. Ainsi :

• lim
x→+∞

f(x) = l ∈ R si et seulement si lim
t→0+

f(
1

t
) = l.

• lim
x→+∞

f(x) = +∞ si et seulement si lim
t→0+

f(
1

t
) = +∞.

• lim
x→+∞

f(x) = −∞ si et seulement si lim
t→0+

f(
1

t
) = −∞.

• lim
x→−∞

f(x) = l ∈ R si et seulement si lim
t→0−

f(
1

t
) = l.

• lim
x→−∞

f(x) = +∞ si et seulement si lim
t→0−

f(
1

t
) = +∞.

• lim
x→−∞

f(x) = −∞ si et seulement si lim
t→0−

f(
1

t
) = −∞.

Exemples :

lim
x→+∞

1

x
= 0, lim

x→+∞

1

x2
= 0, lim

x→+∞

1√
x

= 0. lim
x→−∞

1

x
= 0. lim

x→+∞
x2 = +∞, lim

x→−∞
x2 = +∞.

6.2.4 Continuité

Définition 6.2.8. Soient f : R −→ R de domaine de définition D et a ∈ D. On dit que f est continue
en a si f admet une limite en a.

Compte tenu de ce qui a été vu précédemment on a des formulations équivalentes :
— f est continue en a si et seulement si lim

x→a
f(x) = f(a).

— f est continue en a si et seulement si : ∀ε > 0, ∃α > 0, ∀x, (|x− a| ≤ α =⇒ |f(x)− f(a)| ≤ ε.

• Continuité à gauche et à droite en un point :
On dit que f est continue à gauche en a si lim

x→a−
f(x) = f(a).

On dit que f est continue à droite en a si lim
x→a+

f(x) = f(a).
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Figure 6.6 – Exemple de discontinuité en a

• Prolongement par continuité :

Proposition 6.2.5 (et définition). Soient f : R −→ R de domaine de définition D et a un réel
tel que a /∈ D. On suppose que f admet une limite ` en a. La fonction f : D ∪ {a} −→ R telle
que f(x) = f(x) si x ∈ D et f(a) = ` est continue en a. C’est l’unique fonction continue en a et
coïncidant avec f sur D : on l’appelle « prolongement par continuité de f en a ».

C’est une conséquence immédiate de la définition de la limite en a. Il est souvent utile de considérer
ce prolongement, que l’on note encore f , plutôt que f , par abus d’écriture. On a également les notions
de prolongement par continuité à gauche ou à droite...

Exemple : la fonction f définie sur R∗ par f(x) =
sinx

x
peut se prolonger par continuité en 0 en

posant f(0) = 1.

• Continuité sur un intervalle :

Définition 6.2.9. On dit que f est continue sur un intervalle I de bornes a = inf I et b = sup I si elle
est continue en chaque point de l’intervalle ouvert ]a, b[, continue à droite en a si a ∈ I et continue à
gauche en b si b ∈ I.

• Continuité sur un intervalle, théorème des valeurs intermédiaires :

Lorsqu’une fonction est continue sur un intervalle, le fait qu’elle “ne fasse pas de saut" se traduit par
une propriété très importante en pratique. Si par exemple je relève une température de 15 degrés le
matin et de 25 degrés le soir, je suis sûr qu’une température de 20 degrés a été atteinte au moins une
fois dans la journée (on modélise la température par une fonction continue de la variable temps).
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Théorème 6.2.1 (th. des valeurs intermédiaires).
Soient I un intervalle de R (de longueur non nulle), a, b deux éléments de I tels que a ≤ b.
Si f : I −→ R est continue sur I alors f prend toutes les valeurs comprises entre f(a) et f(b) : si
par ex. on a f(a) ≤ f(b) alors

∀y ∈ [f(a), f(b)], ∃x ∈ [a, b], f(x) = y.

Figure 6.7 – Continuité et valeurs intermédiaires

• Cela permet d’affirmer l’existence d’au moins une solution x dans l’intervalle [a, b] de l’équation
f(x) = y où y est donné.

• Si on sait que f est strictement croissante sur [a, b] (ou strictement décroissante), on en déduit que
f(x) = y admet une solution unique dans l’intervalle [a, b].

On peut énoncer ce théorème sous une forme équivalente :

Théorème 6.2.2 (th. des valeurs intermédiaires-bis).
Soit I un intervalle de R (de longueur non nulle). Si f : I −→ R est continue sur I alors f(I) est
un intervalle.

Corollaire 6.2.1. Si f : I −→ R est continue sur I et prend au moins une valeur positive et une
valeur négative, alors elle s’annule sur I i.e. l’équation f(x) = 0 a au moins une solution sur I.

• Continuité sur un segment

Le résultat, fondamental, est le suivant :
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Théorème 6.2.3. Si f est une fonction continue sur un segment [a, b], alors l’image f([a,b]) de ce
segment est un segment [m,M].

Commentaire- Cela signifie trois choses :

1. f est bornée : on a en effet m ≤ f ≤M ,

2. f atteint ses bornes : en effet, comme m, M ∈ f([a, b]), il existe des réels c et d dans [a, b]
tels que f(c) = m = inf

x∈[a,b]
f(x) et f(d) = M = sup

x∈[a,b]
f(x),

3. f prend toutes les valeurs comprises entre ses bornes.

En particulier : une fonction continue sur un segment [a, b] est bornée et atteint ses bornes.
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6.3 Propriétés et détermination pratique

On énonce dans cette section des propriétés utilisées dans la pratique de la recherche des limites, qui
évitent le recours aux définitions.

6.3.1 Changement de variable

On peut éventuellement se ramener en a = 0 en faisant un changement de variable :

lim
x→a

f(x) : le changement t = x− a ramène à lim
t→0

f(t+ a)

lim
x→+∞

f(x) : le changement t =
1

x
ramène à lim

t→0+
f(

1

t
)

lim
x→−∞

f(x) : le changement t =
1

x
ramène à lim

t→0−
f(

1

t
)

6.3.2 Opérations algébriques

Limite d’une somme
Soient l ∈ R, l′ ∈ R, a ∈ R ou a = +∞ ou a = −∞.

lim
x→a

f(x) l l l +∞ −∞ +∞
lim
x→a

g(x) l′ +∞ −∞ +∞ −∞ −∞
lim
x→a

(f + g)(x) l + l′ +∞ −∞ +∞ −∞ ND

Cas indéterminé : « +∞ + −∞ »

Limite d’un produit
Soient l ∈ R, l′ ∈ R, a ∈ R ou a = +∞ ou a = −∞.

lim
x→a

f(x) l l > 0 l > 0 l < 0 l < 0 +∞ +∞ −∞ 0

lim
x→a

g(x) l′ +∞ −∞ +∞ −∞ +∞ −∞ −∞ ±∞
lim
x→a

(fg)(x) ll′ +∞ −∞ −∞ +∞ +∞ −∞ +∞ ND

Cas indéterminé : « 0 × ∞ »

Limite d’un quotient

α) Cas où le dénominateur a une limite non nulle
Soient l ∈ R, l′ ∈ R, a ∈ R ou a = +∞ ou a = −∞.

lim
x→a

f(x) l l +∞ +∞ −∞ −∞ ±∞
lim
x→a

g(x) l′ 6= 0 ±∞ l′ > 0 l′ < 0 l′ > 0 l′ < 0 ±∞

lim
x→a

(
f

g
)(x)

l

l′
0 +∞ −∞ −∞ +∞ ND

Cas indéterminé : «
∞
∞

’ »
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β) Cas où le dénominateur a une limite nulle
Soient l ∈ R, a ∈ R ou a = +∞ ou a = −∞.

lim
x→a

f(x) l > 0 l > 0 l < 0 l < 0 0

lim
x→a

g(x) 0+ 0− 0+ 0− 0

lim
x→a

(
f

g
)(x) +∞ −∞ −∞ +∞ ND

Cas indéterminé : «
0

0
»

6.3.3 Composition

Proposition 6.3.1. Soient f : I → R, g : J → R telles que f(I) ⊂ J .
Soient a ∈ I (cf. critère 6.2) et b ∈ R . Alors :

lim
x→a

f(x) = b et lim
y→b

g(y) = ` =⇒ lim
x→a

(g ◦ f)(x) = `.

Ce résultat est valable avec a = +∞ ou a = −∞ et b = +∞ ou b = −∞ lorsque cela a un sens.

Remarque 6.3.1. On peut montrer que sous les hypothèses de cet énoncé, si lim
x→a

f(x) = b on a

nécessairement b ∈ J ce qui explique qu’il n’y ait aucune hypothèse particulière sur b.

Exemples :
• F (x) =

√
x2 + x+ 1, DF = R. ci f(x) = x2 + x+ 1, g(y) =

√
y et F = g ◦ f

lim
x→+∞

x2 + x+ 1 = +∞ et lim
y→+∞

√
y = +∞, donc

lim
x→+∞

F (x) = +∞

• F (x) =
1√

3x− 1
, DF =]

1

3
,+∞[.

Ici f(x) = 3x− 1, g(y) =
1
√
y
et F = g ◦ f

lim
x→ 1

3

+
3x− 1 = 0+ et lim

y→0+

1
√
y

= +∞, donc lim
x→ 1

3

+
F (x) = +∞

6.3.4 Limites et comparaison

Proposition 6.3.2.
Si f ≥ h sur ]A,+∞[ et lim

x→+∞
h(x) = +∞ alors lim

x→+∞
f(x) = +∞.

Si f ≤ g sur ]A,+∞[ et lim
x→+∞

g(x) = −∞ alors lim
x→+∞

f(x) = −∞

Exemple :
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f(x) =

 
x4 +

1

x2 + 1
, Df = R.

Pour tout x ∈ R, x4 +
1

x2 + 1
≥ x4, car

1

x2 + 1
≥ 0.

D’où f(x) ≥
√
x4 = x2.

Or lim
x→+∞

x2 = +∞, donc lim
x→+∞

f(x) = +∞.

Proposition 6.3.3. Si |f(x)− l| ≤ u(x), pour tout x ∈]A,+∞[ et lim
x→+∞

u(x) = 0 alors lim
x→+∞

f(x) = l

Proposition 6.3.4 (Théorème des gendarmes).
Si h ≤ f ≤ g sur ]A,+∞[ et lim

x→+∞
g(x) = lim

x→+∞
h(x) = `, alors f admet une limite en +∞ et

lim
x→+∞

f(x) = `.

• Dans le cas de limites en −∞, il suffit de remplacer, dans ces théorèmes, ]A,+∞[ par ]−∞, A[ et
x→ +∞ par x→ −∞.

• Dans le cas de limites en a ∈ R, il suffit de remplacer, dans ces théorèmes, ]A,+∞[ par ]a−ε, a+ε[
et x→ +∞ par x→ a.

6.3.5 Continuité en un point et opérations usuelles

Proposition 6.3.5. Soient f : I → R, g : , I → R continues en a ∈ I, λ ∈ R.
Alors f + g, fg, λf et

1

f
sont continues en a (si f ne s’annule pas au voisinage de a).

Proposition 6.3.6 (composition). Soient f : I → R, g : J → R, a ∈ I.
Si f est continue en a, f(I) ⊂ J et g continue en b = f(a),
alors g ◦ f est continue en a.

6.3.6 Exemples classiques

Fonctions polynomiales

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n avec an 6= 0 (on dit que f est de degré n).

Proposition 6.3.7.
Les fonctions polynomiales sont continues en tout point a de R : lim

x→a
f(x) = f(a). De plus :

lim
x→+∞

f(x) = +∞ si an > 0

−∞ si an < 0

lim
x→−∞

f(x) = +∞ si an > 0 et n pair

+∞ si an < 0 et n impair
−∞ si an > 0 et n impair
−∞ si an < 0 et n pair
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On retiendra que

lim
x→±∞

a0 + a1x+ a2x
2 + · · ·+ anx

n = lim
x→±∞

anx
n

Fonctions rationnelles

f(x) =
P (x)

Q(x)
=
a0 + a1x+ a2x

2 + · · ·+ anx
n

b0 + b1x+ b2x2 + · · ·+ bpxp
sous forme réduite (on ne peut pas simplifier).

Proposition 6.3.8.
Les fonctions rationnelles sont continues en tout point a de leur domaine :
si Q(a) 6= 0 alors lim

x→a
f(x) = f(a). De plus :

— Si Q(a) = 0 et P (a) 6= 0 alors lim
x→a

f(x) = ±∞.
— Si n < p, lim

x→±∞
f(x) = 0.

— Si n > p, lim
x→±∞

f(x) = ±∞.

— Si n = p, lim
x→±∞

f(x) =
an
bn

(c’est le rapport des termes de plus haut degré).

De façon générale on retiendra que

lim
x→±∞

a0 + · · ·+ anx
n

b0 + · · ·+ bpxp
= lim

x→±∞

anx
n

bpxp

6.4 Une application à l’étude d’asymptotes

Il a été étudié dans les classes de lycée la notion d’asymptote à la courbe représentative d’une fonction
f dans deux situations :

— une limite infinie en un point du bord du domaine de définition, ce qui conduit à l’existence
d’une asymptote parallèle à Oy, ou « asymptote verticale »,

— une limite finie en +∞ ou −∞, ce qui conduit à l’existence d’une asymptote parallèle à Ox, ou
« asymptote horizontale ».

On se propose de généraliser cette notion au cas d’une asymptote éventuelle non parallèle aux axes :
on parle « d’asymptote oblique ». Pour cela on considère une fonction réelle f définie sur un intervalle
non borné, par exemple de la forme ]x0,+∞[.

Définition 6.4.1. S’il existe des réels a et b et une fonction ϕ telle que f(x) = ax + b + ϕ(x) avec
lim

x→+∞
ϕ(x) = 0 alors on dit que la droite d’équation y = ax+ b est asymptote en +∞ à la courbe Γf

représentative de f .

Interprétation : ax+b est une approximation de f(x) au voisinage de +∞, de même qu’une fonction
affine tangente permet d’approcher la fonction au voisinage du point de tangence.

Il se peut que f(x) soit écrit sous cette forme, auquel cas (après avoir vérifié que la limite de ϕ est
nulle), on conclut immédiatement. Notons que cette définition inclut le cas a = 0 qui correspond à
une limite finie et une asymptote horizontale. On obtient donc une asymptote non parallèle aux axes
uniquement si a 6= 0, auquel cas f admet une limite infinie en +∞.
Sur la figure 6.8 ci-dessous on a ϕ(x) = PM .
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Figure 6.8 – Droite asymptote

Exemple : f(x) = 2x+ 3 + e−x en +∞ : on a lim
x→+∞

e−x = 0 donc la droite d’équation y = 2x+ 3 est
asymptote à la courbe en +∞.

En général les réels a et b doivent être déterminés, s’ils existent.

Proposition 6.4.1. Si la courbe représentative de f admet une asymptote oblique en +∞ alors :

a = lim
x→+∞

f(x)

x
et b = lim

x→+∞
f(x)− ax

Réciproquement, si en +∞ f(x)

x
admet une limite finie non nulle a et si f(x)−ax admet une limite

finie b alors la droite d’équation y = ax+ b est asymptote à la courbe Γf représentative de f .
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On peut étudier la position de la courbe par rapport à son asymptote simplement en étudiant le signe
de PM = f(x)− (ax+ b).

Remarque 6.4.1.

— Il n’y a pas nécessairement d’asymptote oblique, même si lim
x→+∞

f(x) = +∞ ou −∞, en effet

f(x)

x
peut ne pas avoir de limite ou, dans le cas où a existe, f(x) − ax peut ne pas avoir de

limite.
Exemples : f(x) = x sinx en +∞ pour laquelle

f(x)

x
n’a pas de limite (voir figure 6.9), et

f(x) = x+ 3
√
x pour laquelle lim

x→+∞

f(x)

x
= 1 mais f(x)− x n’a pas de limite finie (voir figure

6.10).
— Enfin on se gardera de croire naïvement qu’une courbe qui admet une droite asymptote en +∞,

par exemple, « tend vers son asymptote sans jamais la rattraper ». C’est une vision romantique
qu’il faut abandonner.

Exemple : f(x) = x+ 3
sin 3x

x
. La droite d’équation y = x est asymptote en +∞ : voir figure

6.11
— Ce qui précède s’adapte immédiatement au cas où x→ −∞.

Figure 6.9 – f(x) = x sinx en +∞
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Figure 6.10 – f(x) = x+ 3
√
x en +∞

Figure 6.11 – f(x) = x+ 3
sin 3x

x
en +∞

Nous terminons par un exemple d’étude de fonction illustrant ce qui précède .

Un exemple d’étude complète :

f(x) =
(x+ 2)2

3(x+ 1)

• Ensemble de définition : Df =]−∞,−1[∪]− 1,+∞].

• Pas de parité ni de périodicité pour cette fonction.

• Branches infinies :
� quand x→ −1 : asymptote verticale x = −1

� quand x→ +∞ : on a lim
x→+∞

f(x) = +∞
On recherche une asymptote oblique éventuelle. On calcule alors

lim
x→+∞

f(x)

x
= lim

x→+∞

(x+ 2)2

3x (x+ 1)
=

1

3
(rapport des termes de plus haut degré), donc a =

1

3
.
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On calcule ensuite

f(x)− ax = f(x)− 1

3
x =

(x+ 2)2 + x(x+ 1)

3(x+ 1)

=
x2 + 4x+ 4− x2 − x

3(x+ 1)
=

3x+ 4

3(x+ 1)
→ 1 quand x→ +∞

Donc b = 1

On a donc une asymptote y =
1

3
x+ 1 en +∞. On a le même résultat en −∞.

On peut étudier la position du graphe par rapport à l’asymptote.

f(x)− (ax+ b) = f(x)− (
1

3
x+ 1) =

3x+ 4

3(x+ 1)
− 1

=
3x+ 4− 3x− 3

3(x+ 1)

=
1

3(x+ 1)
> 0 si x > −1, < 0 si x < −1 :

la courbe est au dessus de l’asymptote pour x > −1 et au dessous pour x < −1.
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• f ′(x) =
x2 + 2x

3(x+ 1)2
=

x(x+ 2)

3(x+ 1)2
, d’où le tableau de variation :

• Tracé :
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Chapitre 7

Dérivabilité, accroissements finis

7.1 Dérivation : définitions

On considère une fonction réelle f définie sur un intervalle I de R (toujours supposé non vide et non
réduit à un point). Son graphe est noté Γf : pour x ∈ I, (x, f(x)) ∈ Γf et M(x) est le point de
coordonnées (x, f(x)) dans un repère du plan.

• Taux de variation :

Définition 7.1.1. Soient a, b ∈ I avec a 6= b. On appelle taux de variation (ou taux d’accroissement)

de f entre a et b le réel τ(a, b) =
f(b)− f(a)

b− a

τ(a, b) est le coefficient directeur (ou pente) de la sécante (M(a)M(b)) :

Figure 7.1 – Interprétation graphique du taux de variation

Exemples : on peut illuster cette notion dans deux situations différentes :
— La variable x est une distance horizontale sur une carte topographique et y est l’altitude. Alors

τ(a, b) est la pente moyenne sur le parcours entre M(a) et M(b). Cette valeurs est affichée à
l’attention des cyclistes sur certaines routes (en %).
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— La variable x est le temps et y la position d’un point mobile sur un axe (ici celui des ordonnées) :
τ(a, b) est la vitesse moyenne du point entre les instants a et b.
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Dans chacun de ces deux exemples, on peut être intéressé par une information plus précise : dans le
premier, la pente à l’endroit où on se trouve (c’est ce que ressentent les mollets du cycliste), dans le
second, la vitesse instantanée (celle, plus ou moins, qu’indique le compteur) : il s’agit dans les deux
cas de considérer des points a et b « très voisins ». Mathématiquement, il s’agit de passer à la limite
quand b tend vers a : on aura alors ces informations en x = a.

• Dérivabilité en un point :

Définition 7.1.2. On dit que f est dérivable en a si le taux de variation τ(a, a+ h) a une limite finie

quand h→ 0, c’est à dire si lim
h→0

h6=0

f(a+ h)− f(a)

h
existe (et est finie). Dans ce cas, on note f ′(a) cette

limite et on l’appelle nombre dérivé de f en a.

Exemple 7.1.1. f :

®
[−1, 1] −→ R
x 7−→ x2 + x+ 1

, a = 0.

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

f(h)− f(0)

h
= lim

h→0

h2 + h+ 1− 1

h
= lim

h→0
h+ 1 = 1

Donc f est dérivable en 0 et f ′(0) = 1.

Remarque 7.1.1. on a aussi : f ′(a) = lim
x→a
x 6=a

f(x)− f(a)

x− a
.

Il existe une caractérisation équivalente de la dérivabilité :

Proposition 7.1.1. f est dérivable en a si et seulement si il existe une fonction ε de limite nulle
en zéro telle que :

∀x ∈ I, f(x) = f(a) + f ′(a) (x− a) + (x− a) ε(x− a) (7.1)

Posant x = a+h, on peut écrire (7.1) sous la forme : f(a+h) = f(a)+f ′(a)h+h ε(h) avec lim
h→0

ε(h) = 0.

En fait, pour h 6= 0 on a ε(h) =
f(a+ h)− f(a)

h
− f ′(a) et le résultat s’en déduit sans peine.

L’expression (7.1) s’appelle le développement limité de f à l’ordre un au voisinage de a.

• Interprétation graphique, tangente à une courbe :

La position limite des sécantes (AM)) est la tangente T à Γf au point A, elle a pour coefficient diracteur
f ′(a) et son équation est donc :

y = f(a) + f ′(a) (x− a)

La fonction x 7→ f(a) + f ′(a) (x− a) s’appelle la fonction affine tangente à f en a. En un certain sens
c’est la fonction affine qui approxime le mieux f au voisinage de a. L’erreur d’approximation n’est
autre que la quantité (x− a)ε(x− a) qui tend vers zéro “plus vite que (x− a)" quand x→ a.

Ces différents termes sont interprétés sur la figure 7.2 ci-dessous. On a posé
−−→
AH = AH~i,

−−→
HP = HP ~j

etc...
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Figure 7.2 – Interprétation graphique de la dérivée

Exemple :

Pour l’exemple 7.1.1, l’équation de la tangente au point M0 = (0, f(0)) = (0, 1) est : y = 1 + x.

• Fonction dérivée :

Définition 7.1.3. On dit que f est dérivable sur un intervalle ouvert I si f est dérivable en chaque
point de I. On définit alors la fonction dérivée de f , notée f ′, qui associe à tout x ∈ I le nombre dérivé

de f en x : f ′(x) = lim
h→0

h6=0

f(x+ h)− f(x)

h
.
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• Dérivabilité à gauche et à droite :

Définition 7.1.4. On dit que f est dérivable à gauche en a si lim
h→0−

f(a+ h)− f(a)

h
existe. Dans ce

cas, on note f ′g(a) cette limite.

On dit que f est dérivable à droite en a si lim
h→0+

f(a+ h)− f(a)

h
existe. Dans ce cas, on note f ′d(a)

cette limite.

Exemple 1 : f(x) = |x| en a = 0.
f(a+ h)− f(a)

h
=
|h|
h

=

®
1 si h > 0
−1 si h < 0

lim
h→0−

f(a+ h)− f(a)

h
= −1 et lim

h→0+

f(a+ h)− f(a)

h
= 1.

Donc f admet des dérivées à gauche et à droite en 0, mais n’est pas dérivable en 0 car

lim
h→0

f(a+ h)− f(a)

h
n’existe pas. On a f ′g(0) = −1 et f ′d(0) = 1.

Exemple 2 : f(x) = |x2 − x| en a = 1.
f(a+ h)− f(a)

h
=
|(1 + h)2 − (1 + h)|

h
=
|1 + 2h+ h2 − 1− h|

h
=
|h(1 + h)|

h

lim
h→ 0
h > 0

f(a+ h)− f(a)

h
= lim

h→ 0
h > 0

1 + h = 1

et lim
h→ 0
h < 0

f(a+ h)− f(a)

h
= lim

h→ 0
h < 0

−(1 + h) = −1.

Donc f n’est pas dérivable en a = 1 car
f(a+ h)− f(a)

h
n’a pas de limite quand h→ 0. Mais f ′d(1) = 1

et f ′g(1) = −1. On dit que le point d’abscisse 1 est un point anguleux.

• Dérivabilité sur un segment :

Définition 7.1.5. On dit que f est dérivable sur [a, b] si f est dérivable sur ]a, b[, dérivable à gauche
en b et dérivable à droite en a.
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7.2 Théorèmes généraux

On trouvera ici les principaux résultats effectivement utilisés.

Proposition 7.2.1. Si f dérivable en a alors f est continue en a.

Preuve : le second membre de (7.1) a pour limite f(a) quand x→ a, on a donc lim
x→a

f(x) = f(a).

Attention : la réciproque est fausse, c’est à dire qu’une fonction continue en a n’est pas nécessairement
dérivable en a : considérer la valeur absolue en a = 0. En fait on peut construire une fonction continue
sur [0, 1] qui n’est dérivable en aucun point de cet intervalle (fonction de Bolzano). Si on pouvait tracer
son graphe, il aurait cette allure (qui s’y frotte s’y pique) :

On comprend alors pourquoi on dit qu’une fonction dérivable est « plus régulière » qu’une fonction
simplement continue...

Proposition 7.2.2. Soient u et v définies sur I et dérivables en a ∈ I, soit λ ∈ R.
u+ v, λu et uv sont dérivables en a et

(u+ v)′(a) = u′(a) + v′(a), (λu)′(a) = λu′(a), (uv)′(a) = u′(a) v(a) + u(a) v′(a)

Proposition 7.2.3. Soit v définie sur I, ne s’annulant pas sur I et dérivable en a ∈ I et u définie
sur I et dérivable en a ∈ I,
u

v
est dérivable en a et

(
u

v
)′(a) =

u′(a) v(a)− u(a) v′(a)

v(a)2
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Proposition 7.2.4. Soit u dérivable en a ∈ I, f définie sur J intervalle contenant u(I) et dérivable
en b = u(a), alors f ◦ u est dérivable en a et

(f ◦ u)′(a) = f ′(u(a))u′(a) = f ′(b)u′(a)
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Exemple : F (x) = (x2 + x)3

F (x) = f(u(x)) avec u(x) = x2 + x et f(y) = y3

u′(x) = 2x+ 1, f ′(y) = 3y2

F ′(x) = f ′(u(x))u′(x) = 3(x2 + x)2(2x+ 1)

Dérivées particulières :

• Dérivée de un : soit u une fonction dérivable sur un intervalle I et n ∈ Z, alors un est dérivable :
– en tout point de I lorsque n ≥ 0,
– en tout point de I où u ne s’annule pas, si n ≤ −1,

et, dans les deux cas, (un(x))′ = nu(x)n−1 u′(x).

Plus généralement, si u > 0 sur I alors pour tout réel α la fonction uα est dérivable sur I et on a
(uα(x))′ = αu(x)α−1 u′(x).

• Dérivée de
√
u : soit u une fonction dérivable et strictement positive sur un intervalle I , alors

√
u est dérivable sur I et (

»
u(x))′ =

u′(x)

2
»
u(x)

.

Exemples :

• f(x) =
1

(2x2 + 1)3
= [u(x)]−3

2x2 + 1 > 0 donc Df = R
n = −3 ; u(x) = 2x2 + 1 ; u′(x) = · · · · · · (compléter)
donc f ′(x) = −3u′(x) [u(x)]−4 = · · · · · · (compléter)

• f(x) =
√
x3 + 1 =

»
u(x)

x3 + 1 = (x+ 1)(x2 − x+ 1) et donc Df = [−1,+∞[ u(x) = x3 + 1 ; u′(x) = · · · · · · (compléter)
donc f est dérivable sur ]− 1,+∞[ et f ′(x) = · · · · · · (compléter)

7.3 Dérivation et extrema d’une fonction

Définition 7.3.1 (Extremum local, extremum global ). Soit f : R→ R et c ∈ Df .
— On dit que f présente un maximum local en c, si et seulement si, il existe un intervalle ouvert

]α, β[, contenant c, tel que f(x) ≤ f(c) pour tout x ∈]α, β[∩Df .
— On dit que f présente un minimum local en c, si et seulement si, il existe un intervalle ouvert

]α, β[, contenant c, tel que f(x) ≥ f(c) pour tout x ∈]α, β[∩Df .
— On appelle extremum local un maximum local ou un minimum local.

On parle d’extremum global, ou absolu, quand les inégalités sont valables pour tout x ∈ Df .

Le résultat fondamental est le suivant :

Proposition 7.3.1. Soit f : R → R dérivable sur ]a, b[. Si f présente un extremum local en un
point c ∈]a, b[, alors f ′(c) = 0.

Preuve : supposons par exemple que c soit un point de maximum local et soit ]α, β[ un intervalle
ouvert inclus dans ]a, b[, sur lequel on a f(x) ≤ f(c). Soit h ∈ R∗ tel que a+ h ∈]α, β[ : si h > 0 alors
f(c+ h)− f(c)

h
≤ 0 et on en déduit f ′d(c)

déf
= lim

h→0+

f(c+ h)− f(c)

h
≤ 0 ; si au contraire h < 0 alors

f ′g(c)
déf
= lim

h→0−

f(c+ h)− f(c)

h
≥ 0. Comme f est dérivable en c on a 0 ≤ f ′g(c) = f ′(c) = f ′d(c) ≤ 0, ce

qui ne peut se produire que si f ′(c) = 0.
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La tangente à la courbe de Γf au point (c, f(c)) est alors parallèle à l’axe des abscisses.

Figure 7.3 – Extrema d’une fonction : minimum relatif en a, c2, b, maximum relatif en c0, c3.

Attention : si f ′(c) = 0, c n’est pas nécessairement un point d’extremum. On dit que c est un point
critique de f . On vérifie grâce au tableau de variations s’il s’agit ou non d’un extremum : la dérivée
doit s’annuler et changer de signe, ou bien rester nulle sur un intervalle ouvert de centre
c (elle est alors constante sur cet intervalle). Si f ′(c) = 0, c ∈]a, b[, sans que c ne soit un point
d’extremum local de f , on parle de point d’inflexion, ou point col, de f .

Sur les points a et b du bord de l’intervalle, figure 7.3 on a des extrema locaux mais la tangente n’est
pas horizontale.

Exemple (point d’inflexion) :

f(x) = (x3, c = 0, f ′(x) = 3x2 donc f ′(0) = 0 et 0
est un point critique de f , mais f est croissante sur
R donc 0 ne peut pas être un point d’extremum de
f .

Si f n’est pas dérivable en c, on peut quand même avoir un extremum local en c mais dans ce cas,
on n’a pas de tangente horizontale : pour la fonction valeur absolue, c = 0 est un point de minimum
absolu...
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7.4 Théorèmes de Rolle et des accroissements finis

7.4.1 Énoncés et preuves

Théorème 7.4.1 (Théorème de Rolle).

Soit f : [a, b] −→ R une fonction


continue sur [a, b],
dérivable sur ]a, b[
et telle que f(a) = f(b),

alors :

∃c ∈]a, b[, f ′(c) = 0.

Preuve : d’après le théorème 6.2.3 du chapitre 6, il existe des points α et β de [a, b] tels que
f([a, b]) = [f(α), f(β)] : ∀x ∈ [a, b], f(α) ≤ f(x) ≤ f(β).
Si α et β sont aux extrémités de [a, b], la condition f(a) = f(b) entraîne que f([a, b]) est réduit à un
point : f est constante. Sa dérivée est alors nulle partout et n’importe quel point c ∈]a, b[ convient.
Si au contraire l’un des points α, β au moins est un point de ]a, b[, désignons-le par c : c’est un point
d’extremum (minimum absolu pour α, maximum absolu pour β) et d’après la proposition 7.3.1 on a
f ′(c) = 0.

Ce résultat est illustré figure 7.4 : il y a ici deux valeurs de c possibles (c et d) qui correspondent tous
les deux à un extremum relatif dans ]a, b[ : le cycliste qui part et arrive en deux points situés à la même
altitude aura au moins une fois l’ occasion de se retrouver à l’horizontale, ici deux fois, même si c et d
n’ont pas le même rôle sur le plan du moral ...

Figure 7.4 – Contexte du théorème de Rolle

Attention : il ne faut pas retenir seulement l’hypothèse f(a) = f(b). Dans les deux figures ci-dessous,
où elle est vérifiée mais pas la conclusion, on cherchera quelle est l’hypothèse manquante ...
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Le (célèbre) théorème des accroissements finis, riche en applications, est une extension du précédent :
on enlève l’hypothèse f(a) = f(b).

Théorème 7.4.2 (Théorème des accroissements finis).

Soit f : [a, b] −→ R une fonction
®

continue sur [a, b]
et dérivable sur ]a, b[

alors :

∃c ∈]a, b[, f(b)− f(a) = (b− a) f ′(c).

Preuve : la sécante qui passe par les points d’abscisses respectives a et b a pour équation y = g(x) =

f(a)+
f(b)− f(a)

b− a
(x−a). La fonction définie sur [a, b] par h(x) = f(x)−g(x) vérifie h(a) = h(b) = 0, de

plus elle est continue sur [a, b] (f et g le sont) et dérivable sur ]a, b[ (c’est le cas pour f , par hypothèse,
et g est dérivable sur R.
D’après le théorème de Rolle il existe donc un réel c ∈]a, b[ tel que h′(c) = 0. Or :

h′(x) = f ′(x)− g′(x) = f ′(x)− f(b)− f(a)

b− a
,

et h′(c) = 0⇐⇒ f(b)− f(a)

b− a
= f ′(c).

Sur la figure 7.5 ci-dessous, il y a trois réels c qui conviennent (dont c1 et c2). En c2, par exemple,
le cycliste ressent exactement la pente qui, si elle était partout la même, réaliserait le même dénivelé
f(b)− f(a).

Figure 7.5 – Contexte du théorème des accroissements finis
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Corollaire 7.4.1 (inégalité des accroissements finis).
Soit f : I → R une fonction dérivable sur l’intervalle I, alors :

1. s’il existe des réels m et M tels que ∀x ∈ I, m ≤ f ′(x) ≤ M , alors pour tout couple (a, b) ∈
I × I tel que a ≤ b on a :

m (b− a) ≤ f(b)− f(a) ≤M (b− a). (7.2)

2. s’il existe un réel k ≥ 0 tel que ∀x ∈ I, |f ′(x)| ≤ k, alors :

∀(x, y) ∈ I, |f(y)− f(x)| ≤ k |y − x|. (7.3)

Preuve : pour le premier point on suppose que a < b, sinon le résultat est trivial. Le théorème des
accroissements finis assure l’existence d’un point c ∈]a, b[ tel que f(b) − f(a) = f ′(c) (b − a), or, par
hypothèse, on a ≤ f ′(c) ≤M : l’inégalité en résulte car b− a > 0.
Le deuxième point est une conséquence immédiate du premier en posant m = −k etM = k.

Exemple : votre vitesse reste comprise entre 30km/h et 90 km/h... En 20 mn vous parcourrez une
distance comprise entre 10km et 30 km.
Ce n’est pas plus compliqué que cela. Attention tout de même aux hypothèses ...

7.4.2 Applications

• Sens de variation d’une fonction

Commençons par un résultat intuitif, admis dans les classes antérieures :

Proposition 7.4.1.
Soit f une fonction dérivable sur un intervalle I. Si la dérivée est nulle sur I (∀x ∈ I, f ′(x) = 0),
alors f est constante sur I.

Preuve : l’inégalité (7.3) est vérifiée avec k = 0, donc : ∀(x, y) ∈ I, |f(y)−f(x)| = 0, i.e. f(x) = f(y).

Les deux résultats suivants, et ceux qui sont analogues en changeant le signe de la dérivée, sont à la
base de l’étude du sens de variation des fonctions :

Proposition 7.4.2.
Soit f une fonction dérivable sur un intervalle I, alors

f est croissante sur I si et seulement si : ∀x ∈ I, f ′(x) ≥ 0.

Preuve : supposons f ′(x) ≥ 0 sur I et soit (x, y) ∈ [a, b]2 avec x < y. Appliquons l’inégalité des
accroissements finis (7.2), côté gauche, avec m = 0 : 0 ≤ f(y)− f(x) i.e. f(y) ≥ f(x), ce qui prouve la
croissance.
Réciproquement, si f est croissante sur I et si a ∈ I, alors pour tout x 6= a dans I les quantités

f(x)− f(a) et x− a sont de même signe, donc
f(x)− f(a)

x− a
≥ 0 et ainsi :

f ′(a) = lim
x→a

f(x)− f(a)

x− a
≥ 0.
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Proposition 7.4.3.
Soit f une fonction dérivable sur un intervalle I.

si ∀x ∈ I, f ′(x) > 0, alors f est strictement croissante sur I.

Remarque : on ne peut pas utiliser (7.2) dans ce cas, car on ne peut pas garantir que m > 0. En effet
la borne inférieure d’un ensemble de nombres strictement positifs (ici, les dérivées) peut être nulle.
Exemple : inf R∗+ = 0.

Preuve : supposons f ′(x) > 0 sur I et soit (x, y) ∈ [a, b]2 avec x < y. D’après le théorème des
accroissements finis, il existe un réel c tel que x < c < y et f(y) − f(x) = f ′(c)︸ ︷︷ ︸

>0

(y − x)︸ ︷︷ ︸
>0

, donc

f(y) > f(x).

Remarque 7.4.1. si f ′(x) ≥ 0 sur I et si cette dérivée ne s’annule qu’en un nombre fini de points, on
a le même résultat. Exemple : f(x) = x3 sur R.

Il suffit de raisonner sur chacun des sous-intervalles où f ′ > 0.

Corollaire 7.4.2. Soit f : [a, b]→ R une fonction continue sur [a, b], dérivable sur ]a, b[. Alors :
— Si f ′(x) > 0 pour tout x ∈]a, b[, f est une bijection strictement croissante de [a, b] sur

[f(a), f(b)].

— Si f ′(x) < 0 pour tout x ∈]a, b[, f est une bijection strictement décroissante de [a, b] sur
[f(b), f(a)].

• Limite d’une dérivée en un point et dérivabilité en ce point

Le résultat suivant permet, dans les cas favorables, d’étudier la dérivabilité en un point particulier sans
recours au taux d’accroissement. Etudions un exemple type : on considère la fonction définie sur R par

f(x) =


1

4
x2 − 3

2
x+ 3 si x < 4,
√
x− 3 si x ≥ 4

Cette fonction est continue et dérivable pour x < 4 et x > 4 par simple application des théorèmes
usuels. On trouve sans difficulté que les limites à gauche et à droite en a = 4 sont égales (à 1) mais
cette fonction est-elle dérivable en ce point ?

Pour x < 4 on a f ′(x) =
x

2
− 3

2
et ainsi lim

x→4−
f ′(x) =

1

2
.Pour x > 4 on a f ′(x) =

1

2
√
x− 3

et donc

lim
x→4+

f ′(x) =
1

2
. On se dit que les tangentes de part et d’autre du point d’abscisse a on la même

position limite en ce point et l’intuition nous dit que f est dérivable en a = 4 avec f ′(4) =
1

2
. Est-ce

correct ? Et s’il n’y avait pas eu la même limite , ou pas de limite du tout ? La réponse est là :

Proposition 7.4.4. Soit f une fonction réelle définie sur un intervalle ouvert I de R, continue en
a ∈ I et dérivable sur I \ {a}. Si la dérivée f ′ a une limite finie ` en a (resp. à droite, à gauche en
a) alors f est dérivable en a (resp. à droite, à gauche en a) et f ′(a) = ` (resp. f ′d(a) = `, f ′g(a) = `).
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C’est ce résultat que l’on applique : on conclut successivement que f ′g(4) =
1

2
, f ′d(4) =

1

2
et donc, en

effet, que f est dérivable en a = 4 avec f ′(4) =
1

2
.

Preuve : on donne une preuve sommaire, dans le cas, par exemple, de la dérivée à gauche. On

suppose que lim
x→a−

= ` et on veut montrer que
f(x)− f(a)

x− a
a la même limite. Soit x ∈ I avec x < a :

f étant continue sur [x, a] et dérivable sur ]x, a[, le théorème des accroissements finis donne l’existence

d’un réel cx ∈]x, a[ (il dépend de x) tel que
f(x)− f(a)

x− a
= f ′(cx), or quand x → a−, nécessairement

cx → a− et donc
f(x)− f(a)

x− a
= f ′(cx)→ `, ce qui donne la conclusion.

C’est une rédaction un peu rapide car cx n’est pas unique donc l’expression cx → a− est un raccourci. On
sera plus rigoureux pour la règle de l’Hopital ci-dessous, deuxième cas (comparer les deux rédactions).

Remarque : on montre en fait que si f ′ a une limite en un point, alors le taux d’accroissement a la
même limite. Cela reste valable avec une limite infinie : il n’y a pas alors dérivabilité mais existence
d’une (demi) tangente verticale.

Attention : la réciproque est fausse. Il se peut que le taux d’accroissement ait une limite (donc qu’il
y ait dérivabilité) sans que f ′ ait une limite. Autrement dit, une dérivée n’est pas forcément continue.
Il y a un exemple classique :

Exemple : on considère la fonction f définie sur R par f(0) = 0 et, si x 6= 0, f(x) = x2 sin
1

x
. Le taux

d’accroissement entre zéro et x 6= 0 est
f(x)− f(0)

x− 0
=
f(x)

x
= x sin

1

x
→ 0 quand x → 0. f est donc

dérivable en zéro et f ′(0) = 0. Par contre, pour x 6= 0 on a f ′(x) = 2x sin
1

x
− cos

1

x
qui n’a pas de

limite en zéro (le premier terme tend vers zéro mais le second n’a pas de limite ... pourquoi ?).

• Règle de l’Hopital

Cette règle concerne la recherche de limites sous la forme (supposée indéterminée) lim
x→a
x 6=a

f(x)

g(x)
. Nous allons

en fait en voir deux variantes et seule la deuxième utilise un résultat de cette section (le théorème de
Rolle).
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Proposition 7.4.5 (règle(s) de l’Hôpital).

1. Soient f et g deux fonctions définies et dérivables sur un intervalle ouvert I et a ∈ I.
On suppose que f(a) = g(a) = 0 et que g′(a) 6= 0, alors :

lim
x→a
x 6=a

f(x)

g(x)
=
f ′(a)

g′(a)
.

2. Soient I un intervalle ouvert, a ∈ I, f et g deux fonctions continues sur I et dérivables sur
I \ {a} telles que f(a) = g(a) = 0, g(x) 6= 0 et g′(x) 6= 0 sur I \ {a}.

Si le quotient
f ′(x)

g′(x)
a une limite finie ` en a, alors :

lim
x→a
x 6=a

f(x)

g(x)
= lim

x→a
x 6=a

f ′(x)

g′(x)
= `.

Preuve : commençons par le premier cas. Remarquons qu’il existe un intervalle ouvert de centre

a sur lequel g(x) 6= 0 pour x 6= a, ce qui justifie l’existence du rapport
f(x)

g(x)
sur cet intervalle privé de

a. En effet le développement limité à l’ordre un de g au voisinage de a s’écrit :

g(x) = g(a)+(x−a) g′(a)+(x−a) ε(x−a) = (x−a) g′(a)+(x−a) ε(x−a) = (x−a) (g′(a)+ε(x−a))

avec lim
x→a

ε(x − a) = 0, donc pour x assez proche de a (i.e. sur un certain intervalle de la forme
]a− α, a+ α[), g′(a) + ε(x− a) 6= 0 et g ne s’annule qu’en x = a.

Pour x 6= a,
f(x)

g(x)
=
f(x)− f(a)

x− a
x− a

g(x)− g(a)
: comme g′(a) 6= 0, le second quotient, qui a pour limite

1

g′(a)
quand x→ a, est défini pour x assez proche de a et le résultat s’en suit immédiatement.

Second cas - Soit ε > 0, comme on suppose lim
x→a
x 6=a

f ′(x)

g′(x)
= `, il existe un réel α > 0 tel que pour

x ∈ I \ {a} on a : |x − a| ≤ α =⇒
∣∣∣∣f ′(x)

g′(x)
− `

∣∣∣∣ ≤ ε. Fixons un tel x et introduisons la fonction h de

la variable t ∈ I par h(t) = f(t) g(x) − g(t) f(x). Supposant par exemple que x > a (pour fixer les
notations des intervalles) on a : h continue sur [a, x], dérivable sur ]a, x[ et h(a) = h(x) = 0.
D’après le théorème de Rolle, il existe un réel cx (il dépend de x) tel que cx ∈]a, x[ et h′(cx) = 0.

On a h′(t) = f ′(t) g(x)− g′(t) f(x), donc on obtient f ′(cx) g(x)− g′(cx) f(x) = 0 d’où
f(x)

g(x)
=
f ′(cx)

g′(cx)
.

De plus |cx − a| < |x− a| ≤ α donc on a
∣∣∣∣f(x)

g(x)
− `
∣∣∣∣ =

∣∣∣∣f ′(cx)

g′(cx)
− `
∣∣∣∣ ≤ ε. On a ainsi prouvé que :

∀ε > 0, ∃α > 0, |x− a| ≤ α =⇒
∣∣∣∣f(x)

g(x)
− `
∣∣∣∣ ≤ ε,

et on a le résultat annoncé.

Remarque 7.4.2. En fait, le deuxième résultat est également valide pour les limites infinies, et aussi
si f et g tendent vers l’infini en a, et si x tend vers −∞ ou +∞, c’est donc une règle très souple. Pour
plus de détails on pourra consulter Wikipedia : https://fr.wikipedia.org/wiki/Règle_de_L’Hôpital.

On peut aussi écrire les mêmes résultats en termes de limites à droite ou à gauche.
On peut si besoin appliquer cette règle plusieurs fois de suite jusqu’à lever l’indétermination.
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On notera qu’on énonce des conditions suffisantes : si la limite de
f ′(x)

g′(x)
existe alors etc...

La réciproque est fausse !

Exemple : trouver lim
x→0

sinx− x
x3

Ici, f(x) = sinx− x, g(x) = x3. On a f(0) = g(0) = 0, f ′(x) = cosx− 1 et g′(x) = 3x2.

Hélas,
cosx− 1

3x2
conduit encore à une forme indéterminée «

0

0
»... alors on recommence avec les dérivées

de ces fonctions, c’est à dire − sinx et 6x.

On a lim
x→0

− sinx

6x
= −1

6
, donc :

lim
x→0

sinx− x
x3

= −1

6

Vous apprendrez par la suite une méthode plus directe pour ce type de question.

7.5 Dérivées successives, dérivées partielles

• Dérivées successives

Définition 7.5.1. Soit f : I → R. Par convention : f (0) = f et :
— si f est dérivable sur I on note f (1) = f ′ sa dérivée (dérivée première, ou d’ordre un),
— si de plus f ′ est dérivable, on pose f (2) = (f ′)′ = f” : dérivée seconde de f (ou dérivée d’ordre

deux),
— de proche en proche, si f admet une dérivée d’ordre n ∈ N qui est elle-même dérivable, on pose

f (n+1) = (f (n))′.

Exemple : f(x) = x3 + 2x+ 1.

f ′(x) = 3x2 + 2, f ′′(x) = 6x, f (3)(x) = 6, f (4)(x) = 0

Définition 7.5.2.
— Par convention une fonction f continue sur I est dite de classe C0 sur I. On écrit f ∈ C0(I).
— Une fonction n fois dérivable et de dérivée n-ième continue est dite de classe Cn : f ∈ Cn(I).
— Une fonction qui est de classe Cn quel que soit n ∈ N est dite de classe C∞.

Exemples : les fonctions polynômes, les fonction cos, sin, exp sont de classe C∞ sur R.

Le résultat suivant permet de calculer rapidement les dérivées successives d’un produit f g de deux
fonctions. Il généralise la formule bien connue : (f g)′ = f ′ g + f g′. On remarquera l’analogie avec la
formule du binôme de Newton.

Proposition 7.5.1 (Formule de Leibniz). Soient f, g : I → R des fonctions n fois dérivables sur
I. Alors le produit f g est n fois dérivables sur I et sa dérivée d’ordre n est donnée par la formule
de Leibniz :

(f g)(n) =
n∑
k=0

Ç
n
k

å
f (n−k) g(k)

Exemple :

(f g)(4) = f (4) g + 4 f (3) g′ + 6 f ′′ g′′ + 4 f ′ g(3) + f g(4)
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• Dérivées partielles (hors programme, complément pour la physique)

En mathématiques, en physique et dans toutes les sciences qui utilisent les mathématiques on a à
utiliser des fonctions dépendant de plusieurs variables (en physique, par exemple, le volume d’un gaz
est une fonction de la température et de la pression). Il est possible d’étudier les variations d’une telle
fonction lorsque toutes les variables sont maintenues à une valeur fixe, sauf une. Par exemple on peut
regarder comment varie le volume en fonction de la pression à température constante.

Nous allons nous restreindre au cas d’une fonction de deux variables f :

®
R2 −→ R2

(x, y) 7−→ f(x, y)
, par

exemple f(x, y) = x2y3 + 2x2 + y3 + 2x.

Définition 7.5.3.

On appelle première fonction partielle de f en (a, b) la fonction f(·, b) :

®
R −→ R
x 7−→ f(x, b)

.

On appelle deuxième fonction partielle de f en (a, b) la fonction f(a, ·) :

®
R −→ R
y 7−→ f(a, y)

.

Si la première fonction partielle est dérivable, on note
∂f

∂x
sa dérivée. Ainsi, au point (x, y) :

∂f

∂x
(x, y) = lim

h→0

h6=0

f(x+ h, y)− f(x, y)

h
.

Si la deuxième fonction partielle est dérivable, on note
∂f

∂y
sa dérivée. Ainsi, au point (x, y) :

∂f

∂y
(x, y) = lim

h→0

h6=0

f(x, y + h)− f(x, y)

h
.

Sur l’exemple choisi, on a :
∂f

∂x
(x, y) = 2xy3 + 4x+ 2 (on considère y comme une constante),

∂f

∂y
(x, y) = 3x2y2 + 3y2 (on considère x comme une constante)

On peut ensuite calculer les dérivées partielles secondes par rapport aux deux variables en appliquant
le même principe aux fonctions dérivées partielles premières déjà calculéees. Ainsi :

∂2f

∂x2
(x, y) =

∂
Ä
∂f
∂x

ä
∂x

(x, y) = 2y3 + 4,

∂2f

∂y∂x
(x, y) =

∂
Ä
∂f
∂x

ä
∂y

(x, y) = 6xy2,

∂2f

∂x∂y
(x, y) =

∂
Ä
∂f
∂y

ä
∂x

(x, y) = 6xy2,

∂2f

∂y2
(x, y) =

∂
Ä
∂f
∂y

ä
∂y

(x, y) = 6x2y + 6y.

On remarque que
∂2f

∂y∂x
(x, y) =

∂2f

∂x∂y
(x, y), mais dans le cas général cette égalité est soumise à

certaines conditions qui sortent du cadre de ce cours.
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Chapitre 8

Intégration

8.1 Intégrale d’une fonction sur un intervalle

8.1.1 Définition de l’intégrale

On ne va pas donner une définition rigoureuse de l’intégrale d’une fonction sur un intervalle, mais un
sens précis ce cette quantité quand les fonctions sont "raisonnables" :

— Si la fonction est positive, définie sur l’intervalle (a, b), l’intégrale de f sur l’intervalle (a, b),

notée
∫ b

a
f(x)dx, est l’aire comprise entre la courbe représentative de f et le segment (A,B)

(A(a, 0), B(b, 0)) dans un repère orthonormée.
— Si la fonction est négative, définie sur l’intervalle (a, b), l’intégrale de f sur l’intervalle (a, b),

notée
∫ b

a
f(x)dx est moins l’aire de la surface comprise entre la courbe représentative de f et

le segment (A,B).

On observe que dans chacun des cas, on a la formule de Chasles

∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx,
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où a < c < b.
On rend cette formule vraie pour toutes les valeurs de a, b, et c et pour toute fonction "raisonnable"
en définissant l’intégrale par

Définition l’intégrale de f sur l’intervalle (a, b) , notée
∫ b

a
f(x)dx, est l’aire comprise entre

la courbe représentative de f et le segment (A,B) comptée positivement où f est positive
et négativement où f est négative.
et avec les conventions suivantes : ∫ a

a
f(x)dx = 0,

∫ b

a
f(x)dx = −

∫ a

b
f(x)dx,

Exemple : calcul d’intégrale pour une fonction en escalier.
Soit f donnée par

f(x) =



1 si x ∈ [−2,−1[
−1 si x ∈]− 1, 0[

0 si x = 0
1 si x ∈]0, 2[
−2 si x ∈ [2, 3]

On veut calculer
∫ 3

−2
f(x) dx. On utilise la formule de Chasles :∫ 3

−2
f(x) dx =

∫ −1

−2
f(x) dx+

∫ 0

−1
f(x) dx+

∫ 2

0
f(x) dx+

∫ 3

2
f(x) dx

Chacune des intégrales se calculent alors avec la définition car on connait l’aire d’un rectangle, on

ajoute l’aire si le rectangle est au dessus le l’axe, on la retranche s’il est en dessous :
∫ 3

−2
f(x) dx =

1− 1 + 2− 2 = 0, on a donc
∫ 3

−2
f(x) dx = 0.

Calcul d’intégrale pour une fonction continue sur [a, b].

On verra plus bas comment calculer pratiquement
∫ b

a
f(x) dx pour la plupart des fonctions usuelles.

Dans le cas général d’une fonction continue quelconque, on ne sait pas calculer exactement la valeur
de l’intégrale, ni en donner une formule avec des fonctions usuelles (on sait même souvent démontrer
qu’une telle formule n’existe pas !). On utilise alors une "méthode numérique" pour en calculer une
valeur approchée. On sait par contre démontrer que ces méthodes numériques "convergent" toutes vers

la mÃªme valeur. On en conclut qu’on peut calculer
∫ b

a
f(x) dx lorsque f est une fonction continue

sur [a, b].

8.1.2 Fonctions continues par morceaux

Soit f : R → R une fonction. f est continue par morceaux sur l’intervalle [a, b], ssi, ∃{x0, · · · , xn},
subdivision de [a, b] (i.e. x0 = a < x1 < ... < xi < xi+1 < ... < xn = b) telle que :
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
f soit continue sur ]xi−1, xi[
f admet une limite finie à droite en xi−1

f admet une limite finie à gauche en xi
pour tout 1 ≤ i ≤ n

( On dit que f admet un nombre fini de discontinuités, toutes de première espèce). Pour un intervalle
quelconque I (pas forcément borné ni fermé), on dit que f est continue par morceaux sur I si f est
continue par morceaux sur [a, b] ∩ I pour tout a < b.

Notation On note f(x+) et f(x−) les limites à droite et à gauche de f .
Exemples :

— Une fonction continue sur [a, b] est continue par morceaux sur [a, b].
— Les fonctions en escalier sont des fonctions continues par morceaux.

— f(x) =

®
x2 si x ∈ [0, 1]

sinx si x ∈ [1, 3]
est continue par morceaux

— f(x) = E(x) partie entière est continue par morceaux sur R.

Pour une fonction continue par morceaux sur [a, b], on calculera
∫ b

a
f(x)dx en utilisant la relation de

Chasles ∫ b

a
f(x)dx =

n∑
i=1

∫ xi

xi−1

f(x)dx

pour se ramener à des calculs d’intégrales de fonctions continues.

8.1.3 Propriétés de l’intégrale

Soit f une fonction continue par morceaux sur un intervalle I. On adopte les conventions suivantes :

∀a ∈ I,
∫ a

a
f(x)dx = 0,

∀(a, b) ∈ I2, b ≤ a
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx,

on a alors pour toutes valeurs de (a, b, c) ∈ I3 la relation de Chasles déjà vue :

∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx,
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Linéarité

Soient f1 et f2 continues par morceaux sur [a, b] et λ ∈ R, alors λf1 + f2 est continue par morceaux
sur [a, b] et

∫ b

a
λf1 + f2 = λ

∫ b

a
f1 +

∫ b

a
f2

Moyenne d’une fonction sur un ’intervalle
La moyenne d’une fonction sur l’intervalle [a, b] est la quantité

1

b− a

∫ b

a
f(t) dt

C’est la valeur d’une fonction constante sur [a, b] qui a la même intégrale que f sur [a, b].
Deux inégalités
Soient a ≤ b et f et g deux fonctions continues par morceaux sur [a, b]. On déduit facilement du fait

que f ≥ 0 sur [a, b] implique
∫ b

a
f(x)dx ≥ 0 que

f ≤ g sur [a, b] ⇒
∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx

et

|
∫ b

a
f(x)dx| ≤

∫ b

a
|f(x)|dx

On déduit de la première inégalité que si f et g sont continues par morceaux sur [a, b], m = inf
t∈[a,b]

f(t),

M = sup
t∈[a,b]

f(t) et si g est positive, alors

m

∫ b

a
g(t)dt ≤

∫ b

a
f(t)g(t) dt ≤M

∫ b

a
g(t) dt.

En particulier avec g = 1, on obtient la l’inégalité de la moyenne

m ≤ 1

b− a

∫ b

a
f(t) dt ≤M.

et si f est continue sur [a, b], avec le théorème des valeurs intermédiaires, on a la formule de la
moyenne : il existe c ∈ [a, b] tel que

f(c) =
1

b− a

∫ b

a
f(t) dt.
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8.2 Primitives d’une fonction sur un intervalle

8.2.1 Définition

Soient f et F deux fonctions définies sur le même intervalle I. On dit que F est une primitive de f
sur I, ssi F est dérivable sur I et ∀x ∈ I, F ′(x) = f(x).
Proposition
Soit f une fonction admettant sur I une primitive F . Alors G est une primitive de f sur I si et
seulement si il existe une constante C ∈ R telle que ∀x ∈ I, G(x) = F (x) + C

Preuve : : On suppose que ∀x ∈ I, F ′(x) = f(x)

=⇒ G′(x) = f(x), ∀x ∈ I =⇒ (F −G)′(x) = 0, ∀x ∈ I
=⇒ (F −G)(x) =Cste, ∀x ∈ I puisque I est un intervalle.

⇐= Si G(x) = F (x)+Cste, ∀x ∈ I G est dérivable sur I et ∀x ∈ I, G′(x) = F ′(x) = f(x).

Remarques :
— On dit que les primitives sont définies à une constante additive près.
— Si on fixe la valeur de F en un point xo ∈ I, alors F est définie de façon unique.

Exemples :
— f(x) = 0, F (x) = C sur R
— f(x) = 1, F (x) = x+ C sur R
— f(x) = cosx, F (x) = sin(x) + c sur R.
— f(x) = x2. On sait que (x3)′ = 3x2,. On en déduit F (x) =

1

3
x3 + c sur R.

8.2.2 Primitives usuelles

Fonction Primitive Domaine de validité

xn, n ∈ N
xn+1

n+ 1
R

xp, p ∈ Z\{−1} xp+1

p+ 1
R+∗ et R−∗

1

x
ln |x| R+∗ et R−∗

1

x+ a
ln |x+ a| ]−∞,−a[ et ]− a,+∞[

xα, α ∈ R\{−1} xα+1

α+ 1
R+∗

ax, a > 0
ax

ln a
R

cosx sinx R

sinx − cosx R
1

sin2 x
−cosx

sinx
]kπ, (k + 1)π[, k ∈ Z

1

cos2 x
tanx ](2k − 1)

π

2
, (2k + 1)

π

2
[, k ∈ Z

chx shx R

shx chx R
1

ch2x
thx R

ex ex R
1

x2 + 1
arctan(x) R
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8.2.3 Le théorème fondamental de l’analyse

On va voir la relation entre primitive et intégrale.

Théorème Soit f une fonction continue sur un intervalle I, a ∈ I et F (x) =

∫ x

a
f(t)dt

alors F est une fonction définie et dérivable sur I, et ∀x ∈ I, F ′(x) = f(x).

Preuve : Puisque x ∈ I, f est continue sur [a, x] si x ≥ a ou sur [x, a] si x ≤ a, F est donc bien définie

sur I. On doit calculer lim
h→0

1

h
(F (x + h)− F (x)) (ou la limite Ã droite si x est la borne gauche de I,

ou la limite Ã gauche si x est la borne droite de I). La relation de Chasles permet d’écrire

F (x+ h)− F (x) =

∫ x+h

a
f(t)dt−

∫ x

a
f(t)dt =

∫ x

a
f(t)dt+

∫ x+h

x
f(t)dt−

∫ x

a
f(t)dt =

∫ x+h

x
f(t)dt.

Soit ε > 0, la fonction f étant continue en x, il existe δ > 0 tel qu’ on a |f(t)− f(x)| ≤ ε pour tout t
tel que |t− x| < δ. On en déduit que pour tout h tel que |h| < δ, on a, si h > 0,

|
∫ x+h

x
(f(t)− f(x))dt| ≤

∫ x+h

x
|f(t)− f(x)|dt ≤ ε

∫ x+h

x
ε = εh,

et donc On en déduit que pour tout h tel que |h| < δ, on a, si h > 0,

|
∫ x+h

x
(f(t)− f(x))dt| ≤

∫ x+h

x
|f(t)− f(x)|dt ≤ ε

∫ x+h

x
ε = εh,

Mais ∫ x+h

x
(f(t)− f(x))dt = F (x+ h)− Fx)− hf(x),

on obtient

|1
h

(F (x+ h)− Fx))− f(x)| ≤ ε,

On a montré

limh→0+
1

h
(F (x+ h)− Fx)) = f(x).

On procède de même pour h < 0 car on a cette fois

|
∫ x

x+h
(f(t)− f(x))dt| ≤

∫ x

x+h
|f(t)− f(x)|dt ≤ ε

∫ x

x+h
ε = ε|h|.

Exemple : si F (x) =

∫ x

2
t3e−t dt alors F ′(x) = x3e−x

Ce théorème donne le moyen de calculer
∫ b

a
f(x)dx lorsqu’on connait une primitive de f . On a en effet

la formule de base du calcul des intégrales :

Corollaire Soit f continue sur [a, b] et F une primitive de f sur I contenant [a, b], on a

∫ b

a
f(x)dx = F (b)− F (a).
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Preuve : On sait que
∫ x

a
f(x)dx est une primitive de f sur I, on a donc F (x) =

∫ x

a
f(x)dx+ C, la

formule s’en déduit.
Notations
On comprend pourquoi on note F (x) =

∫
f(x)dx une primitive de f (attention par soucis de praticité,

on utilise la même lettre comme nom de variable pour la primitive et comme nom de variable pour
décrire f . Par exemple, on écrit

∫
xdx = (1/2)x2 + C.

On note F (b)− F (a) = [F ]ba. On a donc

∫ b

a
f(x)dx = [F ]ba.

Exemple :∫ 2

1
x2 + x dx =

[1

3
x3 +

1

2
x2
]2

1
=

8

3
+ 2− (

1

3
+

1

2
) =

23

6
.∫ 3

1
xE(x) dx =

∫ 2

1
xE(x) dx+

∫ 3

2
xE(x) dx =

∫ 2

1
x dx+

∫ 3

2
2x dx =

[1

2
x2
]2

1
+
[
x2
]3

2

= = 2− 1

2
+ 9− 4 =

19

2
L’hypothèse de continuité de f est importante. En effet, on a

Proposition Soient f continue par morceaux sur I = [α, β] et a ∈ I, l’application intégrale de f :

I → R

x → F (x) =

∫ x

a
f(t) dt

est continue, dérivable à droite sur [α, β[ et dérivable à gauche sur ]α, β] et F ′+(x) = f(x+), F ′−(x) =
f(x−).
Preuve : : reprendre la démonstration du théorème avec soin.

On en déduit qu’au point de discontinuité de f , F est continue mais n’est pas dérivable.

8.2.4 Calcul des primitives

Reconnaître et reconstituer une formule de dérivation

Si F est une primitive de f , la formule F (x) =

∫ x

a
f(t)dt s’écrit aussi F (x) =

∫ x

a
F ′(t)dt. La première

méthode et la principale, consiste donc à reconnaître une dérivée sous le signe intégrale, pour cela, on
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apprend le tableau des primitives usuelles qu’on utilise directement, ou indirectement en remarquant
que si F est une primitive de f , F (u) est une primitive de f(u)u′. Par exemple :

— Soit α 6= −1, une fonction du type u′uα a pour primitive
uα+1

α+ 1
.

— une fonction du type u′eu a pour primitive eu.

— une fonction du type
u′

2
√
u

a pour primitive
√
u.

— une fonction du type
u′

u
a pour primitive ln |u|.

• Exemples :
∫ π

2

0
cosx sin3 x dx =

ï
1

4
sin4 x

òπ
2

0
=

1

4
(u(x) = sin(x))

∫ 1

0
x
√
x2 + 1 dx =

∫ 1

0

1

2
(2x)(x2 + 1)

1
2 dx =

ï
1

2
(
2

3
(x2 + 1)

3
2 )

ò1

0
=

1

3
(2

3
2 − 1) (u(x) = x2 + 1)

∫ 1

0
xex

2+1 dx =

ï
1

2
ex

2+1
ò1

0
=

1

2
(e2 − e) (u(x) = x2 + 1)∫

tan(x)dx = −ln(|cos(x)|)∫
x

x2 + 1
dx =

1

2
ln(x2 + 1)

Changement de variable

Théorème
Soit f : I → R continue sur l’intervalle I, soit ϕ : [α, β]→ I de classe C1 sur I, alors

∫ β

α
f(ϕ(t))ϕ′(t) dt =

∫ ϕ(β)

ϕ(α)
f(x) dx.

Remarque Attention, il ne faut pas oublier de vérifier ϕ([α, β]) ⊂ I.

Preuve : Soit F une primitive de f , on a
∫ ϕ(x)

ϕ(α)
f(t) dt = F (ϕ(x)) − F (ϕ(α)). Mais F (ϕ(x))′ =

F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x), F (ϕ(x)) est donc une primitive de f(ϕ(x))ϕ′(x) et on a F (ϕ(x)) =∫ x

α
f(ϕ(t))ϕ′(t)dt+C. Cette formule est vraie pour tout x ∈ I, utilisée en x = α, elle implique C = 0,

d’où le résultat.

En pratique, pour calculer
∫ b

a
f(x)dx, on dit qu’on fait le changement de variable x = ϕ(t), on "calcule

le dx" par la formule formelle dx = ϕ′(t)dt de telle sorte que l’expression sous l’intégrale f(x)dx
devienne f(ϕ(t))ϕ′(t) dt, on calcule ensuite les bornes α et β telles que ϕ(α) = a et ϕ(β) = b, et si α
et β existent et ϕ([α, β]) ⊂ I, on applique la formule du théorème.
Exemples :

�
∫ 1

0

√
1− x2 dx = ?√

1− x2 est définie sur [−1, 1]. On pose x = sin(t), on a dx = cos(t)dt,
√

1− x2 dx =
»

1− sin2(t) cos(t)dt =
| cos(t)| cos(t)dt, sin(0) = 0, sin(π/2) = 1, sin([0, π/2]) ⊂ [−1, 1]. Comme cos(t) ≥ 0 sur [0, π/2], la
formule du changement de variable donne∫ 1

0

√
1− x2 dx =

∫ π/2

0
cos2(t) dt =

π

4
.
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Intégration par parties

Théorème

Soit u et v des fonctions de C1 sur [a, b], alors
∫ b

a
u(t)v′(t) dt = [u(t)v(t)]ba −

∫ b

a
u′(t)v(t) dt.

Preuve : u′v + uv′ est continue sur [a, b]. C’est la dérivée de uv sur [a, b], d’où∫ b

a
u′v + uv′ =

∫ b

a
(uv)′ = [u(t)v(t)]ba

Exemples :

� I =

∫ 2

1
x lnx dx = ? On pose :


u(x) = ln(x) → u′(x) =

1

x

v′(x) = x → v(x) =
1

2
x2

I =

ï
1

2
x2ln(x)

ò2

1
−
∫ 2

1

1

2
x dx = 2 ln 2−

ñ
x2

4

ô2

1

= 2 ln 2− 1 +
1

4
= 2 ln 2− 3

4

� I =

∫ ln 2

0
xex dx = ? On pose :


u(x) = x → u′(x) = 1

v′(x) = ex → v(x) = ex

I = [xex]ln 2
0 −

∫ ln 2

0
ex dx = ln 2eln 2 − [ex]ln 2

0 = 2 ln 2− 2 + 1 = 2 ln 2− 1

Exemples de calculs de primitives de fractions rationnelles

On verra au deuxième semestre les outils qui permettent de calculer une primitive de n’importe quelle
fraction rationnelle. On se limite ici aux fractions rationnelles dont le dénominateur est de degré ≤ 2.
Si on prend une fonction u définie sur un intervalle I et qui ne s’annule pas sur I, alors une primitive

de
u′

u
est ln |u|, on a donc∫

1

x+ a
dx = ln(|x+ a|) + C sur tout intervalle où x+ a ne s’annule pas.∫

2x+ a

x2 + ax+ b
dx = ln(|x2 + ax+ b|) + C sur tout intervalle où x2 + ax+ b ne s’annule pas.

Pour calculer
∫

1

x2 + ax+ b
dx, il y a trois possibilités :

1. x2 + ax+ b a deux racines réelles distinctes x0 et x1, on cherche alors α et β tels que

1

x2 + ax+ b
=

α

x− x0
+

β

x− x1
,

et on est ramené au premier exemple.

2. x2 + ax+ b a une racine double x0, on a alors

1

x2 + ax+ b
=

1

(x− x0)2
,

et on a ∫
1

x2 + ax+ b
dx = − 1

(x− x0)
.
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3. x2 + ax+ b n’a pas de racine réelle, on le met sous forme canonique

x2 + ax+ b = (x+ α)2 + β,

on change de variable pour se ramener à calculer
∫

1

X2 + 1
dX dont une primitive est arctan(X).

Exemple

�
∫

1

x2 + 2x+ 3
dx =

∫
1

(x+ 1)2 + 2
dx. On pose x+1 =

√
2X, on a dx =

√
2dX et

1

(x+ 1)2 + 2
dx =

√
2

2X2 + 2
dX d’où

∫
1

x2 + 2x+ 3
dx =

√
2

2

∫
1

X2 + 1
dX =

√
2

2
arctan(

1√
2

(x+ 1)) + C.

�
∫

x+ 2

x2 + 2x+ 2
dx =? La dérivée du dénominateur est 2x + 2, on écrit le numérateur x + 2 =

1

2
(2x+ 2) + 1 et on remarque que la forme canonique du dénominateur est (x+ 1)2 + 1. On a donc

∫
x+ 2

x2 + 2x+ 2
dx =

1

2

∫
2x+ 2

x2 + 2x+ 2
dx+

∫
1

(x+ 1)2 + 1
dx =

1

2
ln(x2 + 2x+ 2) + arctan(x+ 1) + C.

Exemples de calculs de primitives de polynômes trigonométriques

Un polynômes trigonométriques est une combinaison linéaire de produit de puissances de cos et de sin.
f(x) = 3 cos2(x) sin(x) + 2 sin3(x) + cos2(x) est un polynôme trigonométrique. Certain terme s’intégre

directement, ici
∫

3 cos2(x) sin(x)dx = − cos3(x) + C, d’autre non. La méthode générale consiste à
linéariser le polynôme en utilisant les formules trigonométriques, ou de façon plus adaptée pour les

cas compliqués, en utilisant les nombres complexes. Ici on sait que cos2(x) =
1

2
(cos(2x) + 1), donc∫

cos2(x)dx =
1

4
sin(2x) +

1

2
x+ C, par contre pour sin3(x), on écrit

sin3(x) = (
eix − e−ix

2i
)3 = − 1

8i
(e3ix + 3eix + 3e−ix + e−3ix) = −1

4
(sin(3x) + 3 sin(x)).

On a donc
∫

sin3(x)dx =
1

12
cos(3x) +

3

4
cos(x) + C. On trouve

∫
(3 cos2(x) sin(x) + 2 sin3(x) + cos2(x))dx = − cos3(x) +

1

12
cos(3x) +

3

4
cos(x) +

1

4
sin(2x) +

1

2
x+C.

On voit que la formule n’est pas très satisfaisante, reste à linéariser cos3(x) !
On a compris que linéariser P (cos(x), sin(x)) consiste à transformer le polyôme P (cos(x), sin(x)) en
une combinaison linéaire

∑
k

ak sin(kx) + bk cos(kx).

Propriétés de parité et de périodicité

Soient a un réel et f une fonction continue sur R :

a) Si f est paire alors
∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx

b) Si f est impaire alors
∫ a

−a
f(x) dx = 0.
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c) Si f est périodique de période T alors pour tout réel a :

∫ a+T

a
f(x) dx =

∫ T

0
f(x) dx =

∫ T
2

−T
2

f(x) dx

Preuve : exercice, utiliser la relation de Chasles.
Exemple :∫ 2π

0

(
cos2(x) + 1

)
cos(x) sin(x) dx =?. On observe que la fonction à intégrer est périodique de période

2π et impaire, donc :∫ 2π

0

(
cos2(x) + 1

)
cos(x) sin(x) dx =

∫ π

−π

(
cos2(x) + 1

)
cos(x) sin(x) dx = 0.
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Chapitre 9

Systèmes linéaires, matrices

9.1 Introduction

On va s’intéresser dans ce chapitre à la résolution de systèmes d’équations dits « linéaires » dont voici
deux exemples :

(S1)


x + y + z = 1
2x + z = 2
−x − y + 3z = 0

(S2)


x1 + x2 + x3 + x4 = 1
x1 + x2 + 2x3 = 2

x2 + 3x3 + 2x4 = 0

Ce sont des systèmes d’équations dont les inconnues sont x, y et z dans le premier cas, x1, x2, x3 et
x4 dans le second. Pourquoi parle t-on de systèmes « linéaires » ? Commençons par une définition :

Définition 9.1.1. Soit n ∈ N∗. On dit qu’une application F :

®
Rn −→ R

X = (x1, x2, · · · , xn) 7−→ F (X)
est linéaire si elle vérifie

— ∀(X,Y ) ∈ Rn × Rn, F (X + Y ) = F (X) + F (Y ),
— ∀X ∈ Rn, ∀λ ∈ R, F (λX) = λF (X).

Rappelons que si X = (x1, x2, · · · , xn) ∈ Rn et Y = (y1, y2, · · · , yn) ∈ Rn alors :

X + Y = (x1 + y1, x2 + y2, · · · , xn + yn) et λX = (λx1, λ x2, · · · , λ xn).

Considérons alors le premier système, posons X = (x, y, z) ∈ R3 et

F (X) = x+ y + z, G(X) = 2x+ z, H(X) = −x− y + 3z

On vérifie très facilement que chacune des applications F, G, H : R3 → R est linéaire et ceci caractérise
précisément les systèmes linéaires. Chacune des lignes prise isolément est une équation linéaire.

L’ensemble des solutions de (S1) est l’ensemble des tripletsX = (x, y, z) qui satisfont les trois équations.
On dit que X est l’inconnue vectorielle dans R3.

Un système d’équations linéaires ne comporte pas nécessairement le même nombre d’équations que
d’inconnues : (S2) a quatre inconnues et trois équations.

A contrario, voici un exemple de système non linéaire :
®
x3 + xy + z = 1

xyz +y + z2 = 2

On rencontre des systèmes linéaires dans différents domaines des mathématiques (Algèbre Linéaire,
Calcul Scientifique ...) et dans de nombreuses applications où le nombre d’équations et d’inconnues
peut atteindre plusieurs milliers : il faut donc disposer de méthodes de résolution efficaces car, à défaut,
le temps de calcul sur ordinateur pourrait devenir prohibitif.
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Le plus simple des systèmes d’équations linéaires est l’équation ax = b : une équation, une inconnue.
Cette équation a :

— une et une seule solution si a 6= 0 : S = {b/a},
— aucune solution si a = 0 et b 6= 0 : S = ∅,
— une infinité de solution si a = b = 0 : S = R (ou C).

On se gardera donc de croire naïvement qu’un système d’équations linéaires a toujours une unique
solution.

Remarque 9.1.1. Dans (S1) et (S2) on a pris soin d’écrire les inconnues dans le même ordre et les
unes au dessus des autres. C’est une précaution indispensable pour éviter les erreurs. Ainsi le système

x+ z + 3y = 1
y − z + x = 8
z − x− y = 3

sera écrit


x + z + 3y = 1
x − z + y = 8
−x + z − y = 3

ou bien


x + 3y + z = 1
x + y − z = 8
x + y − z = −3

Deux systèmes (d’équations linéaires) sont équivalents s’ils ont le même ensemble de solutions (éven-
tuellement vide ou infini). Les deux derniers systèmes écrits, par exemple, sont équivalents (et n’ont
pas de solution : pourquoi ?).

La suite du chapitre consiste à donner une méthode de résolution explicite des systèmes d’équations
linéaires puis à donner les notions de base sur les matrices (déjà introduites en classe terminale)
pour pouvoir établir le lien entre les systèmes d’équations linéaires et les matrices. Les propriétés
des opérations sur les matrices fournissent des outils puissants pour étudier les systèmes d’équations
linéaires.

9.2 Résolution des systémes linéaires par la méthode de Gauss

Considérons le système suivant, dans lequel on a numéroté les lignes :

(T )


x + y + z = 1 L1

2y + z = −1 L2

−z = 4 L3

Ce système est d’un type particulier qu’on appelle triangulaire supérieur. Il est très simple de résoudre
un tel système et la méthode de Gauss décrit un algorithme pour transformer le système de départ
en un système triangulaire équivalent.

9.2.1 Résolution d’un système triangulaire supérieur (exemple)

On prend les équations de (T ) à partir de la dernière et « on remonte ». C’est-à-dire qu’on calcule z,
puis y, puis x par substitution des inconnues déjà calculées :

dans L3 : z = −4,

dans L2 : 2y = −1− z = −1 + 4 = 3 =⇒ y =
3

2
,

enfin, dans L1, x = 1− y − z = 1− 3

2
+ 4 =

7

2
.

Il y a donc une unique solution : S =

ß
(
7

2
,
3

2
,−4)

™
.
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9.2.2 Méthode de Gauss

Les transformations suivantes sont utilisées systématiquement dans la méthode de Gauss pour trans-
former un système en un système triangulaire :

— changer l’ordre des équations,
— changer l’ordre des inconnues (dans toutes les équations à la fois),
— multiplier une équation par un nombre non nul,
— conserver toutes les lignes sauf une et ajouter à cette dernière ligne une combinaison des autres.

Il est facile de vérifier que ces transformations sont réversibles et donc qu’elles transforment un
système en un système équivalent.

Une fois fixé l’ordre des équations et des inconnues, pour obtenir un système triangulaire à partir d’un
système de n lignes notées de haut en bas L1, · · ·Ln, le principe général de l’algorithme de Gauss est
le suivant :

— utiliser la première ligne (L1) pour éliminer la première inconnue de toutes les autres lignes,
— recommencer avec le sous-système formé des nouvelles lignes L2, · · ·Ln et avec la seconde in-

connue,

et ainsi de suite. On précise tout cela sur quelques exemples :

• Exemple 1 :
®

3x + 2y = 0 L1

x − y = 1 L2

On choisit comme inconnu (x, y). Pour éliminer x dans L2, il faut lui soustraire
1

3
L1 :

 3x + 2y = 0 L1

− 5

3
y = 1 L2 ← L2 −

1

3
L1

Le codage L2 ← L2 −
1

3
L1 signifie que la nouvelle ligne numéro 2 s’obtient, comme on vient de le

préciser, par l’opération L2 −
1

3
L1 sur les lignes du système précédent.

En pratique, on peut se contenter de noter cette étape ainsi : 3x + 2y = 0 L1

− 5

3
y = 1 L2 −

1

3
L1

La re-numérotation des nouvelles lignes par L1, L2, · · · est implicite, pour alléger.

Attention : décrire l’opération effectuée, ici L2 −
1

3
L1, en face la ligne obtenue et non pas par an-

ticipation au niveau du système de départ (erreur fréquemment relevée dans les copies d’examen).

On a obtenu le système triangulaire souhaité, on procède à la remontée :

L2 donne y =
−3

5
puis L1 donne x = −2

3
y =

2

5

S =

ß
(
2

5
,
−3

5
)

™
,

on a une unique solution.
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On peut simplifier (un tout petit peu ici) le calcul en commençant par une permutation de lignes :®
x − y = 1 L1 ← L2

3x + 2y = 0 L2 ← L1

Pour élimiter x, il suffit de soustraire à la deuxème ligne 3 fois la première :®
x − y = 1 L1

− 5y = 3 L2 − 3L1

On laisse au lecteur le soin de faire la remontée. On trouve bien sûr le même résultat que précédemment.

• Exemple 2 :


x + y + z = 3 L1

2x + y − z = 2 L2

−2x − y + 2z = −1 L3

On choisit (x, y, z) comme inconnue. On ne permute pas les lignes car le coefficient de x dans la première
ligne est 1 et les calculs seront simples.

élimination de x dans les lignes 2 et 3 :
x + y + z = 3 L1

−y − 3z = −4 L2 − 2L1

y + 4z = 5 L3 + 2L1

On ne travaille plus qu’avec les deux dernières lignes, pas de permutation nécessaire si on n’est pas
gêné par le − devant le y dans la deuxième ligne.

élimination de y dans la ligne 3 :
x + y + z = 3 L1

−y − 3z = −4 L2

z = 1 L3 + L2

Remontée :
L3 donne z = 1
L2 donne y = 4− 3z = 1
L1 donne x = 3− y − z = 1

S = { (1, 1, 1) },

• Exemple 3 :


x + 2y + z = 8 L1

2x + y + 3z = 11 L2

−x − 3y + 2z = −7 L3

élimination de x dans les lignes 2 et 3 :
x + 2y + z = 8 L1

−3y + z = −5 L2 ← L2 − 2L1

−y + 3z = 1 L3 ← L3 + L1

On peut poursuivre avec l’inconnue y de la ligne L2 ou encore de la ligne L3 (pour faciliter les calculs
en évitant les fractions) en commençant dans ce cas par permuter les lignes L2 et L3.
On peut aussi, si on n’aime ni le −3 ni le −1 devant le y permuter les deux dernières variables :

x + z + 2y = 8 L1

z − 3y = −5 L2

3z − y = 1 L3
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élimination de z dans la ligne 3 :
x + z + 2y = 8 L1

z − 3y = −5 L2

8y = 16 L3 − 3L2

Remontée :
L3 donne y = 2
L2 donne z = −5 + 3y = 1 et L1 donne x = 8− z − 2y = 3.

Attention : on remet les valeurs dans l’ordre (x, y, z) implicite choisi au départ (c’est là le danger des
permutations de variables) :

S = { (3, 2, 1) }

• Exemple 4 :


x + 2y + z = 8 L1

2x + y + 3z = 11 L2

3x + 3y + 4z = −7 L3

élimination de x dans les lignes 2 et 3 :


x + 2y + z = 8 L1

−3y + z = −5 L2 − 2L1

−3y + z = −31 L3 − 3L1

l’élimitation de y ou de z dans la dernière ligne conduit à
x + z + 2y = 8 L1

−3y + z = −5 L2

0 = −26 L3 − L2

En raison de la troisième ligne, on est dans un cas où il n’y a pas de solution :

S = ∅.

• Exemple 5 :


x + 2y + z = 8 L1

2x + y + 3z = 11 L2

3x + 3y + 4z = 19 L3

élimination de x dans les lignes 2 et 3 :


x + 2y + z = 8 L1

−3y + z = −5 L2 − 2L1

−3y + z = −5 L3 − 3L1

l’élimination de y ou de z dans la dernière ligne conduit à
x + 2y + z = 8 L1

−3y + z = −5 L2

0 = 0 L3 − L2

La dernière ligne peut être enlevée. Il reste deux équations pour trois inconnues : on dit que le système
est sous-déterminé.
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On choisit l’une des inconnues que l’on « fait passer » dans le second membre (ce choix est dicté par
la facilité des calculs ultérieurs) : ®

x + z = 8 − 2y L1

z = −5 + 3y L2

On résout le système obtenu en considérant y comme un paramètre (une donnée non explicitée) .
Les inconnues x et z sont alors exprimées en fonction de y et on obtient une infinité de solutions en
choisissant arbitrairement la valeur de y :
L1 donne x = 8− z − 2y = 13− 5y et on a finalement

S = {(13− 5y, y,−5 + 3y), y ∈ R}.

Une autre expression de l’ensemble des solutions est obtenue en choisissant z comme paramètre plutôt
que y :

L2 donne y =
1

3
(z + 5)

L1 donne x = 8− z − 2y =
14

3
− 5

3
z

S =

ß
(
14

3
− 5

3
z,

1

3
(z + 5), z), z ∈ R

™
Bien entendu ces deux descriptions correspondent au même ensemble de solutions. Cette
fois-ci le système a une infinité de solutions qui dépendent d’un paramètre arbitraire (y dans la première
description, z dans la seconde).

Remarque 9.2.1.

1. On voit qu’il ne sert à rien de réécrire les inconnues x, y ... à chaque étape, on peut n’écrire que
les coefficients sous forme de tableau et faire évoluer ce tableau à chaque opération d’élimitation
ou de permutation. Il ne faut pas oublier d’effectuer les opérations sur les seconds membres.

2. La méthode de Gauss s’appelle parfois méthode du pivot de Gauss. Dans l’algorithme, et à
chaque étape d’élimination, le pivot est le coefficient de l’inconnue dans la ligne qui va servir à
éliminer cette même inconnue dans les lignes suivantes : dans l’exemple 2 et dans l’élimination
de x dans les lignes 2 et 3, le pivot est le coefficient de x de la première ligne, c’est à dire 1,
dans l’élimitation de y dans la troisième ligne, le pivot est le coefficient −1 car la deuxième ligne
contient −x.
Pour l’implantation sur ordinateur, le choix du pivot est crucial : on choisit le plus grand coef-
ficient en valeur absolue afin de minimiser les erreurs d’arrondis et on effectue les permutations
de lignes en conséquence.

3. On verra dans les deux chapitres suivants une interprétation géométrique des systèmes linéaires
à deux ou trois inconnues.

9.3 Matrices

9.3.1 Définitions

Une matrice à coefficients réels (complexes) est un tableau rectangulaire de nombres réels (ou com-
plexes). On noteMn,p(R) l’ensemble des matrices à coefficients réels comportant n lignes et p colonnes
et M ∈Mn,p(C) l’ensemble des matrices à coefficients complexes comportant n lignes et p colonnes.

Une matrice à n lignes et p colonnes se note (ai,j)1≤i≤n, 1≤j≤p ou éventuellement (ai,j)1≤i,j≤n quand
p = n ou simplement (ai,j) s’il n’y a pas ambiguité. On dit que c’est une matrice de taille n× p.
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Dans cette écriture, ai,j désigne le nombre qui figure en ligne i (numérotation de haut en bas) et en
colonne j (de gauche à droite).

On dit que la matrice (ai,j)1≤i≤n, 1≤j≤p est :

— carrée si n = p. Les termes de la forme ai,i définissent la diagonale de la matrice. L’ensemble
des matrices carrées n×n à coefficients réels est noté simplementMn(R), plutôt queMn,n(R).

— triangulaire supérieure si elle est carrée et si tous les termes strictement sous la diagonale
sont nuls :

M =

â
× × .. ×
0 × ×... ×
0 0 ×... ×
...
0 0 ...0 ×

ì
— triangulaire inférieure si elle est carrée et si tous les coefficients au dessus de la diagonale

sont nuls.

— diagonale si elle est carrée et si tous les coefficients hors de la diagonale sont nuls :

M =

â
× 0 ... 0 0
0 × ... 0 0
.... ×
0 0 ... × 0
0 0 ... 0 ×

ì
Parmi les matrices diagonales de taille n on distingue la matrice identité de taille n, notée In,

dont tous les termes diagonaux sont égaux à 1. Par exemple I2 =

Ç
1 0
0 1

å
, I3 =

Ö
1 0 0
0 1 0
0 0 1

è
.

— nulle si tous les coefficients sont nuls. On la note 0.

— une matrice ligne, ou vecteur ligne, si elle est de taille 1× p.

— une matrice colonne, ou vecteur colonne, si elle est de taille n× 1.

Exemples :

• n = p = 2

M =

Ç
1 2
−1 0

å
∈M2,2(R) =M2(R)

• n = 2, p = 3

M =

Ñ
π

1

2
0

−1 2 −π

é
∈M2,3(R)

• n = p = 3

M =

Ö
1 i 0
−1 1 i
0 0 1

è
∈M3(C)
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• vecteur ligne de taille 1× 4 (on dit simplement de taille 4) :
Ä

1 0 −1 5
ä

• vecteur colonne de taille 4 :

á
3
3
0
1

ë
.

9.3.2 Transposée d’une matrice

Définition 9.3.1. Soit A = (ai,j) une matrice de taille n× p. La matrice transposée de A, notée tA
est la matrice (bi,j) de taille p× n telle que :

∀i ∈ J1, pK, ∀j ∈ J1, nK, bi,j = aj,i

On observera donc que la ligne i de A devient la colonne j de tA.

Exemple : A =

Ç
−1 2 3
0 1 2

å
∈M2,3(R), tA =

Ö
−1 0
2 1
3 2

è
∈M3,2(R)

9.3.3 Somme de deux matrices

Définition 9.3.2. Soient A(ai,j) et B = (bi,j) deux matrices à coefficients réels ou complexes de
même taille n×p. La somme, notée A+B de ces deux matrices est la matrice (ai,j +bi,j)1≤i≤n, 1≤j≤p.

On ajoute les termes de même position.On a immédiatement les propriétés

A+B = B +A (commutativité) et A+ 0 = A.

• Exemple 1 :

M =

Ç
1 1 1
2 0 1

å
, N =

Ç
−1 2 3
0 1 2

å
, M +N =

Ç
0 3 4
2 1 3

å
• Exemple 2 :

M =

Ö
1
2
3

è
, N =

Ö
−1
0
4

è
, M +N =

Ö
0
2
7

è
• Exemple 3 :

M =
Ä
1 2 3

ä
, N =

Ä
−2 0 −5

ä
, M +N =

Ä
−1 2 −2

ä
9.3.4 Produit d’une matrice par un scalaire

Définition 9.3.3. Soient A = (ai,j) une matrice à coefficients réels (ou complexes) de taille n × p et
λ un réel (ou un complexe). La matrice produit de A par le scalaire λ est la matrice de taille n × p
λA = (λ ai,j).

On multiplie chaque terme de la matrice A par λ. On a les propriétés suivantes, toutes très simple à
établir :
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Proposition 9.3.1. Soient A(ai,j) et B = (bi,j) deux matrices à coefficients réels ou complexes de
même taille n× p, λ et µ des scalaires. Alors :

1A = A,

0A = 0,

λ (A+B) = λA+ λB,

(λ+ µ)A = λA+ µA

• Exemple : M =

Ç
1 1 1
2 0 1

å
, λ = 2, λM =

Ç
2 2 2
4 0 2

å
9.3.5 Produit de deux matrices

La définition que l’on va donner du produit de deux matrices ne semble pas naturelle au premier abord
(on ne fait pas les produits des termes de même position). Elle sera éclairée par l’usage que l’on va en
faire et que vous en ferez en étudiant l’algèbre linéaire. Ce produit est soumis à une contrainte stricte
sur les dimensions des matrices : pour pouvoir effectuer le produit, noté AB, de deux matrices
A et B, il faut que le nombre de colonnes de A soit égal au nombre de lignes de B. On
commence par un cas particulier :

• produit d’une matrice ligne par une matrice colonne :

Définition 9.3.4. Le produit d’une matrice ligne
Ä
a1 a2 ... ap

ä
de taille p et d’une matrice colonneá

b1
b2
...
bp

ë
de taille p, dans cet ordre, est donné par :

Ä
a1 a2 ... ap

ä
.

á
b1
b2
...
bp

ë
= a1 b1 + a2 b2 + ....+ ap bp.

Il s’agit donc d’un scalaire (un réel ou un complexe), que l’on peut voir comme une matrice de taille
1× 1 (sans les parenthèses).

Exemples : Ä
1 3

ä
.

Ç
−2
4

å
= 1.(−2) + 3.4 = 10,Ä

1 −2 5
ä
.

Ö
−3
4
0

è
= 1.(−3) + (−2).4 + 5.0 = −11.

Par contre le produit
Ä
1 3

ä
.

Ö
−3
4
0

è
n’est pas défini.

• cas général :

Définition 9.3.5. Soient A = (ai,j) une matrice de taille n × p et B = (bi,j) une matrice de taille
p× q. Le produit AB de ces matrices est la matrice C = (ci,j) de taille n× q dont le terme général ci,j
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est donné par le produit de la ième ligne de A et de la jème colonne de B, c’est à dire :

∀i ∈ J1, nK, ∀j ∈ J1, qK, ci,j =
p∑

k=1

ai,k bk,j .

Deux matrices A ∈Mn,p et B ∈Mp,q donnent donc une troisième matrice C = AB ∈Mn,q

n× p · p×q −→ n× q

Exemple :

A =

Ç
2 1 1
3 1 0

å
, B =

Ö
−3 −1 1
2 0 1
1 1 1

è
, n = 2, p = q = 3 C = AB =

Ç
−3 −1 4
−7 −3 4

å
Le produit BA n’est pas défini : B ∈M3,3 et A ∈M2,3. Le nombre de colonnes de B est différent du
nombre de lignes de A.

Proposition 9.3.2. Soient A, B, C des matrices à coefficients réels ou complexes et λ ∈ R (ou C).
Dans tous les cas où les dimensions des matrices rendent possibles les opérations on a :

A(BC) = (AB)C (associativité),

A(B + C) = A.B +A.C et (A+B).C = A.C +B.C (distributivité par rapport à l’addition),

si A ∈Mn,p alors A.Idp = Idn.A = A,

(λA).B = A.(λB) = λ(A.B).

Vous pouvez démontrer toutes ces propriétés en exercice.

Attention : le produit des matrices n’est pas commutatif : même si les produits AB et BA existent
on n’a pas toujours AB = BA. C’est évident si les matrices ne sont pas carrées : si A est une matrice
n×p et B une matrice p×n, AB est une matrice n×n tandis que B.A est une matrice p×p, mais c’est
en génémal faux aussi si les matrices sont carrées. Le premier exemple qui suit illustre cette situation.

Autres exemples de produits :

A =

Ç
2 2
1 1

å
, B =

Ç
1 3
−1 −3

å
donnent AB =

Ç
0 0
0 0

å
et BA =

Ç
5 5
−5 −5

å
A =

Ç
1 2
3 −1

å
, A2 = A×A =

Ç
7 0
0 7

å
, A3 = A2 ×A =

Ç
7 14
21 −7

å
A =

Ç
0 1
0 0

å
, A2 =

Ç
0 0
0 0

å
.

I3 =

Ö
1 0 0
0 1 0
0 0 1

è
, B =

Ö
x
y
z

è
donne I3B =

Ö
x
y
z

è
= B

I3 =

Ö
1 0 0
0 1 0
0 0 1

è
, B =

Ö
a b c
d e f
g h i

è
donne I3B =

Ö
a b c
d e f
g h i

è
= B.

Produit matrice-vecteur : Il découle de ce qui précéde que le produit d’une matrice n × n par
un vecteur colonne de dimension n est un vecteur colonne de dimension n tandis que le produit d’un
vecteur ligne de dimension n par une matrice n× n est un vecteur ligne de dimension n.
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Exemple : Ö
a b c
d e f
g h i

èÖ
1
2
3

è
=

Ö
a+ 2b+ 3c
d+ 2e+ 3f
g + 2h+ 3i

è
Ä
1 2 3

äÖa b c
d e f
g h i

è
=
Ä
a+ 2d+ 3g b+ 2e+ 3h c+ 2f + 3i

ä
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9.3.6 Matrices inversibles

Définition 9.3.6. Une matrice carrée A ∈ Mn(R) est inversible, s’il existe une matrice carrée B ∈
Mn(R) telle que AB = BA = In. B s’appelle alors la matrice inverse de A et est notée B = A−1.

On a la même définition en remplaçant R par C.

On admet la proposition suivante :

Proposition 9.3.3. A ∈Mn est inversible si et seulement si ∃B ∈Mn telle que AB = In

Remarquons juste que s’il existe B ∈ Mn et C ∈ Mn telles que AB = In et CA = In alors B = C.
En effet AB = In ⇒ C(AB) = CIn = C ⇒ (CA)B = C ⇒ InB = C ⇒ B = C.

• Exemple :

A =

Ç
1 2
1 3

å
, B =

Ç
3 −2
−1 1

å
. On vérifie que AB = BA =

Ç
1 0
0 1

å
= I2, donc A est inversible et

A−1 = B =

Ç
3 −2
−1 1

å
.

Remarque 9.3.1. Toute matrice carrée n’est pas inversible. Il est d’abord nécessaire que la matrice
soit une matrice carrée, mais cela ne suffit pas. En effet, s’il existe un vecteur colonne non nul X
tel que A.X = 0, A ne peut pas être inversible, sinon on aurait A−1.(AX) = 0 et avec la propriété
d’associativité on obtient (A−1.A).X = 0 et donc InX = X = 0 : contradiction. Par exemple, la

matrice
Ç

1 −1
−1 1

å
n’est pas inversible : prendre X =

Ç
1
1

å
.

9.4 Matrices et systèmes d’équations linéaires

9.4.1 Ecriture matricielle d’un système linéaire

Tout système d’équations linéaires comportant n équations portant sur p inconnues peut s’écrire AX =
B où X est un vecteur colonne de dimension p constitué des inconnues, B est le vecteur colonne
de dimension n constitué des seconds membres et A une matrice n × p constituée des coefficients
du système. C’est notamment pour avoir cette propriété qu’on a introduit le produit de
matrice.

• Exemple 1 : (S)

®
x + 2y = 1
x − y = −1

On pose X =

Ç
x
y

å
, B =

Ç
1
−1

å
. On a alors A =

Ç
1 2
1 −1

å
, en effet AX =

Ç
x+ 2y
x− y

å
, donc

(S)⇐⇒ AX = B

• Exemple 2 : (S)


x + 2y + z = 0
2x + y − z = 1
x − z = 2

Avec X =

Ö
x
y
z

è
, B =

Ö
0
1
2

è
et A =

Ö
1 2 1
2 1 −1
1 0 −1

è
on a (S)⇐⇒ AX = B

• Exemple 3 : (S)


x + 2y = a
2x + y + z = b
−x + y = c

128



Avec X =

Ö
x
y
z

è
, B =

Ö
a
b
c

è
et A =

Ö
1 2 0
2 1 1
−1 1 0

è
on a (S)⇐⇒ AX = B.

On énonce maintenant le résultat fondamental :

Proposition 9.4.1. Un système d’équations linéaires AX = B à n équations et n inconnues admet
une et une seule solution pour toute donnée B si et seulement si A est une matrice inversible.

Notez que A est une matrice carrée n× n. La preuve utilise le résultat suivant :

Lemme 9.4.1. Si C est une matrice inversible alors

AX = B ⇔ (CA)X = CB,

La multiplication à gauche par une matrice inversible transforme donc automatiquement un système
d’équations linéaires en un système équivalent. La méthode de Gauss revient à chaque étape à cette
opération de multiplication à gauche par une matrice convenable que vous pouvez chercher.

Preuve du lemme : l’implication de la gauche vers la droite s’obtient en multipliant par C, on a
donc C(AX) = CB, l’associativité donne alors (CA)X = B. L’implication de la droite vers la gauche
s’obtient en multipliant par C−1, on obtient C−1((CA)X) = C−1(CB) et en utilisant l’associativité, on
obtient C−1(C(AX)) = (C−1.C).B = B et de nouveau l’ssociativité (C−1C)(AX) = B soit AX = B.

Preuve de la proposition 9.4.1 : Si A est inversible, on peut prendre C = A−1 dans la proposition
précédente, on obtient

AX = B ⇐⇒ X = A−1B,

ce qui démontre l’existence et l’unicité de la solution.
Réciproquement, si le système d’équations linéaires AX = B admet une solution pour toute donnée
B, alors on peut résoudre les systèmes linéaires AXi = Ei où Ei est le vecteur colonne ne comportant
que des 0 à l’exception d’ un 1 sur la ième ligne. La matrice C = (X1...Xn) dont les colonnes sont les
Xi vérifle AC = In, A est donc inversible.

9.4.2 Méthode pratique de calcul de l’inverse d’une matrice

On écrit un système de matrice A avec un second membre B quelconque. Par exemple si

A =

Ö
1 1 1
1 0 1
0 1 1

è
(voir l’exemple 2. ci-dessous) on prend B =

Ö
a
b
c

è
et on résout le système par la

méthode de Gauss (mais toute autre méthode est recevable). Si la matrice est inversible, et seulement
dans ce cas, la solution dépendra des coefficients de B et pourra s’écrire sous la forme X = M B où M
est une matrice de réels. Comme on a aussi X = A−1B et que B est quelconque on peut en déduire
que A−1 = M .
Ce dernier point se justifie ainsi : en choisissant B ne contenant que des zéros sauf à la ligne i, l’égalité
M B = A−1B donne l’égalité des ièmes colonnes deM et de A−1. En faisant varier i on obtient l’égalité
des deux matrices.

On précise la méthode sur trois exemples :
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• Exemple 1 : A =

Ç
1 1
1 −1

å
.

On prend une matrice inconnue X =

Ç
x
y

å
et une matrice second membre B =

Ç
a
b

å
On résout le système (S)

®
x + y = a
x − y = b

(S)

®
x + y = a L1

x − y = b L2
⇐⇒

®
2x = a+ b (L1 + L2)
2y = a− b (L1 − L2)

⇐⇒


x =

1

2
a +

1

2
b

y =
1

2
a − 1

2
b
⇐⇒Ç

x
y

å
=

Ö
1

2

1

2
1

2
−1

2

èÇ
a
b

å
= M

Ç
a
b

å
. Finalement on obtient A−1 = M =

Ö
1

2

1

2
1

2
−1

2

è
.

• Exemple 2 : A =

Ö
1 1 1
1 0 1
0 1 1

è
.

On prend X =

Ö
x
y
z

è
et B =

Ö
a
b
c

è
.

AX = B ⇐⇒ (S)


x + y + z = a L1

x + z = b L2

y + z = c L3

⇐⇒


x + y + z = a L1

y = a− b L1 − L2

y + z = c L3

on a un système triangulaire en permutant les deux dernières lignes et on effectue la remontée :
y = a− b
z = c− y = −a+ b+ c
x = a− y − z = a− a+ b+ a− b− c = a− c

En respectant l’ordre des variable fixé par le vecteur X :
x = a − c
y = a − b
z = −a + b + c

⇐⇒

Ö
x
y
z

è
=

Ö
1 0 −1
1 −1 0
−1 1 1

èÖ
a
b
c

è
donc A−1 =

Ö
1 0 −1
1 −1 0
−1 1 1

è
.

• Exemple 3 : A =

Ö
1 1 1
1 −1 2
2 0 3

è
.

Avec X =

Ö
x
y
z

è
et B =

Ö
a
b
c

è
on a :

AX = B ⇐⇒ (S)


x + y + z = a L1

x − y + 2z = b L2

2x + 3z = c L3

⇐⇒


x + y + z = a L1

−2y + z = b− a L2 − L1

−2y + z = c− 2a L3 − 2L1

⇐⇒


x + y + z = a L1

−2y + z = b− a L2

0 = −a− b+ c L3 − L2

On trouve que le système n’a de solution que si −a− b+ c = 0, il n’a donc pas toujours de solution :
la matrice A n’est pas inversible.
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9.5 Matrices et systèmes 2× 2

Dans le cas particulier des systèmes 2× 2 on se propose de donner un critère d’existence d’une unique
solution et, dans ce cas, de donner une formule générale de résolution. On obtient alors un critère
d’inversibilité et une formule d’inversion pour les matrices 2× 2.

Considérons le système

(S)

®
ax+ by = u L1

cx+ dy = v L2

de matrice associée A =

Ç
a b
c d

å
. On a les implications suivantes :

(S) =⇒


acx+ bcy = cu cL1

cax+ ady = av aL2

adx+ bdy = du dL1

bcx+ bdy = bv bL2

=⇒
®

(ad− bc)x = du− bv L3 − L4

(ad− bc)y = −cu+ av L2 − L1

On ne peut bien sûr poursuivre le calcul que si ad− bc 6= 0.

Définition 9.5.1. On appelle déterminant d’une matrice carrée A =

Ç
a b
c d

å
d’ordre deux le réel noté

a b
c d

ou det (A), donné par « le produit en croix » : a b
c d

= ad− bc.

Remarque 9.5.1. On obtient immédiatement que det A = det tA.

Il convient de savoir interpréter la nullité d’un déterminant (voir aussi le chapitre 10) :

Proposition 9.5.1. Soit A =

Ç
a b
c d

å
. Alors det A = 0 si et seulement si les lignes (a, b) et (c, d) sont

proportionnelles, ou encore si et seulement si les colonnes
Ç
a
c

å
et
Ç
b
d

å
sont proportionnelles.

Preuve : supposons les lignes proportionnelles. Si (a, b) = (0, 0) le déterminant est clairement nul,
sinon il existe un réel k tel que c = ka et d = kb, alors det A = ad− bc = akb− bka = 0.
Réciproquement supposons que ad− bc = 0. Si (a, b) = (0, 0) on a fini, sinon on a par exemple a 6= 0 :
on pose alors k =

c

a
de sorte que c = ka. Mais alors ad − bc = 0 =⇒ d =

c

a
b = kb et les lignes sont

proportionnelles.
Le raisonnement est analogue avec les colonnes mais on peut aussi utiliser le cas des lignes et la
remarque 9.5.1.

Revenons à la résolution du système (S) :
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Proposition 9.5.2.
— Si det A = 0 avec a, b, c, d tous nuls, le système (S) admet des solutions si et seulement si

u = v = 0 et dans ce cas l’ensemble des solutions est R2.
— Si det A = 0 mais a, b, c, d non tous nuls, le système admet des solutions si et seulement si

(a, b, u) et (c, d, v) sont proportionnels. Dans ce cas, si par exemple a 6= 0 on a (S)⇐⇒ L1 :

l’ensemble des solutions est
ß

(
u− bt
a

, t) ; t ∈ R
™
.

— Si det A 6= 0 le système admet une unique solution donnée par les formules de Cramer :

x =

u b
v d

a b
c d

, y =

a u
c v

a b
c d

(9.1)

Pour se souvenir de ces formules on notera que pour le numérateur de x, première inconnue, on
remplace la première colonne du déterminant de A par la colonne du second membre tandis que pour
le numérateur de y, deuxième inconnue, on remplace la deuxième colonne du déterminant de A par la
colonne du second membre.

Preuve : le premier cas est immédiat. Dans le second cas on a par exemple a 6= 0 et alors, comme on
l’a vu dans la preuve de la proposition 9.5.2, il existe un réel k tel que c = ka et d = kb. Si v 6= ku le
système est clairement incompatible et S = ∅, sinon (S)⇐⇒ L1 et la suite est classique : on donne à y
une valeur arbitraire t et on en déduit x. Enfin si det A 6= 0 on termine les calculs amorcés plus haut :
on obtient la seule solution possible et on vérifie qu’elle convient. Il reste à interpréter les numérateurs
comme des déterminants.

Réécrivons les formules de Cramer sous la forme suivante :
x =

1

det A
(du− bv)

y =
1

det A
(−cu+ av)

On a prouvé que
Ç
x
y

å
=

1

det A

Ç
d −b
−c a

å Ç
u
v

å
, et donc A−1 =

1

det A

Ç
d −b
−c a

å
.

En résumé :

Proposition 9.5.3. Une matrice A =

Ç
a b
c d

å
est inversible si et seulement si det A 6= 0 et dans ce

cas son inverse s’obtient par la formule :

A−1 =
1

det A

Ç
d −b
−c a

å
(9.2)

Remarque 9.5.2. On notera que la matrice en facteur de
1

det A
s’obtient à partir de A en échangeant

les termes de la diagonale (a et d) et en changeant les autres de signe.
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Chapitre 10

Géométrie élémentaire du plan

Objectifs : dans le contexte de la géométrie plane étudiée au lycée, sans construction théorique
préliminaire, donner la maîtise de quelques outils indispensables et de leurs applications : produit
scalaire, déterminant, calculs d’angles, de distances et d’aires.

10.1 Contexte général et rappels

On s’assurera que toutes les notions abordées dans cette section sont effectivement connues.

10.1.1 Contexte

La notion de plan (on dit aussi plan affine), conformément à ce qui se pratique dans l’enseignement
secondaire, est considérée ici comme une donnée, largement basée sur l’intuition et l’expérience sensible.
Les objets de base sont les points et les droites pour lesquelles on a les notions de parallélisme et
d’orthogonalité.
Le plan, noté ici P, est muni d’une distance. La notion générale de distance est celle-ci :

Définition 10.1.1. Une distance sur un ensemble E est une application d : E×E → R+ qui vérifie :
1. ∀(A,B) ∈ E2, d(A,B) = 0⇐⇒ A = B,
2. ∀(A,B) ∈ E2, d(A,B) = d(B,A) (symétrie),
3. ∀(A,B,C) ∈ E3, d(A,C) ≤ d(A,B) + d(B,C) (inégalité triangulaire).

La distance que vous connaissez, avec la notation usuelle d(A,B) = AB, vérifie bien sûr ces propriétés
mais aussi le célèbre théorème de Pythagore (et sa réciproque), qui n’en est absolument pas une
conséquence :

Les droites (AB) et (BC) sont othogonales si et seulement si AB2 +BC2 = AC2.

Le plan P muni de cette distance, appelée distance euclidienne, porte le nom de plan (affine) euclidien.

10.1.2 Vecteurs et droites du plan

Un couple (A,B) de points s’appelle un bipoint. Deux bipoints (A,B) et (C,D) sont équipollents si
ABDC est un parallélogramme (i.e. les cotés opposés sont parallèles ou AD et BC se croisent en leur
milieu). On écrit (A,B) ∼ (C,D).
L’ensemble de tous les bipoints équipollents à un bipoint (A,B) définit un objet mathématique

−−→
AB

tel que (A,B) ∼ (C,D)⇐⇒
−−→
AB =

−−→
CD. On appelle vecteur nul, et on note

−→
0 le vecteur

−→
AA où A est

un point quelconque.
Par une simple construction de parallélogramme on établit que :
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Proposition 10.1.1. Un vecteur −→u et un point O étant donnés, il existe un unique point M tel que−−→
OM = −→u .

Figure 10.1 – Bipoints et vecteurs

Cette propriété est à la base de la notion de translation et permet de définir l’addition vectorielle.
L’ensemble des vecteurs du plan P, appelé plan vectoriel, sera noté

−→
P .

Si (A,B) ∼ (C,D), alors AB = CD ce qui justifie la définition suivante :

Définition 10.1.2. On appelle norme d’un vecteur −→u =
−−→
AB le réel positif ‖ −→u ‖= AB.

Un vecteur de norme 1 est dit unitaire ou normé.

Un vecteur non nul −→u =
−−→
AB est caractérisé par :

— sa direction : la droite (AB),
— son sens : de A vers B, ce qu’exprime la donnée du couple (A,B), qui est distinct de (B,A),
— sa norme.

Définition 10.1.3. Deux vecteurs −→u et −→v non nuls sont dits colinéaires s’ils ont même direction. Le
vecteur nul est colinéaire à tous les autres. On écrit −→u //−→v .

On peut alors établir facilement le résultat suivant :

Proposition 10.1.2 (et définitions). Soient A ∈ P et −→u un vecteur non nul.
• L’ensemble des points M ∈ P tels que

−−→
AM et −→u soient colinéaires est une droite (affine).

Cette droite est notée D(A,−→u ), on dit que c’est la droite passant par A et dirigée par −→u .
−→
D désigne l’ensemble des vecteurs colinéaires à −→u , on l’appelle droite vectorielle engendrée par −→u ou
ensemble des vecteurs de la droite D. On écrit

−→
D = Vect(−→u ).

• L’ensemble des points M ∈ P tels que
−−→
AM et −→u soient colinéaires et de même sens s’appelle la

demi-droite (affine) d’origine A dirigée par −→u .

La somme de deux vecteurs est définie de façon à satisfaire la relation de Chasles
−−→
AB +

−−→
BC =

−→
AC.

Le produit d’un vecteur par un scalaire (i.e. un nombre réel) est défini en utilisant la caractérisation
ci-dessous :

Définition 10.1.4. Soient λ ∈ R et −→u un vecteur, alors λ−→u est le vecteur de même direction que −→u ,
de même sens que −→u si λ ≥ 0, de sens contraire si λ < 0 et de norme ‖ λ−→u ‖= |λ| ‖ −→u ‖.
(−1)−→u est noté −−→u .

On a alors :
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Proposition 10.1.3. Deux vecteurs −→u et −→v sont colinéaires si et seulement si l’une au moins des
propriétés suivantes est réalisée :

— ∃λ ∈ R, −→v = λ−→u
— ∃µ ∈ R, −→u = µ−→v

Si −→u 6= −→0 alors Vect(−→u ) = {−→v ∈
−→
P ; ∃λ ∈ R, −→v = λ−→u }.

Preuve : la condition suffisante (si λ ou µ existe, alors ...) est immédiate. Montrons qu’elle est
nécessaire : supposons −→u et −→v colinéaires. Si −→u =

−→
0 alors on peut écrire −→u = 0−→v (µ = 0 convient),

sinon on vérifie que −→v = ε
‖ −→v ‖
‖ −→u ‖

−→u avec ε = 1 si les vecteurs sont de même sens et ε = −1 sinon. On

peut donc prendre λ = ε
‖ −→v ‖
‖ −→u ‖

.

Notons que si −→u et −→v sont colinéaires et non nuls, les deux propriétés sont satisfaites et ceci permet
de justifier le dernier point (droite vectorielle engendrée par −→u ).

Un résultat simple mais utile :

Proposition 10.1.4. Soit −→u un vecteur non nul. Il existe exactement deux vecteurs unitaires coli-

néaires à −→u , à savoir −→u 1 =
−→u
‖ −→u ‖

, de même sens que −→u , et −→u 2 = −
−→u
‖ −→u ‖

, de sens contraire.

Figure 10.2 – Vecteurs unitaires colinéaires à un vecteur donné

Compte tenu des propriétés d’une distance et des définitions des opérations vectorielles on a :

Proposition 10.1.5. La norme vectorielle vérifie :
— ∀−→u ∈

−→
P , ‖ −→u ‖= 0⇐⇒ −→u =

−→
0 ,

— ∀(−→u ,−→v ) ∈
−→
P 2, ‖ −→u +−→v ‖≤‖ −→u ‖ + ‖ −→v ‖,

— ∀−→u ∈
−→
P , ∀λ ∈ R, ‖ λ−→u ‖= |λ| ‖ −→u ‖.

On établira également à titre d’exercice (très simple) que :

Proposition 10.1.6.

∀λ ∈ R, ∀−→u ∈
−→
P , λ−→u =

−→
0 ⇐⇒ λ = 0 ou −→u =

−→
0 .

Listons les propriétés usuelles des deux opérations précédemment définies :
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Proposition 10.1.7. Soient −→u et −→v deux vecteurs du plan, λ et µ deux réels, alors :

−→u +−→v = −→v +−→u ,

−→u + (−→v +−→w ) = (−→u +−→v ) +−→w ,
−→u +

−→
0 = −→u ,

−→u + (−−→u ) =
−→
0 ,

(λ.µ).−→u = λ.(µ.−→u ),

(λ+ µ).−→u = λ−→u + µ.−→u ,

λ.(−→u +−→v ) = λ.−→u + λ.−→v ,

1.−→u = −→u .

L’ensemble de ces propriétés font de
−→
P muni des opérations « somme » et « produit par un réel » un

espace vectoriel sur le corps R des nombres réels. La notion générale d’espace vectoriel sera étudiée
ultérieurement dans les cours d’algèbre linéaire.

Notons que la propriété d’associativité −→u + (−→v + −→w ) = (−→u + −→v ) + −→w permet de donner un sens à
l’expression −→u +−→v +−→w qui est égale, par définition, indifféremment à −→u +(−→v +−→w ) ou (−→u +−→v )+−→w .

10.1.3 Repères cartésiens, bases

Définition 10.1.5. Un repère cartésien du plan affine P est un triplet (O,
−→
i ,
−→
j ) où O est un point,

appelé origine du repère et (
−→
i ,
−→
j ) un couple de deux vecteurs non colinéaires, appelé base du plan

vectoriel
−→
P .

L’intérêt de cette notion réside dans le résultat suivant et les propriétés qui suivent. Ces propriétés
permettent de ramener des questions de géométrie à des calculs sur des couples de réels ou sur des
nombres complexes (voir la section facultative 10.6).

Proposition 10.1.8. Soit (O,
−→
i ,
−→
j ) un repère cartésien du plan affine. Alors :

(a) Pour tout point M ∈ P il existe un unique couple de réels (x, y) tel que
−−→
OM = x

−→
i + y

−→
j .

(b) Pour tout vecteur −→u ∈
−→
P il existe un unique couple de réels (x, y) tel que −→u = x

−→
i + y

−→
j .

Preuve : soit M ∈ P, il existe un unique couple de points (P,Q) avec P ∈ D(0,
−→
i ) et Q ∈ D(0,

−→
j )

tel que (O,P,M,Q) soit un parallélogramme. On a l’existence de réels x et y tels que
−−→
OP = x

−→
i

et
−−→
OQ = y

−→
j (cf. propositions 10.1.2 et 10.1.3) et, par définition de l’addition vectorielle :

−−→
OM =

−−→
OP +

−−→
OQ = x

−→
i + y

−→
j . Ceci établit l’existence pour (a) et donc aussi pour (b) en raison de la

proposition 10.1.1.

Pour établir l’unicité, on suppose qu’il existe deux couples (x, y) et (x′, y′) pour un même point M .
On en déduit

−−→
OM = x

−→
i + y

−→
j = x′

−→
i + y′

−→
j et donc, en appliquant les règles du calcul vectoriel

(x − x′)−→i = (y′ − y)
−→
j . Si x 6= x′, on multiplie par

1

x− x′
, on obtient

−→
i =

y′ − y
x− x′

−→
j . Comme les

vecteurs
−→
i et

−→
j ne sont pas colinéaires on a nécessairement aussi y = y′. La même preuve vaut pour

(b).

Définition 10.1.6. Le couple (x, y) s’appelle les coordonnées du point M dans le repère (O,
−→
i ,
−→
j ),

ou les coordonnées du vecteur −→u dans la base (
−→
i ,
−→
j ) (selon le cas).
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Notations : le repère étant choisi, on écriraM(x, y) pour exprimer que (x, y) est le couple de coordon-

nées de M dans ce repère. On écrira −→u
Ç
x
y

å
pour exprimer que (x, y) est le couple de coordonnées

de −→u dans la base correspondante.
On peut aussi noter −→u (x, y) mais on préférera la notation en colonne pour rappeler les vecteurs colonnes
du chapitre 9.
On rappelle le lien entre les opérations vectorielles précédemment définies et les coordonnées, de preuve
immédiate.

Proposition 10.1.9. Dans une base (
−→
i ,
−→
j ) fixée, soient −→u (x, y), −→v (x′, y′) deux vecteurs du plan et

λ un réel. On a alors (−→u +−→v )

Ç
x+ x′

y + y′

å
et (λ−→u )

Ç
λx
λy

å
.

Remarque 10.1.1.
— Les coordonnées dépendent évidemment du repère. On n’abordera pas dans cette partie du cours

les questions liées aux changements de repères.
— La bijection de P (ou

−→
P ) qui à un point (ou un vecteur) associe le couple (x, y) de ses coor-

données, ainsi que la manière dont se correspondent les opérations d’addition et de produit par
un réel (proposition précédente) permettent « d’identifier » cet ensemble à R2. Ceci sera précisé
dans un cours d’algèbre ultérieur avec la notion d’isomorphisme d’espaces vectoriels.

10.1.4 Quelques rappels sur les angles

Il faut distinguer angle géométrique (ou écart angulaire) et angle orienté.

Angle géométrique : étant donnés deux vecteurs −→u et −→v non nuls, on leur associe les demi-droites
∆ et ∆′ d’origine arbitraire 0 qu’ils dirigent. Ces demi-droites interceptent un arc ĀA′ sur le cercle de
centre 0 et de rayon 1 noté C(O, 1) (cf. Figure 10.3).

Définition 10.1.7. La mesure de l’angle géométrique ÷AOA′, ou écart angulaire des demi droites ∆ et
∆′, ou encore écart angulaire des vecteurs −→u et −→v est la longueur de l’arc ĀA′ correspondant au plus
court chemin de A vers A′ sur le cercle. C’est un réel de [0, π] noté (−→u ,−→v ) ou (∆,∆′).

Remarque 10.1.2. Il s’agit de la longueur du plus court chemin de A vers A′ sur le cercle C(O, 1).
Cette mesure d’un angle par une longueur explique le caractère « naturel » du radian comme unité
d’angle. Si l’unité choisie est le degré, on obtient des réels de l’intervalle [0, 180]. C’est la mesure d’angle
que fournit le rapporteur.

Angle orienté : un angle orienté de vecteurs est défini par la donnée d’un couple (−→u ,−→v ) de vecteurs
non nuls. Les vecteurs −→u et −→v (ou les demi droites ∆ et ∆′) définissent donc deux angles orientés
correspondant aux couples (−→u ,−→v ) et (−→v ,−→u ).
La mesure d’un angle orienté nécessite d’avoir défini (arbitrairement) une orientation du plan, ce que
nous identifierons ici au choix d’un sens de parcours sur les cercles, dit sens direct. Il y a un choix usuel
(voir la figure 10.3).

Définition 10.1.8. La mesure principale de l’angle orienté (−→u ,−→v ) est le réel α obtenu en affectant
l’écart angulaire de ces vecteurs du signe + si le plus court chemin de A vers A′ correspond au sens
direct, du signe − sinon.
On appelle plus généralement mesure de l’angle orienté (−→u ,−→v ) tout réel de la forme α + 2kπ avec
k ∈ Z. On écrit (÷−→u ,−→v ) = α [2π] et on lit « l’angle (÷−→u ,−→v ) a pour mesure α modulo 2π ».
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Figure 10.3 – Angles géométriques et angles orientés de vecteurs

Remarque 10.1.3.

— Deux mesures d’un même angle orienté de vecteurs diffèrent donc d’un réel de la forme 2kπ : le
trajet de A vers A′ sur le cercle C(A, 1) peut être effectué avec un nombre de tours supplémen-
taires et un sens arbitraires. Seuls comptent les points de départ et d’arrivée, dans cet ordre.
Dans la notation, le [2π] est omis s’il n’y a pas d’ambiguité.

— Si un angle orienté de vecteurs a pour mesure α [2π], alors un changement d’orientation change
cette mesure en −α [2π].

— Si (−→u ,−→v ) = α alors (÷−→u ,−→v ) = α [2π] ou (÷−→u ,−→v ) = −α [2π] et dans les deux cas on a

cosα = cos(÷−→u ,−→v ), sinα =
∣∣∣ sin(÷−→u ,−→v )

∣∣∣.
L’addition des angles orientés est définie de façon à satisfaire la relation de Chasles, on l’écrit ici avec
les mesures. Pour trois vecteurs non nuls −→u , −→v et −→w du plan :

(÷−→u ,−→v ) = (÷−→u ,−→w ) + (÷−→w ,−→v ) [2π]

On retiendra également les propriétés suivantes, que nous énonçons sans démonstration :

Proposition 10.1.10.
(÷−→u ,−→u ) = 0 [2π], (ÿ�−→u ,−−→u ) = π [2π],

(÷−→u ,−→v ) = −(÷−→v ,−→u ) [2π],

∀λ > 0, (Ÿ�(λ−→u ),−→v ) = (÷−→u ,−→v ) [2π],

∀λ < 0, (Ÿ�(λ−→u ),−→v ) = (÷−→u ,−→v ) + π [2π].
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Proposition 10.1.11 (Vecteurs orthogonaux, vecteurs colinéaires).
Soient −→u et −→v deux vecteurs non nuls du plan. Alors :

1. −→u et −→v sont orthogonaux si et seulement si (÷−→u ,−→v ) =
π

2
[π].

(On exprime ainsi que les mesures de cet angle orienté sont de la forme
π

2
+ kπ avec k ∈ Z).

2. −→u et −→v sont colinéaires si et seulement si (÷−→u ,−→v ) = 0 [π].
(On exprime ainsi que les mesures de cet angle orienté sont de la forme kπ avec k ∈ Z).

Définition 10.1.9. Une base (
−→
i ,
−→
j ) du plan vectoriel

−→
P est orthonormale si

−→
i et

−→
j sont

orthogonaux et de même norme 1. Elle est orthonormale directe si de plus (
÷−→
i ,
−→
j ) =

π

2
[2π].

Un repère cartésien (O,
−→
i ,
−→
j ) du plan P est orthonormal (resp. orthonormal direct) si la base (

−→
i ,
−→
j )

est orthonormale (resp. orthonormale directe).

On déduit du théorème de Pythagore le calcul de la norme dans une base orthonormale :

Proposition 10.1.12. Dans une base orthonormale, soit −→u
Ç
x
y

å
, on a

‖ −→u ‖=
»
x2 + y2

Nous terminons cette section par quelques propriétés usuelles en lien avec les angles orientés et les
coordonnées :

Proposition 10.1.13. Soit (
−→
i ,
−→
j ) une base directe du plan vectoriel

−→
P . Un vecteur −→u non nul

a pour coordonnées
Ç
x
y

å
données par :

x =‖ −→u ‖ cosα, y =‖ −→u ‖ sinα avec α = (
÷−→
i ,−→u ) [2π].

Preuve : il suffit de remarquer que le pointM du cercle C(0, 1) tel que
−−→
OM =

−→u
‖ −→u ‖

a des coordonnées

(cosα, sinα) par définition des fonction cos et sin.
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Figure 10.4 – Vecteurs définis par une norme et un angle orienté

Proposition 10.1.14. Soit (
−→
i ,
−→
j ) une base directe du plan vectoriel

−→
P et soit −→u

Ç
a
b

å
un vecteur

non nul. Il existe exactement deux vecteurs orthogonaux à −→u et de même norme que −→u :

1. le vecteur −→u 1

Ç
−b
a

å
qui est directement orthogonal à −→u , i.e. (÷−→u ,−→u1) = +

π

2
[2π],

2. le vecteur −→u 2

Ç
b
−a

å
tel que (÷−→u ,−→u2) = −π

2
[2π].

Preuve : les vecteurs cherchés sont les vecteurs −→v qui sont tels que ‖ −→v ‖=‖ −→u ‖ et

(÷−→u ,−→v ) = ±π
2

[2π]. Posons α = (
÷−→
i ,−→u ) [2π], de sorte que a =‖ −→u ‖ cosα et b =‖ −→u ‖ sinα

(proposition10.1.13). Grâce à la relation de Chasles (
÷−→
i ,−→v ) = (

÷−→
i ,−→u ) + (÷−→u ,−→v ) on obtient donc les

deux vecteurs −→v = −→u 1 et −→v = −→u 2 tels que :

−→u 1

Ç
‖ −→u ‖ cos(α+ π/2) = −b
‖ −→u ‖ sin(α+ π/2) = a

å
et −→u 2

Ç
‖ −→u ‖ cos(α− π/2) = b
‖ −→u ‖ sin(α− π/2) = −a

å

Figure 10.5 – Vecteurs orthogonaux à un vecteur donné et de même norme
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10.2 Produit scalaire et déterminant

Ce sont des opérations qui associent à tout couple de vecteurs du plan un scalaire. Ce sont des outils
essentiels en géométrie comme on le verra dans toute la suite du chapitre : parallélisme, orthogonalité,
distances et aires ...

10.2.1 Définitions du produit scalaire et du déterminant

Définition 10.2.1. Le produit scalaire euclidien est une application
−→
P ×

−→
P → R qui associe à un

couple (−→u ,−→v ) de vecteurs du plan un réel noté −→u · −→v tel que :

−→u · −→v =

{
0 si −→u =

−→
0 ou −→v =

−→
0 ,

‖ −→u ‖ ‖ −→v ‖ cos(÷−→u ,−→v ) sinon.

On a immédiatement :

Proposition 10.2.1 (Inégalité de Cauchy-Schwarz).

∀(−→u ,−→v ) ∈
−→
P ×

−→
P , |−→u · −→v | ≤‖ −→u ‖ ‖ −→v ‖

et l’égalité a lieu si et seulement si −→u et −→v sont colinéaires.

Définition 10.2.2. Le déterminant dans le plan orienté est une application
−→
P ×

−→
P → R qui associe

à un couple (−→u ,−→v ) de vecteurs du plan un réel noté det (−→u ,−→v ) tel que :

det (−→u ,−→v ) =

{
0 si −→u =

−→
0 ou −→v =

−→
0 ,

‖ −→u ‖ ‖ −→v ‖ sin(÷−→u ,−→v ) sinon.

Remarque 10.2.1.
— Ces définitions mettent à part les cas où l’un des vecteurs au moins est nul car alors l’angle

(÷−→u ,−→v ) n’est pas défini.
— La définition du produit scalaire ne suppose pas d’orientation du plan car la fonction cosinus

est paire. Par contre un changement d’orientation change le signe du déterminant car
la fonction sinus est impaire (cf. la remarque 10.1.3).

— Le cas particulier −→u = −→v est intéressant car (÷−→u ,−→v ) = 0 [2π] et ainsi :

−→u · −→u =‖ −→u ‖2 et det (−→u ,−→u ) = 0.

Le produit scalaire −→u · −→u est aussi appelé carré scalaire de −→u et noté −→u 2 :

−→u 2 =‖ −→u ‖2

— Comme (÷−→v ,−→u ) = −(÷−→u ,−→v ) [2π], on a :

−→u · −→v = −→v · −→u et det (−→v ,−→u ) = −det (−→u ,−→v ).

On parlera donc de produit scalaire de deux vecteurs (sans préciser l’ordre) mais toujours du
déterminant d’un couple de vecteurs.
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10.2.2 Premières applications en géométrie

Une conséquence simple des définitions :

Proposition 10.2.2. Soient −→u et −→v deux vecteurs du plan. Alors :
— −→u et −→v sont orthogonaux si et seulement si −→u · −→v = 0,
— −→u et −→v sont colinéaires si et seulement si det (−→u ,−→v ) = 0

Preuve : il suffit d’utiliser la proposition 10.1.11 et les lignes trigonométriques usuelles.

Proposition 10.2.3. Soient A, B et C trois points du plan. L’aire du triangle ABC est donnée
par :

A(ABC) =
1

2

∣∣∣det (
−−→
AB,

−→
AC)

∣∣∣
Preuve : si les vecteurs

−−→
AB et

−→
AC sont colinéaires, c’est à dire si le triangle ABC est applati, le

résultat est immédiat car les deux membres sont nuls. Sinon, soient H le pied de la hauteur issue de

C et α la mesure de l’angle géométrique ÷BAC : on a A(ABC) =
1

2
AB × CH, or CH = AC sinα et

sinα =
∣∣∣ sin(

ÿ�−−→
AB,

−→
AC)

∣∣∣ (cf. la remarque 10.1.3) d’où le résultat.

Figure 10.6 – Déterminant et aire d’un triangle

10.2.3 Expressions dans un repère orthonormal direct

Les bases orthonormales sont adaptées au calcul du produit scalaire, du déterminant et aux applications
correspondantes en raison des deux propositions suivantes :

Proposition 10.2.4. Dans toute base orthonormale (
−→
i ,
−→
j ) du plan vectoriel, le produit scalaire de

deux vecteurs −→u
Ç
x
y

å
et −→v

Ç
x′

y′

å
est donné par

−→u · −→v = xx′ + yy′
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Preuve : posons (
÷−→
i ,−→u ) = α [2π] et (

÷−→
i ,−→v ) = β [2π]. D’après la proposition 10.1.13 on a :

xx′ + yy′ = (‖ −→u ‖ cosα)(‖ −→v ‖ cosβ) + (‖ −→u ‖ sinα)(‖ −→v ‖ sinβ)

= ‖ −→u ‖ ‖ −→v ‖ (cosα cosβ + sinα sinβ)

= ‖ −→u ‖ ‖ −→v ‖ cos(β − α)

= ‖ −→u ‖ ‖ −→v ‖ cos(÷−→u ,−→v ),

en effet, d’après la relation de Chasles : (÷−→u ,−→v ) = (
÷−→
i ,−→v )− (

÷−→
i ,−→u ) [2π].

Enfin on rappelle que cos(÷−→u ,−→v ) ne dépend pas de l’orientation car la fonction cosinus est paire.

Remarque 10.2.2. Si on pose A =

Ç
x
y

å
et A′ =

Ç
x′

y′

å
, on a également −→u · −→v = tAA′ =Ä

x y
äÇx′

y′

å
et ‖ −→u ‖2= tAA.

Proposition 10.2.5. Dans toute base orthonormale directe (
−→
i ,
−→
j ) du plan vectoriel, le détermi-

nant de deux vecteurs −→u
Ç
x
y

å
et −→v

Ç
x′

y′

å
est donné par

det (−→u ,−→v ) = xy′ − yx′

Preuve : la méthode est la même. On obtient ici :

xy′ − yx′ =‖ −→u ‖ ‖ −→v ‖ (cosα sinβ − sinα cosβ) =‖ −→u ‖ ‖ −→v ‖ sin(b− α) =‖ −→u ‖ ‖ −→v ‖ sin(÷−→u ,−→v )

et le signe du résultat dépend de l’orientation.

Les deux expressions ont une certaine similitude qui est précisée dans le résultat suivant, de preuve
immédiate :

Proposition 10.2.6. Soient −→u
Ç
x
y

å
et −→v

Ç
x′

y′

å
dans une base orthonormale directe du plan vectoriel

et soit −→v ′
Ç
y′

−x′
å

le vecteur de même norme que −→v tel que (÷−→v ,−→v ′) = −π
2

[2π], alors

det (−→u ,−→v ) = −→u · −→v ′

On retiendra également les relations très simples qui permettent de trouver les coordonnées dans une
base orthonormale à l’aide du produit scalaire :

Proposition 10.2.7. Soit (
−→
i ,
−→
j ) une base orthonormale du plan vectoriel. Les coordonnées

Ç
x
y

å
d’un vecteur −→u sont données par :

x = −→u · −→i , y = −→u · −→j

Les colonnes des coordonnées de deux vecteurs définissent une matrice de M2(R). On pose alors la
définition suivante :

143



Définition 10.2.3. On appelle déterminant d’une matrice carrée M =

Ç
x x′

y y′

å
d’ordre deux le réel

noté x x′

y y′
ou det (M), donné par : x x′

y y′
= xy′ − yx′.

Remarque 10.2.3. La notion de déterminant n’est pas réservée aux base othonormales directes. Si

B = (
−→
i ,
−→
j ) est une base quelconque de

−→
P et si dans cette base on considère −→u

Ç
x
y

å
et −→v

Ç
x′

y′

å
alors

on définit le déterminant du couple (−→u ,−→v ) dans cette base par det B(−→u ,−→v ) =
x x′

y y′
= xy′ − yx′.

Cette quantité dépend de la base (nous n’irons pas plus loin dans ce sens) par contre, on vient de le
voir, elle est la même dans toute base othonormale directe. On a tout de même le résultat suivant :

Proposition 10.2.8. Soit B = (
−→
i ,
−→
j ) une base quelconque de

−→
P . Deux vecteurs −→u

Ç
x
y

å
et −→v

Ç
x′

y′

å
(dans cette base) sont colinéaires si et seulement si det B(−→u ,−→v ) = 0.
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Preuve : si les vecteurs sont colinéaires, on a par exemple −→v = λ−→u pour un certain réel λ et donc
x′ = λx, y′ = λ y d’où immédiatement la relation xy′ − yx′ = 0.
Réciproquement supposons que xy′ − yx′ = 0. Si −→u =

−→
0 les vecteurs sont colinéaires, sinon on a par

exemple x 6= 0 : on pose alors λ =
x′

x
de sorte que x′ = λx. Mais alors xy′−yx′ = 0 =⇒ y′ =

x′

x
y = λ y

d’où −→v = λ−→u : les vecteurs sont colinéaires.

10.2.4 Propriétés du produit scalaire et du déterminant

En utilisant les expressions du produit scalaire et du déterminant en base orthonormale on vérifie
facilement les proopriétés suivantes :

Proposition 10.2.9. Soient −→u , −→v et −→w des vecteurs du plan et (α, β) des réels. Alors :

— symétrie du produit scalaire :
−→v · −→u = −→u · −→v

— antisymétrie du déterminant :

det (−→v ,−→u ) = −det (−→u ,−→v )

— propriétés de bilinéarité :
−→u · (−→v +−→w ) = −→u · −→v +−→u · −→w ,

(−→u +−→v ) · −→w = −→u · −→w +−→v · −→w ,

(α−→u ) · −→v = α (−→u · −→v ),

−→u · (β−→v ) = β (−→u · −→v ),

Remarque 10.2.4. Les propriétés de bilinéarité sont aussi valable pour le déterminant :

det (−→u , (−→v +−→w )) = det (−→u ,−→v ) + det (−→u ,−→w ),

det ((−→u +−→v ),−→w )) = det (−→u ,−→w ) + det (−→v ,−→w ),

det (α−→u ,−→v ) = α det (−→u ,−→v ),

det (−→u , β−→v ) = β det (−→u ,−→v ).

On déduit de la proposition précédente les identités remarquables à mémoriser :

Proposition 10.2.10.

(−→u +−→v ) · (−→u −−→v ) = ‖ −→u ‖2 − ‖ −→v ‖2, (10.1)
(10.2)

‖ −→u +−→v ‖2 = ‖ −→u ‖2 +2−→u · −→v + ‖ −→v ‖2, (10.3)
(10.4)

‖ −→u −−→v ‖2 = ‖ −→u ‖2 −2−→u · −→v + ‖ −→v ‖2 . (10.5)
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Une application géométrique : l’identité du parallélogramme

‖ −→u +−→v ‖2 + ‖ −→u −−→v ‖2= 2 (‖ −→u ‖2 + ‖ −→v ‖2)

Preuve : il suffit d’ajouter les égalités (10.3) et (10.5).

Figure 10.7 – Identité du parallélogramme

Le produit scalaire peut s’exprimer de deux façons en fonction de la norme seule :

Proposition 10.2.11.

1. −→u · −→v =
1

2
(‖ −→u +−→v ‖2 − ‖ −→u ‖2 − ‖ −→v ‖2),

2. −→u · −→v =
1

4
(‖ −→u +−→v ‖2 − ‖ −→u −−→v ‖2).

Preuve : la première expression est une simple ré-écriture de l’égalité (10.3). La seconde s’obtient en
soustrayant (10.3) et (10.5) membre à membre.

10.2.5 Projeté orthogonal d’un vecteur sur un axe

Soit (
−→
i ,
−→
j ) une base orthonormale du plan vectoriel. D’après la proposition 10.2.7 on a , pour tout

vecteur −→u ∈
−→
P :

−→u = (−→u · −→i )
−→
i + (−→u · −→j )

−→
j

Le vecteur p(−→u ) = x
−→
i = (−→u ·−→i )

−→
i est le projeté orthogonal de −→u sur la droite vectorielle Vect(

−→
i )

engendrée par
−→
i .

Le vecteur q(−→u ) = y
−→
j = (−→u ·−→j )

−→
j est le projeté orthogonal de −→u sur la droite vectorielle Vect(

−→
j )

engendrée par
−→
j .
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Considérons maintenant un vecteur non nul −→v . Le vecteur −→v 1 =
−→v
‖ −→v ‖

est unitaire et si on note −→v 2

l’un des deux vecteurs unitaires orthogonaux à −→v 1 alors (−→v 1,
−→v 2) est une base orthonormale de

−→
P et le

vecteur p(−→u ) = (−→u ·−→v 1)−→v1 est le projeté orthogonal de −→u sur la droite vectorielle Vect(−→v ) = Vect(−→v 1)
engendrée par −→v . En remplaçant −→v 1 par son expression on obtient donc :

Proposition 10.2.12. Soit −→v un vecteur non nul du plan. Le projeté orthogonal d’un vecteur
−→u ∈

−→
P sur la droite vectorielle engendrée par −→v et donné par :

p(−→u ) =
−→u · −→v
‖ −→v ‖2

−→v

Figure 10.8 – Projection vectorielle orthogonale

On a la propriété suivante, très importante en pratique :

Proposition 10.2.13. Soient −→u et −→v deux vecteurs du plan, avec −→v 6= −→0 . Soit p(−→u ) le projeté
orthogonal de −→u ) vectorielle sur la droite vectorielle engendrée par −→v , alors :

−→u · −→v = p(−→u ) · −→v

On peut également projeter −→u lorsqu’il est écrit sous la forme −→u =
−−→
AB et obtenir le résultat sous

forme d’un vecteur
−−→
A′B′ sur une droite particulière d = D(O,−→v ) : c’est ce qu’on fait obligatoirement

à partir du moment où on représente cette projection sur une figure (on dessine des droites affines et
non pas des droites vectorielles). Il faut alors projeter orthogonalement sur d les points A et B et on
obtient (voir figure 10.9) :

p(−→u ) =
−−→
A′B′ =

−−→
AB · −→v
‖ −→v ‖2

−→v
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On dit que p(−→u ) =
−−→
A′B′ est le projeté orthogonal de −→u =

−−→
AB sur l’axe d. On a en outre :

−−→
AB · −→v =

−−→
A′B′ · −→v

Figure 10.9 – Projeté orthogonal sur un axe d’un vecteur défini par un bipoint

10.2.6 Calcul d’une mesure de l’angle orienté de deux vecteurs

On suppose connues les coordonnées des vecteurs −→u et −→v dans un repère orthonormal. On calcule
successivement les quatres quantités ‖ −→u ‖, ‖ −→v ‖, −→u · −→v , det (−→u ,−→v ), et on applique la formule

cos(÷−→u ,−→v ) =
−→u · −→v

‖ −→u ‖‖ −→v ‖
,

la calculatrice (ou la connaissance des lignes trigonométriques usuelles) donne alors une valeur α ∈ [0, π]

telle que cos(α) =
−→u · −→v

‖ −→u ‖‖ −→v ‖
. On sait qu’alors (÷−→u ,−→v ) = α [2π] ou (÷−→u ,−→v ) = −α [2π].

On conclut en utilisant le fait que le signe de sin(÷−→u ,−→v ) est celui de det (−→u ,−→v ).

On peut aussi calculer l’unique réel α ∈ [−π
2
,
π

2
] tel que

sinα =
det (−→u ,−→v )

‖ −→u ‖‖ −→v ‖
.

On sait qu’alors (÷−→u ,−→v ) = α [2π] ou (÷−→u ,−→v ) = π − α [2π].
On conclut cette fois-ci en utilisant le fait que le signe de cos(÷−→u ,−→v ) est celui de −→u · −→v .

Exemple : −→u
Ç

1
2

å
, −→v

Ç
3
5

å
. On a ‖ −→u ‖=

√
5, ‖ −→v ‖=

√
34, −→u · −→v = 13, det (−→u ,−→v ) = −1 et donc

cos(÷−→u ,−→v ) =
13√
5
√

34
' 0.997. La calculette donne un angle α de 0, 077 radians ou 4, 4 degrés. Comme

det (−→u ,−→v ) < 0, on sait que le sinus de l’angle cherché est négatif, la valeur de (÷−→u ,−→v ) est donc de
−0, 077 radians à 10−3 près (ou −4, 4 degrés).
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10.3 Droites

On étudie ici les droites du plan à l’aide de représentations utilisant les coordonnées dans un repère
cartésien (O,

−→
i ,
−→
j ) qu’on supposera implicitement orthonormal ou orthonormal direct chaque fois que

nécessaire.

10.3.1 Représentations paramétriques et équations cartésiennes d’une droite

La droite D(A,−→u ) passant par un point A de vecteur directeur −→u est par définition l’ensemble des
points M du plan tels que

−−→
AM//−→u :

D(A,−→u ) = {M ∈ P ; ∃α ∈ R,
−−→
AM = α−→u }.

Si on se donne A(xA, yA) et −→u
Ç
xu
yu

å
, on a donc

M(x, y) ∈ D ⇔ ∃α ∈ R
®
x = αxu + xA
y = α yu + yA

Définition 10.3.1. ®
x = xA + αxu
y = yA + α yu

, α ∈ R

s’appelle une représentation paramétrique de la droite D(A,−→u ). α s’appelle le paramètre.

Attention : il est indispensable de préciser dans quel ensemble varie le paramètre.
Si on omet « α ∈ R », la représentation est incomplète.
Si on remplace « α ∈ R » par « α ∈ [a, b] », par exemple, on obtient un segment etc...

Exemple : soit D la droite passant par le point A(1, 2) de vecteur directeur −→u = (1,−1). On obtient®
x = 1 + α
y = 2− α , α ∈ R.

Une autre façon d’écrire que
−−→
AM//−→u est d’utiliser le déterminant :

M ∈ D ⇔ det (
−−→
AM,−→u ) = 0⇔ x− xA xu

y − yA yu
= 0

On trouve
M(x, y) ∈ D ⇔ yu(x− xA)− xu(y − yA) = 0.

Cette dernière expression s’appelle une équation cartésienne de la droite D. Après développement,
elle est de la forme ax+ by + c = 0.

Exemple 1 : une équation cartésienne de la D droite passant par le point A(1, 2) de vecteur directeur
−→u = (1,−1) s’obtient en écrivant : x− 1 1

y − 2 −1
= −(x − 1) − (y − 2) = 0. Elle est donc après

simplification
x+ y − 3 = 0.

Proposition 10.3.1. Soit (a, b, c) ∈ R3 et soit E = {M(x, y) ∈ P ; ax+ by + c = 0}. Alors :
— si a = b = c = 0, on a E = P,
— si a = b = 0 et c 6= 0, on a E = ∅,

— si (a, b) 6= (0, 0) alors E est une droite de vecteur directeur −→u
Ç
−b
a

å
.
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Preuve : les deux premiers cas sont immédiats. Supposons donc (a, b) 6= (0, 0) : on a par exemple
a 6= 0 (l’autre cas se traite de manière identique). On trouve alors facilement un élément de E, à savoir
par exemple A(xA = −c/a, yA = 0). Comme axA + byA + c = 0 on a :

M(x, y) ∈ E ⇐⇒ ax+ by+ c = axA + byA + c⇐⇒ a (x− xA) + b (y− yA) = 0⇐⇒ x− xA −b
y − yA a

= 0

En introduisant le vecteur −→u
Ç
−b
a

å
on a donc : M(x, y) ∈ E ⇐⇒

−−→
AM//−→u , d’où le résultat.

Remarque 10.3.1. x − xA et y − yA sont les coordonnées du vecteur
−−→
AM , or ce vecteur parcourt

Vect−→u quand M parourt E. On en déduit que la droite vectorielle engendrée par −→u
Ç
−b
a

å
a pour

équation ax+ by = 0.

Définition 10.3.2. On appelle vecteur normal à une droite tout vecteur orthogonal à un vecteur
directeur de cette droite.

Attention : il ne s’agit pas nécessairement d’un vecteur unitaire (ou vecteur normé). Prendre garde
à la confusion.

Le vecteur −→n
Ç
a
b

å
vérifie −→n · −→u = 0, on a donc :

Corollaire 10.3.1. Soit (a, b, c) ∈ R3 avec (a, b) 6= (0, 0).

La droite d’équation cartésienne ax+by+c = 0 en repère orthonormal a pour vecteur normal −→n
Ç
a
b

å
.

On a vu que l’équation ax+ by + c = 0 d’une droite peut s’écrire a (x− xA) + b (y − yA) = 0 où A est
un point fixé de la droite. Ceci s’écrit aussi −→n ·

−−→
AM = 0. Inversement, cette relation permet d’obtenir

une équation cartésienne de la droite passant par A et de vecteur normal −→n .

Exemple 2 : quel est l’ensemble des points M(x, y) tels que −2y = 1 + 3x ?

Réponse : l’équation −2y = 1 + 3x s’écrit ax + by + c = 0 avec a = 3, b = 2, c = 1. Il s’agit donc

d’une droite dont un vecteur directeur est −→u
Ç
−2
3

å
. Un vecteur normal est −→n

Ç
3
2

å
et elle passe par le

point A(0,−1/2).

Exemple 3 : Donner l’équation cartésienne de la droite passant par A(1, 3) et de vecteur normal
−→n
Ç
−1
2

å
.

Réponse : on écrit −→n ·
−−→
AM = 0, soit −(x− 1) + 2(y − 3) = 0, on trouve −x+ 2y − 7 = 0.

Autre méthode : la droite admet une équation cartésienne de la forme −x+ 2y+ c = 0. Elle passe par
A, donc −1 + 2.3 + c = 0 ce qui donne c = −7, l’équation cherchée est −x+ 2y − 7 = 0.

L’équation cartésienne d’une droite n’est pas unique : il est immédiat, par exemple, que x+ y + 1 = 0
et 2x+ 2y + 2 = 0 sont les équations d’une même droite. Précisons ce point :

Proposition 10.3.2. Soient (a, b, c) ∈ R3 et (a′, b′, c′) ∈ R3, avec (a, b) 6= (0, 0) et (a′, b′) 6= (0, 0).
Les équations cartésiennes ax+ by+ c = 0 et a′x+ b′y+ c′ = 0 sont les équations d’une même droite
si et seulement si (a, b, c) et (a′, b′, c′) sont proportionnels.
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Preuve : il est clair que si les coefficients sont proportionnels, les équations sont équivalentes, il s’agit
donc de la même droite. Réciproquement, si les deux équations décrivent la même droite D les vecteurs
−→u (−b, a) et

−→
u′ (−b′, a′) sont tous deux directeurs de D, ils sont donc colinéaires et il existe λ 6= 0 tel

que −→u = λ
−→
u′ on en déduit a = λa′, b = λb′. Soit M(x, y) un point quelconque de D, il vérifie les deux

équations, on a donc c = −(ax+ by) et c′ = −(a′x+ b′y), on obtient c = λc′.

10.3.2 Intersection de droites

Soient D1 et D2 deux droites du plan, on sait qu’en général D1∩D2 est un ensemble réduit à un point
mais qu’il est possible que D1 ∩ D2 soit vide, c’est la définition de droites strictement parallèles (au
moins dans le plan), ou que D1 ∩D2 = D1 = D2, les droites sont alors confondues. Vérifions tout cela
par le calcul. On suppose donné un repère et on introduit les équations cartésiennes :

D1 = {M(x, y) ∈ P ; ax+ by + e = 0},

D2 = {M(x, y) ∈ P ; cx+ dy + f = 0},
On a alors

D1 ∩D2 = {M(x, y) ∈ P ; ax+ by + e = 0 et cx+ dy + f = 0},
C’est donc l’ensemble des points dont les coordonnées (x, y) sont solution du système :

(S)

®
ax+ by = −e
cx+ dy = −f

Si la matrice
Ç
a b
c d

å
de ce système est inversible, c’est à dire si det A 6= 0, il y a unicité de la solution,

sinon soit il n’y a pas de solution, soit il y a une infinité de solutions (cf chapitre 9). Plus précisément :

• Si det A = 0 : ou bien (a, b, e) et (b, d, f) sont proportionnels et les droites sont confondues, ou bien
ils ne le sont pas et l’intersection est vide (les droites sont strictement parallèles).

Observons d’ailleurs que det A =
−b −d
a c

est le déterminant des vecteurs directeurs de D1 et D2.

L’égalité det A = 0 signifie donc que les vecteurs directeurs sont colinéaires.
• Si det A 6= 0, la solution est unique et donnée par les formules de Cramer (9.1) :

x =

−e b
−f d

a b
c d

, y =

a −e
c −f
a b
c d

Exemple : trouver l’intersection des droites d’équations 2x+ y + 3 = 0 et 3x− y + 1 = 0.

Réponse : le déterminant 2 1
3 −1

= −2 − 3 = −5 est non nul, il existe donc un unique point

d’intersection dont les coordonnées sont

x =

−3 1
−1 −1

−5
= −4

5
, y =

2 −3
3 −1

−5
= −1

5

Exercice type : on donne trois points du plan par leurs coordonnées. Vous devez savoir répondre aux
questions suivantes : sont-ils alignés ? Déterminent-ils un triangle rectangle ? Quelle est l’aire du triangle
qu’ils constituent ? Quelles sont les équations cartésiennes des droites passant par ces points ? Quelles
sont les équations cartésiennes des hauteurs du triangle qu’ils constituent ? Et, avec évenuellement
l’aide d’une calculette, quelles sont les mesures des angles de ce triangle ?
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10.3.3 Angles de droites

Une idée naturelle pour définir l’angle orienté d’un couple (D,D′) de droites est d’utiliser un vecteur
directeur de chacune d’elles, −→u ∈

−→
P pour D, −→v ∈

−→
P pour D′ et de considérer l’angle (÷−→u ,−→v ).

La difficulté est que cet angle ne devrait pas dépendre du choix de ces vecteurs directeurs. Or, à une
modification des normes près, on a quatre choix possibles : (÷−→u ,−→v ), (ÿ�−−→u ,−→v ), (ÿ�−→u ,−−→v ) et (⁄�−−→u ,−−→v ).
La relation de Chasles implique par exemple

(÷−→u ,−→v ) = (ÿ�−→u ,−−→u ) + (ÿ�−−→u ,−→v ) = π + (ÿ�−−→u ,−→v ),

et on vérifierait ainsi que les mesures de ces quatre angles diffèrent de kπ, avec k entier. Ceci amène
aux définitions suivante :

Définition 10.3.3. Soient
−→
D et

−→
D ′ deux droites vectorielles engendrées respectivement par −→u et

−→v . Une mesure de l’angle orienté (
÷−→
D,
−→
D ′) est donnée par (÷−→u ,−→v ) [π] et ne dépend pas du choix des

vecteurs directeurs.
Soient D et D′ deux droites affines dirigées respectivement par −→u et −→u ′. Une mesure de l’angle orienté
(÷D,D′) est donnée par (÷−→u ,−→v ) [π].
Il existe un unique réel α ∈ [0, π] tel que (÷D,D′) = α [π] : on l’appelle la mesure principale de l’angle
du couple de droites (vectorielles ou affines).

On a alors immédiatement :

Proposition 10.3.3. Soient D et D′ deux droites du plan, alors :

D//D′ ⇐⇒ (÷D,D′) = 0 [π] et D⊥D′ ⇐⇒ (÷D,D′) =
π

2
[π]

Figure 10.10 – Angle orienté d’un couple de droites
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En appliquant les résultat du chapitre 4 sur les angles (proposition 4.3.4) on obtient :

Proposition 10.3.4. Soient quatre points A(zA), B(zB), C(zC), D(zD) deux à deux distincts et les
droites D = (AB), D′ = (CD). Alors :

(÷D,D′) = arg
zD − zC

zB − zA
[π]

10.3.4 Distance d’un point à une droite

La distance d’un point A à une droite D, notée d(A,D), est définie comme la plus courte distance
entre A et un point M de D. Le théorème de Pythagore établit qu’on l’obtient de façon unique en
prenant M = H où H est le projeté orthogonal de A sur D.
On distinguera les cas où la droite est donnée par une équation cartésienne et celui où elle est définie
par un point et un vecteur directeur.

Proposition 10.3.5. Soit D une droite du plan et A(xA, yA) un point.
— si la droite est définie par une équation cartésienne ax+ by + c = 0, alors la distance de A à

la droite D vérifie :

d(A,D) =
|axA + byA + c|√

a2 + b2

— si la droite est définie par un point B et un vecteur directeur −→u , alors la distance de A à la
droite D vérifie :

d(A,D) =
|det (

−−→
AB,−→u )|
‖ −→u ‖

Preuve : on doit donc calculer ‖
−−→
AH ‖ où H est le point tel que H ∈ D et

−−→
AH ⊥ D. Si une équation

cartésienne de D est ax+by = c, on a vu qu’un vecteur orthogonal à D est −→n (a, b), on a donc
−−→
AH//−→n

et :

|
−−→
AH · −→n | =‖

−−→
AH ‖‖ −→n ‖= d(A,D)

√
a2 + b2

donc :

d(A,D) =
|
−−→
AH · −→n |√
a2 + b2

D’autre part, si B(xB, yB) est un point quelconque de D, le projeté orthogonal de
−−→
AB sur la droite

(AH), qui est dirigée par −→n , est
−−→
AH, donc :

−−→
AH · −→n =

−−→
AB · −→n = a(xB − xA) + b(yB − yA) = −axA − byA − c,

en effet B ∈ D =⇒ axB + byB = −c. On a donc finalement d(A,D) =‖
−−→
AH ‖= |axA + byA + c|√

a2 + b2
.

Si la droite est définie par un point B et un vecteur directeur −→u , on considère le vecteur −→n de même
norme que −→u et tel que (÷−→u ,−→n ) = −π

2
[2π]. C’est un vecteur normal à D et on a

−−→
AB ·−→n = det (

−−→
AB,−→u )

(cf. proposition 10.2.6), ce qui donne la seconde formule.
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Figure 10.11 – Distance d’un point à une droite

Exemple : soit D la droite d’équation 3x− 4y − 7 = 0 et A(−2,−1), on a

d(A,D) =
| − 2.3 + 4− 7|√

25
=

9

5
.

En prenant le point B(1,−1), qui est sur D, et −→u
Ç

4
3

å
, qui dirige D, on vérifiera en exercice que l’on

a bien aussi d(A,D) =
|det (

−−→
AB,−→u )|
‖ −→u ‖

.

10.4 Cercles

Par définition, le cercle C de centre A et de rayon R est

C = {M ∈ P ; AM = r}.

Une équation cartésienne de C dans un repère orthonormal est donc, si A(xA, yA) et M(x, y),

(x− xA)2 + (y − yA)2 = R2,

ce qui équivaut à AM2 = R2, soit, en développant :

x2 + y2 − 2xA x− 2yA y + x2
A + y2

A −R2 = 0

qui est une expression de la forme x2 + y2 − 2a x− 2b y + c = 0.

Il faut savoir établir l’équation d’un cercle et, sur des exemples, reconnaître à partir d’une expression
de la forme précédente s’il s’agit de l’équation d’un cercle et trouver, le cas échéant, ses éléments
caractéristiques (centre, rayon).

Exemple 10.4.1.
x2 + y2 − 6x+ 2y − 6 = 0.

On écrit x2 − 6x = (x− 3)2 − 9 et y2 + 2y = (y + 1)2 − 1. L’équation devient alors :

(x− 3)2 + (y + 1)2 = 16

c’est à dire AM2 = 16, avec A(3,−1) et M(x, y). Il s’agit donc de l’équation du cercle C(A, 4).

Exemple 10.4.2.
x2 + y2 − 2x+ 4 = 0.

On écrit x2 − 2x = (x− 1)2 − 1. L’équation devient alors :

(x− 1)2 + y2 = −3.

L’ensemble des points M(x, y) satisfaisant l’équation est donc vide.
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10.5 Translations, Homothéties, Rotations, Projections, Symétries

10.5.1 Introduction

On va présenter quelques exemples importants d’applications du plan affine dans lui même qui pos-
sèdent des propriétés remarquable, par exemple :
• la conservation de l’alignement : des points alignés sont transformés en points alignés,
• la conservation du milieu : le milieu I d’un bipoint (A,B) a pour image le milieu du bipoint

image,
• un parallélogramme est transformé en un autre parallélogramme, ce qui équivaut à la conservation

du milieu,
• et plus généralement la conservation des barycentres (pour ceux qui connaissent ...)

De telles applications sont dites affines.
Il existe une caractérisation des applications affines que nous allons utiliser, basée sur la notion d’ap-
plication linéaire déjà évoquée en introduction du chapitre 9 dans un cadre différent. Aucune théorie
générale ne sera faite ici.

Définition 10.5.1 (Applications linéaires du plan vectoriel dans lui-même).
Une application ϕ :

−→
P −→

−→
P est dite linéaire si elle vérifie :

— ∀(−→u ,−→v ) ∈
−→
P ×

−→
P , ϕ(−→u +−→v ) = ϕ(−→u ) + ϕ(−→v ),

— ∀−→u ∈
−→
P , ∀λ ∈ R, ϕ(λ−→u ) = λϕ(−→u ).

Une application linéaire se reconnait immédiatement sur les coordonnées grâce au résultat suivant :

Proposition 10.5.1. Le plan vectoriel
−→
P étant muni d’une base (

−→
i ,
−→
j ) (pas nécessairement or-

thonormale), une application ϕ :


−→
P −→

−→
P

−→u
Ç
x
y

å
7−→ −→u ′

Ç
x′

y′

å
est linéaire si et seulement si il existe

une matrice M ∈M2(R) telle que
Ç
x′

y′

å
= M

Ç
x
y

å
.

La matrice M s’appelle la matrice de ϕ dans la base (
−→
i ,
−→
j ).

Preuve : supposons que ϕ soit linéaire et soit (O,
−→
i ,
−→
j ) un repère cartésien. On pose ϕ(

−→
i )

Ç
a
b

å
et

ϕ(
−→
j )

Ç
c
d

å
. Si −→u a pour coordonnées

Ç
x
y

å
et ϕ(−→u ) = −→u ′

Ç
x′

y′

å
alors, par linéarité :

−→u ′ = ϕ(x
−→
i + y

−→
j ) = xϕ(

−→
i ) + y ϕ(

−→
j )

Ç
xa+ yc
xb+ yd

å
ce qui s’écrit aussi :

Ç
x′

y′

å
=

Ç
a c
b d

å Ç
x
y

å
= M

Ç
x
y

å
.

La réciproque est une simple vérification sur les coordonnées.

On donne trois exemples d’applications linéaires de
−→
P dans

−→
P :

Exemples :

— L’application identique de
−→
P , c’est à dire l’application Id−→P :

® −→
P −→

−→
P

−→u 7−→ −→u
.

La justification est triviale.

La matrice, dans n’importe quelle base, est la matrice identité I2 =

Ç
1 0
0 1

å
.
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— L’homothétie vectorielle de rapport k, définie par hk :

® −→
P −→

−→
P

−→u 7−→ k−→u
, où k est un réel non

nul. Là encore, la justification est triviale.

La matrice, dans n’importe quelle base, est la matrice k I2 =

Ç
k 0
0 k

å
.

— La projection vectorielle orthogonale sur la droite vectorielle Vect(−→v ), qu’on notera ici π pour
éviter la confusion avec la projection étudiée plus bas.

C’est l’application π :
−→
P →

−→
P telle que π(−→u ) =

−→u · −→v
‖ −→v ‖2

−→v . Vérifions la linéarité :

• π(−→u +−→u ′) =
(−→u +−→u ′) · −→v
‖ −→v ‖2

−→v =
−→u · −→v
‖ −→v ‖2

−→v +
−→u ′ · −→v
‖ −→v ‖2

−→v = π(−→u ) + π(−→u ′).

• π(λ−→u ) =
λ−→u · −→v
‖ −→v ‖2

−→v = λ
−→u · −→v
‖ −→v ‖2

−→v = λπ(−→u ).

La matrice n’est pas simple en général, sauf dans une base adaptée. Aini on vérifiera en exercice
que dans la base (−→v ,−→v ′), où −→v ′ est un vecteur non nul et orthogonal à −→v , la matrice de π estÇ

1 0
0 0

å
.

Définition 10.5.2 (Applications affines du plan dans lui-même).
Une application f : P −→ P est dite affine s’il existe une application linéaire ϕ :

−→
P −→

−→
P telle que :

∀(A,B) ∈ P × P,
−−−−−−→
f(A)f(B) = ϕ(

−−→
AB).

Définition 10.5.3 (Transformations affines du plan).
Une application affine bijective du plan dans lui-même s’appelle une transformation affine du plan.

On admettra ici que ϕ est unique : on dit que c’est l’application linéaire associée à f et on la note
couramment

−→
f .

On retiendra bien que f agit sur les points et
−→
f sur les vecteurs : voir les exemples qui suivent.

Lorsqu’un point est sa propre image, on dit qu’il est invariant et l’ensemble de ces points joue toujours
un rôle essentiel dans la description et les propriétés d’une application affine.

Définition 10.5.4. Soit f : P −→ P. On dit qu’un point M est invariant par f si f(M) = M .

10.5.2 Les translations

Définition 10.5.5. Soit −→u ∈
−→
P . On appelle translation de vecteur −→u l’application t−→u de P dans

lui-même qui à tout point M associe le point M ′ tel que
−−−→
MM ′ = −→u .

Figure 10.12 – Translations
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Proposition 10.5.2. Une translation est une transformation affine du plan. L’application linéaire
associée est l’application identique du plan vectoriel Id−→P : −→v 7→ −→v .

Preuve : soient A, B deux points, A′ = t−→u (A) et B′ = t−→u (B) leurs images. On a

−−→
A′B′ =

−−→
A′A+

−−→
AB +

−−→
BB′ = −

−−→
AA′ +

−−→
AB +

−−→
BB′ = −−→a +

−−→
AB +−→a =

−−→
AB = Id−→P (

−−→
AB)

ce qui prouve que t−→u est affine, avec −→t −→u = Id−→P .
L’application vectorielle associée est l’identité. Enfin une translation est une bijection, de bijection
réciproque t−→−u (vérification immédiate).

Proposition 10.5.3 (Expression analytique).

Si −→u a pour coordonnées
Ç
xu
yu

å
et M pour coordonnées (x, y) dans un repère cartésien, alors les

coordonnées de M ′ sont données par ®
x′ = x+ xu
y′ = y + yu

Preuve : c’est juste la traduction de
−−−→
MM ′ = −→u en termes de coordonnées.

Propriétés des translations (exercice) :

1. Une translation de vecteur non nul n’a pas de point invariant. La translation de vecteur nul est
l’identité. Tout les points du plan sont alors invariants.

2. Une translation conserve la distance entre deux points, les angles entre les vecteurs, l’alignement
de points.

3. L’image d’une droite par une translation est la droite elle-même si son vecteur directeur est
colinéaire au vecteur de la translation.

4. L’image d’une droite par une translation est une droite parallèle si son vecteur directeur n’est
pas colinéaire au vecteur de la translation.

5. L’image d’un cercle par une translation est le cercle de même rayon et dont le centre est le
translaté du centre initial : t−→u (C(A,R)) = C(A′, R) avec A′ = t−→u (A).
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10.5.3 Les homothéties

Définition 10.5.6. Soit Ω un point du plan et k un réel non nul. On appelle homothétie de centre Ω
et de rapport k l’application h(Ω, k) de P dans lui-même qui à tout point M associe le point M ′ tel
que
−−→
ΩM ′ = k

−−→
ΩM .

Figure 10.13 – Homothéties

Proposition 10.5.4. Une homothétie h(Ω, k) est une transformation affine du plan. L’application
linéaire associée est l’homothétie vectorielle hk : −→u → k−→u .

Preuve : soient A, B deux points, A′ = h(Ω, k)(A) et B′ = h(Ω, k)(B). On a
−−→
A′B′ =

−−→
A′Ω +

−−→
ΩB′ = −

−−→
ΩA′ +

−−→
ΩB′ = −k

−→
ΩA+ k

−→
ΩB = k

−−→
AB = hk(

−−→
AB)

ce qui prouve le caractère affine de h(Ω, k) et donne l’application linéaire associée. Enfin, h(Ω, k) est

bijective, de bijection réciproque h(Ω,
1

k
) (exercice).

Proposition 10.5.5 (Expression analytique).
Si Ω a pour coordonnées (xω, yω) et M a pour coordonnées (x, y), alors les coordonnées (x′, y′) de
M ′ vérifient : ®

x′ = xω + k(x− xω)
y′ = yω + k(y − yω)

Preuve : c’est juste la traduction de
−−→
ΩM ′ = k

−−→
ΩM en termes de coordonnées.

Propriétés des homothéties (exercice) :

1. Si k 6= 1, le seul point invariant est le centre de l’homothétie Ω.
2. Si k = 1 on a de nouveau affaire à l’identité.
3. Une homothétie multiplie par |k| la distance entre deux points. Elle conserve les angles orientés

et l’alignement.
4. L’image d’une droite passant par le centre de l’homothétie est la droite elle-même.
5. L’image d’une droite ne passant pas par le centre de l’homothétie est une droite parallèle.
6. L’image d’un cercle de centre A et de rayon R par l’homothétie est le cercle de centreA′ =
h(Ω, k)(A) et de rayon |k|R.
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10.5.4 Les rotations

Définition 10.5.7. Soient Ω un point du plan et θ un réel. On appelle rotation de centre Ω et
d’angle θ l’application r(Ω, θ) de P dans lui-même qui à tout point M associe le point M ′ tel que :

— si M = Ω alors M ′ = Ω

— si M 6= Ω alors ΩM ′ = ΩM et
¤�

(
−−→
ΩM,

−−→
ΩM ′) = θ [2π].

Figure 10.14 – Rotations planes

Proposition 10.5.6. Une rotation r(Ω, θ) est une transformation affine du plan. L’application
linéaire associée est la rotation vectorielle d’angle θ qui est l’application linéaire rθ :

−→
P −→

−→
P

définie dans toute base orthonormale directe par sa matrice
Ç

cos θ − sin θ
sin θ cos θ

å
.

Preuve : soit M un point, d’image M ′. On pose −→u =
−−→
ΩM , −→u ′ =

−−→
ΩM ′, on a donc ÿ�(−→u ,−→u ′) = θ [2π]

et ‖ −→u ‖=‖ −→u ′ ‖. On en déduit

−→u · −→u ′ =‖ −→u ‖2 cos(θ), det (−→u ,−→u ′) =‖ −→u ‖2 sin(θ).

Si −→u
Ç
X
Y

å
, et
−→
u′
Ç
X ′

Y ′

å
dans un repère orthonormal direct, on en déduit

XX ′ + Y Y ′ =‖ −→u ‖2 cos(θ),

XY ′ −X ′Y =‖ −→u ‖2 sin(θ).

On cherche à exprimer (X ′, Y ′) en fonction de (X,Y ) et θ, on écrit donc le système d’équations®
XX ′ + Y Y ′ = (X2 + Y 2) cos(θ),

−Y X ′ + XY ′ = (X2 + Y 2) sin(θ).

On résout ce système d’inconnue (X ′, Y ′) à l’aide des formules 9.1, par exemple, et on trouve®
X ′ = X cos θ − Y sin θ
Y ′ = X sin θ + Y cos θ

(10.6)

et donc Ç
X ′

Y ′

å
=

Ç
cos θ − sin θ
sin θ cos θ

åÇ
X
Y

å
.
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Soit alors rθ l’application linéaire de
−→
P dans lui-même définie par la matrice Rθ =

Ç
cos θ − sin θ
sin θ cos θ

å
:

on a −→u ′ = rθ(
−→u ). Si A et B sont deux points d’images A′ et B′ on a donc :

−−→
A′B′ =

−−→
ΩB′ −

−−→
ΩA′ = rθ(

−→
ΩB)− rθ(

−→
ΩA) = rθ(

−→
ΩB −

−→
ΩA) = rθ(

−−→
AB)

ce qui prouve le caractère affine de r(Ω, θ) et donne son application linéaire associée rθ.
Enfin on vérifie facilement que r(Ω, θ) est bijective, avec r(Ω, θ)−1 = r(Ω,−θ)
(« pour revenir au point de départ, on tourne de l’angle opposé autour du même centre »).

Proposition 10.5.7 (Expression analytique dans un repère orthonormal direct).
Si Ω a pour coordonnées (xω, yω) et si M a pour coordonnées (x, y) alors les coordonnées (x′, y′) de
M ′ sont données par : ®

x′ = xω + (x− xω) cos θ − (y − yω) sin θ
y′ = yω + (x− xω) sin θ + (y − yω) cos θ

Preuve : c’est la conséquance immédiate de la formule (10.6).

Propriétés des rotations :

1. Si θ 6= 0 [2π], le seul point invariant est le centre de la rotation Ω.

2. Si θ = 0 [2π], f est égal à l’identité.

3. Une rotation conserve la distance entre deux points, les angles orientés de vecteurs, l’alignement
de points.

4. L’image d’une droite par une rotation est une droite.

5. L’image d’un cercle par une rotation est un cercle de même rayon.

6. Une rotation d’angle π est une symétrie par rapport à Ω.

10.5.5 Les projections et symétries axiales

Soient une droite D(A,−→u ) et D′ une droite −→v non colinéaire à −→u .

Définition 10.5.8. On appelle projection sur D parallèlement à D′ l’application p du plan dans
lui-même qui associe à tout point M le point p(M) = M ′ tel que

— M ′ ∈ D,
—
−−−→
MM ′ ∈

−→
D ′ (i. e.

−−−→
MM ′//−→v ).

Définition 10.5.9. On appelle symétrie par rapport à D parallèlement à D′ l’application s du
plan dans lui-même qui associe à tout point M le point s(M) = M ′ tel que

— le milieu du bipoint (M,M ′) appartient à D,
—
−−−→
MM ′ ∈

−→
D ′.
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Figure 10.15 – Projections et symétries

Le point essentiel est que (A,−→u ,−→v ) est un repère du plan. Avant de poursuivre, précisons les notions
de projection et symétrie vectorielles.

Définition 10.5.10. Soit (−→u ,−→v ) une base de
−→
P . On appelle projection vectorielle sur

−→
D = Vect(−→u )

parallèlement à
−→
D ′ = Vect(−→v ) l’application π :

® −→
P −→

−→
P

−→w = α−→u + β−→v 7−→ α−→u
.

Définition 10.5.11. Soit (−→u ,−→v ) une base de
−→
P . On appelle symétrie vectorielle par rapport à

−→
D =

Vect(−→u ) parallèlement à
−→
D ′ = Vect(−→v ) l’application σ :

® −→
P −→

−→
P

−→w = α−→u + β−→v 7−→ α−→u − β−→v
.

Avec ces définitions, si
−−→
AM = α−→u + β−→v , on a :

−−−−→
Ap(M) = α−→u = π(

−−→
AM) et

−−−−→
As(M) = α−→u − β−→v = σ(

−−→
AM)

On verra sur des exemples que ces définitions permettent facilement de trouver les coordonnées de M ′

en fonction de celles de M . La méthode est la suivante :

si A, −→u , −→v et M ont pour coordonnées (xA, yA),
Ç
xu
yu

å
,
Ç
xv
yv

å
et (x, y), on écrit a priori :®

x− xA = αxu + βxv
y − yA = αyu + βyv

On calcule alors α et β en fonction de x et y en résolvant le système, puis on obtient les coordonnées
du projeté et du symétrique de M .

Proposition 10.5.8. La projection sur D parallèlement à D′ est une application affine. L’application
linéaire associée est la projection vectorielle sur

−→
D parallèlement à

−→
D ′.

Ce n’est pas une transformation du plan.

Proposition 10.5.9. La symétrie par rapport à D parallèlement à D′ est une transformation affine
du plan. L’application linéaire associée est la symétrie vectorielle par rapport à

−→
D parallèlement à−→

D ′.

Quand les directions de D et D′ sont orthogonales, on parle de projection et de symétrie ortho-
gonales :
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Définition 10.5.12. On appelle projection orthogonale sur D(A,−→u ) la projection sur D parallèlement
à la direction orthogonale à D. Cette application associe à tout point M le point p(M) = M ′ tel que

— M ′ ∈ D,
—
−−−→
MM ′⊥

−→
D (i. e.

−−−→
MM ′⊥−→u ).

On appelle symétrie orthogonale par rapport à D la symétrie par rapport à D parallèlement à la
direction orthogonale à D. Cette application associe à tout point M le point s(M) = M ′ tel que D
soit la médiatrice du segment [M,M ′].

Figure 10.16 – Projections et symétries orthogonales

On peut aller plus loin dans les formules dans ce cas : soit −→u
Ç
a
b

å
dans une base orthonormale

et soit −→u ′
Ç
−b
a

å
de sorte que le repère (A,

−→u
‖ −→u ‖

,
−→u ′

‖ −→u ‖
) est orthonormal. On a alors

−−→
AM = α−→u +β−→u ′

avec α =
−−→
AM ·

−→u
‖ −→u ‖2

et β =
−−→
AM ·

−→u ′

‖ −→u ‖2
et ainsi :

Proposition 10.5.10. Soit D(A,−→u ) une droite du plan. Le projeté othogonal p(M) et le symétrique
orthogonal s(M) d’un point M sont donnée par les formules :

−−−−→
Ap(M) = (

−−→
AM · −→u
‖ −→u ‖2

)−→u ,
−−−−→
As(M) = (

−−→
AM · −→u
‖ −→u ‖2

)−→u − (

−−→
AM · −→u ′

‖ −→u ‖2
) −→u ′

Remarque 10.5.1. En pratique, il suffit de connaître la première des deux formules. Quand on a
trouvé le projeté p(M) on obtient le symétrique s(M) en écrivant que

−−−−−→
Ms(M) = 2

−−−−−→
Mp(M).
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Propriétés des projections et des symétries :

1. Une projection est caractérisée par le fait que p ◦ p = p. La droite sur laquelle on projette est
l’ensemble des point invariants.

2. Une symétrie axiale est caractérisée par le fait que s ◦ s = Id. La droite D est l’ensemble des
points invariants.

3. Une symétrie orthogonale conserve la distance entre deux points, change les angles en leur
opposés et transforme une droite en une autre droite, un cercle en un autre cercle, de même
rayon.

Exemple 1 Soient A(1, 2) et B(−1, 3). Déterminer les coordonnées de M ′(x′, y′) image de M(x, y)
par la symétrie orthogonale par rapport à D = (AB).
On va d’abord appliquer la formule précédente, puis donner une méthode plus rapide.

Un vecteur directeur de D est
−−→
AB

Ç
−2
1

å
. Ce vecteur n’est pas de norme 1, on obtient un vecteur

directeur de D de norme 1 en prenant −→u =
1

‖
−−→
AB ‖

−−→
AB. On a donc −→u

Ç
−2/
√

5

1/
√

5

å
et
−→
u′
Ç
−1/
√

5

−2/
√

5

å
.

Alors :
−−→
AM · −→u =

1√
5

(−2(x− 1) + (y − 2)) =
1√
5

(−2x+ y)

−−→
AM ·

−→
u′ =

1√
5

(−x− 2y + 5)

et la relation
−−→
AM ′ = (

−−→
AM · −→u )−→u − (

−−→
AM · −→u ′) −→u ′ s’écrit alors

x′ − 1 =
1

5
(−2x+ y)(−2) − 1

5
(−x− 2y + 5)(−1)

y′ − 2 =
1

5
(−2x+ y) − 1

5
(−x− 2y + 5)(−2)

et on obtient le résultat cherché : 
x′ =

3

5
x− 4

5
y + 2

y′ = −4

5
x− 3

5
y + 4

Variante : conformément à la remarque précédente, on peut commencer par déterminer le projeté
p(M) :

−−−−→
Ap(M) = (

−−→
AM · −→u )−→u

ce qui donne p(M) (1 +
4

5
x− 2

5
y, 2− 2

5
x+

1

5
y) et on trouve (x′, y′) en écrivant que p(M) est le milieu

de (M, s(M)) :

x+ x′

2
= 1 +

4

5
x− 2

5
y,

y + y′

2
= 2− 2

5
x+

1

5
y

On retrouve bien sûr le résultat précédent.
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La seconde méthode consiste à exprimer la définition du symétrique de M . Le milieu de (M,M ′)

appartient à D et
−−−→
MM ′ ⊥

−−→
AB. On calcule l’équation cartésienne de D : un point X(x, y) appartient

à D si et seulement si det (
−−→
AX,

−−→
AB) = 0, soit

(x− 1) + 2(y − 2) = x+ 2y − 5 = 0,

Le milieu I de (M,M ′) a pour coordonnées (
x+ x′

2
,
y + y′

2
), on en déduit une première équation :

(x+ x′) + 2(y + y′)− 10 = 0.

On a aussi
−−−→
MM ′ ·

−−→
AB = 0 qui fournit une seconde équation :

−2(x′ − x) + (y′ − y) = 0,

On cherche (x′, y′) en fonction de (x, y), on écrit donc le système de deux équations à deux inconnues
obtenu de la façon suivante : ®

x′ + 2y′ = 10− x− 2y
−2x′ + y′ = −2x+ y

On résout alors ce système et on retrouve le résultat précédent.

Exemple 2 Soient A(1, 2) et B(−1, 3). Déterminer les coordonnées deM ′(x′, y′) projection deM(x, y)

sur D = (AB) selon la direction de −→v (1, 2). On sait que M ′ ∈ D et
−−−→
MM ′//−→v , ces deux informations

se traduiront par deux équations : (x′, y′) satisfait l’équation cartésienne de D qu’on a déja calculée :

x′ + 2y′ − 3 = 0,

et
det (
−−−→
MM ′,−→u ) = 0,

soit
(x′ − x)2− (y′ − y) = 0.

On obtient le système linéaire ®
x′ + 2y′ = 3

2x′ − y′ = 2x− y

qu’on résout pour trouver finalement
x′ =

4

5
x− 2

5
y − 1

5

y′ = −2

5
x+

1

5
y +

6

5
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10.6 Compléments (*)

(*) Cette section traite de notions qui sont hors programme de ce cours mais qui peuvent être étudiées
avec profit par les futurs étudiants de mathématiques et les élèves ingénieurs.

10.6.1 Cercles

On a vu en section 10.4 que le cercle C de centre A et de rayon R admet pour équation cartésienne

x2 + y2 − 2xA x− 2yA y + x2
A + y2

A −R2 = 0,

qui est une expression de la forme x2 + y2 − 2a x− 2b y + c = 0. On s’intéresse ici à la réciproque.

On pourra reconnaitre qu’un ensemble décrit par son équation cartésienne dans un repère orthonormal
est un cercle à l’aide de la proposition suivante :

Proposition 10.6.1. Soient a, b, c des réels. L’ensemble

E = {M(x, y) ∈ P ; x2 + y2 − 2 ax− 2b y + c = 0}

est soit l’ensemble vide, soit un point, soit un cercle.
C’est un cercle si et seulement si a2 + b2 ≥ c, c’est alors le cercle de centre A(a, b) et de rayon
R =

√
a2 + b2 − c.

Preuve : on écrit le membre de gauche sous la forme (x − a)2 + (y − b)2 − a2 − b2 + c, donc
M ∈ E ⇐⇒ (x− a)2 + (y − b)2 = a2 + b2 − c. Alors
Si a2 + b2 − c < 0, E = ∅,
Si a2 + b2 − c = 0, E = {A(a, b) = C(A, 0).
Si a2 + b2 − c > 0, M(x, y) ∈ E ⇐⇒ AM2 = a2 + b2 − c et ainsi E = C(A,

√
a2 + b2 − c).

Exemples :
2x2 + y2 − 1 = 0 n’est pas l’équation d’un cercle.
3x2 + 3y2 − 2x − 1 = 0 est l’équation d’un cercle car elle équivaut à x2 + y2 − 2 (1/3)x − 1/3 = 0 :
a = 1/3, b = 0, c = −1/3 et (1/3)2 + 1/3 = 4/9 > 0. Son centre est A(1/3, 0) et son rayon est 2/3.

Une représentation paramétriques dans un repère orthonormal direct (O,
−→
i ,
−→
j ) est®

x = xA +R cos θ
y = yA +R sin θ

, θ ∈]− π, π]

ce qui donne la position de M sur le cercle en fonction de θ sachant que

‖
−−→
AM ‖= R et (

ÿ�−→
i ,
−−→
AM) = θ [2π]

10.6.2 Propriétés du cercle

On rappelle sans démonstration quelques résultats :

Théorème 10.6.1. Soient A et B deux points du plan et θ un réel, alors l’ensemble des points du

plan tels que
¤�

(
−−→
MA,

−−→
MB) = θ [π] est :

— la droite (AB) privée de A et B si θ = 0 [π],
— un cercle passant par A et B, privé de ces deux points, sinon.
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Remarque 10.6.1. C’est un résultat qui s’écrit en fait en termes d’angles de droites (⁄�MA,MB) :
voir figure 10.17 ci-dessous. On obtient le même résultat avec un angle géométrique ÷AMB.

Figure 10.17 – Arc capable (angle de droites)

Théorème 10.6.2. Soient A et B deux points du plan et θ un réel, alors l’ensemble des points du

plan tels que
¤�

(
−−→
MA,

−−→
MB) = θ [2π] est :

— l’ensemble]A,B[ si θ = 0 [2π],
— la droite (AB) privée du segment [A,B] si θ = π [2π],
— un arc de cercle d’extrémités A et B, privé de ces deux points, sinon.

Figure 10.18 – Arc capable (angle de vecteurs)

On observera bien quelle est la différence entre les caractérisations des ensembles cherchés dans ces
deux énoncés.

On dit que des points sont cocycliques s’ils sont sur un même cercle. Alors :

Corollaire 10.6.1. Quatre points A, B, C, D distincts sont alignés ou cocycliques si et seulement

si
¤�
(
−−→
DA,

−−→
DB) =

⁄�
(
−→
CA,
−−→
CB) [π].
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Théorème 10.6.3 (Théorème de l’angle inscrit ). Soit C un cercle de centre O, passant par deux
points distincts A et B, alors pour tout point M du plan :

M ∈ C\{A,B} ⇐⇒ ¤�
(
−−→
MA,

−−→
MB) =

1

2

⁄�
(
−→
OA,
−−→
OB) [π]

Figure 10.19 – Angle au centre et angle inscrit

Corollaire 10.6.2. Soient A et B deux points distincts, I le milieu de [A,B] et C le cercle de centre
I passant par A et B, alors

M ∈ C ⇐⇒ ¤�
(
−−→
MA,

−−→
MB) =

π

2
[π]
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10.6.3 Nombres complexes et géométrie plane

Les nombres complexes permettent de représenter analytiquement toutes les transformations usuelles
du plan telles que les translations, les homothéties, les rotations et bien d’autres encore. À titre
d’exemple nous passons en revue les trois cas qui viennent d’être cités.

On suppose dans tout ce qui suit que le plan est orienté (même si c’est seulement utile pour les
rotations) et rapporté à un repère orthonormal direct (O,

−→
i ,
−→
j ).

Translations et homothéties

Soit t−→u la translation de vecteur −→u . Notons u l’affixe de −→u , z (resp. z′) celui de M (resp. de M ′). On
a immédiatement :

M ′ = t−→u (M)⇐⇒ z′ = z + u

z′ = z + u est la forme complexe de la translation t−→u .
Soit h(Ω, k) l’homothétie de centre Ω et de rapport k ∈ R∗. Notons ω l’affixe de Ω, z (resp. z′) celui
de M (resp. de M ′). La relation de définition s’écrit

z′ − ω = k (z − ω).

On peut retenir (ou mieux, retrouver immédiatement) le résultat sous cette forme. Il s’écrit aussi :

M ′ = h(Ω, k)(M)⇐⇒ z′ = k z + (1− k)ω

z′ = k z + (1− k)ω est la forme complexe de l’homothétie h(Ω, k).

Pour reconnaître une translation ou une homothétie :

Proposition 10.6.2. Soient k ∈ R∗ et b ∈ C. Soit f l’application du plan dans lui même qui associe
au point M(z) le point M ′(z′) tels que z′ = k z + b.

— Si k = 1, f est la translation de vecteur −→u d’affixe b.
— Si k 6= 1, f est l’homothétie de rapport k dont le centre est l’unique point Ω invariant (i.e.

solution de f(M) = M , c’est à dire aussi z′ = z) d’affixe ω =
b

1− k
.

Rotations

Soient Ω un point, θ ∈ R et r(Ω, θ) la rotation de centre Ω et d’angle θ. On rappelle que pour M 6= Ω :

r(Ω, θ)(M) = M ′ ⇐⇒
{

ΩM ′ = ΩM,

(
−−→
ΩM,

−−→
ΩM ′) = θ [2π]

Les deux relations de définition s’écrivent en termes d’affixes sous la forme :®
|z′ − ω| = |z − ω|,
arg(z′ − ω)− arg(z− ω) = θ [2π]

,

ce qui se traduit en une seule relation équivalente :

z′ − ω = eiθ(z − ω)

ou encore :
M ′ = r(Ω, θ)(M)⇐⇒ z′ = eiθ z + (1− eiθ)ω
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z′ = eiθ z + (1− eiθ)ω est la forme complexe de la rotation r(Ω, θ).

Exemple : z′ = iz est la forme complexe de la rotation de centre O et d’angle
π

2
. Ceci donne

une interprétation utile de la multiplication par i. Ainsi, deux rotations successives de centre O et
d’angle

π

2
appliquées à un point transforment ce point en son sysmétrique par rapport à O : c’est une

interprétation de la relation i2 = −1.

Pour reconnaître une rotation :

Proposition 10.6.3. Soient a ∈ U (i.e. |a| = 1) et b ∈ C. Soit f l’application du plan dans lui même
qui associe au point M(z) le point M ′(z′) tels que z′ = a z + b.

— Si a = 1, f est la translation de vecteur −→u d’affixe b.
— Si a 6= 1, f est la rotation d’angle θ = arg(a) et de centre est l’unique point Ω invariant d’affixe

ω =
b

1− a
.
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Chapitre 11

Géométrie élémentaire de l’espace

Objectifs : dans le contexte de la géométrie dans l’espace étudiée au lycée, sans construction théorique
préliminaire, donner la maîtrise de quelques outils indispensables et de leurs applications : produit
scalaire, produit vectoriel, produit mixte, calculs d’angles, de distances, d’aires et de volumes...

11.1 Contexte général et rappels

On étudie dans ce chapitre la géométrie dans un ensemble E qui est un modèle de notre espace physique
à trois dimensions et qu’on appellera « espace affine », ou plus simplement « espace ». On l’aborde dans
le même esprit que dans l’enseignement secondaire, comme une donnée basée sur l’intuition. Il est en
lien étroit avec l’espace vectoriel R3 via les coordonnées, de même que le plan étudié au chapitre
précédent est en lien avec R2, comme on l’a vu.
Les objets de base sont ici les points, les droites et les plans, avec les notions de parallélisme et
d’othogonalité. L’espace est muni d’une distance telle que dans chaque plan on peut appliquer tous les
résultats du chapitre 10.

On étend à E les notions de bipoint, de vecteur, de vecteurs colinéaires et de norme d’un vecteur. Les
vecteurs de l’espace forment un ensemble noté

−→
E et on définit pour ces vecteurs l’addition et le produit

par un réel, avec les même règles de calcul que dans le plan : pour ces opérations,
−→
E est un espace

vectoriel réel.

11.1.1 Droites et plans dans l’espace

Les droites, affines ou vectorielles, sont définies comme au chapitre précédent : −→u étant un vecteur non
nul, l’ensemble Vect−→u = {λ−→u ; λ ∈ R} est la droite vectorielle engendrée par −→u . Lorsqu’on se donne
un point A et un vecteur non nul −→u l’ensemble

D(A,−→u ) = {M ∈ E , ∃α ∈ R,
−−→
AM = α−→u },

est la droite affine dirigée par −→u et passant par A. Sa direction, par définition, est
−→
D = Vect−→u .

On précise maintenent quelques notions utiles à l’étude des plans :

Définition 11.1.1. Soient −→u et −→v deux vecteurs de
−→
E . On appelle combinaison linéaire de −→u et −→v

tout vecteur de la forme −→w = a−→u + b−→v avec (a, b) ∈ R2.

Définition 11.1.2. Soient −→u et −→v deux vecteurs non colinéaires de
−→
E . On appelle plan vectoriel

engendré par −→u et −→v l’ensemble Vect(−→u ,−→v ) des combinaisons linéaires de ces vecteurs :

Vect(−→u ,−→v ) = {a−→u + b−→v ; (a, b) ∈ R2}
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Proposition 11.1.1. Soient −→u ′, −→v ′ deux vecteurs d’un même plan vectoriel ~P = Vect(−→u ,−→v ). Si ces
vecteurs ne sont pas colinéaires, alors ~P = Vect(−→u ′,−→v ′).

Preuve : il existe des réels α,β, γ et δ tels que
® −→u ′ = α−→u + β−→v
−→v ′ = γ−→u + δ−→v . Comme les vecteurs ne sont

pas colinéaires, on a , en vertu de la proposition 10.2.8,
∣∣∣∣∣ α β
γ δ

∣∣∣∣∣ 6= 0 et on déduit du système précédent

(même méthode que pour les systèmes linéaires de réels) les égalités −→u =
δ

αδ − βγ
−→u ′ − β

αδ − βγ
−→v ′

et −→v =
γ

αδ − βγ
−→u ′ − α

αδ − βγ
−→v ′. On en déduit alors qu’un vecteur −→w ∈

−→
P est combinaisin linéaire

de −→u et −→v si et seulement si il est combinaison linéaire de −→u ′ et −→v ′, doù Vect(−→u ′,−→v ′) = Vect(−→u ,−→v ).

Définition 11.1.3. On dit que trois vecteurs sont coplanaires s’il existe un même plan vectoriel qui
les contient.

Remarque 11.1.1. Il résulte de la proposition 11.1.1 que si trois vecteurs sont coplanaires, deux
quelconques d’entre eux qui ne sont pas colinéaires engendrent un plan qui les contient tous les trois.

Définition 11.1.4. Soient A ∈ E et −→u , −→v des vecteurs non colinéaires. On appelle plan affine passant
par A et dirigé par Vect(−→u ,−→v ) (ou plus simplement « par les vecteurs −→u et −→v ») l’ensemble

P (A,−→u ,−→v ) = {M ∈ E ; ∃(α, β) ∈ R2,
−−→
AM = α−→u + β−→v }.

On dit que des points sont coplanaires s’ils sont contenus dans un même plan affine.

Remarque 11.1.2. Un plan affine est aussi décrit par la donnée de trois points non alignés. Le plan
(ABC) est alors le plan passant par A dirigé par (

−−→
AB,

−→
AC) . A noter que l’ordre des points n’a pas

d’importance (exercice).

On a le résultat suivant, bien connu :

Proposition 11.1.2. Etant donnés une droite D et un point A non situé sur D. Il existe un unique
plan affine qui contient A et D.

Preuve : exercice.
Le lien entre vecteurs coplanaires et points coplanaires est celui-ci :

Proposition 11.1.3. Soit O un point queconque de E et −→u , −→v , −→w trois vecteurs. Soient alors A, B
et C les points définis par −→u =

−→
OA, −→v =

−−→
OB, −→w =

−−→
OC. Alors :

−→u , −→v , −→w coplanaires ⇐⇒ O, A, B, C coplanaires

Preuve : supposons que les vecteurs soint coplanaires. Si −→u //−→v alors les points O, A et B sont
alignés, c’est à dire sur une même droite D. Comme il existe un plan qui contient D et C (unique
si C /∈ D) on conclut que les quatre points sont coplanaires. Si au contraire −→u et −→v ne sont pas
colinéaires, alors ils engendrent un plan vectoriel

−→
P auquel appartient −→w par hypothèse. Il existe donc

des réels α et β tels que −→w = α, vectu + β−→v , c’est à dire
−−→
OC = α

−→
OA + β

−−→
OC, ce qui prouve que

C ∈ P (O,A,B) et donc que les quatre points sont coplanaires.
La réciproque est laissée en exercice.
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Figure 11.1 – Points et vecteurs coplanaires

11.1.2 Bases, repères cartésiens de l’espace

Les notions rappelées au chapitre 10 s’étendent comme suit :

Définition 11.1.5. Un repère cartésien de l’espace E est un triplet (O,
−→
i ,
−→
j ,
−→
k ) où O est un point,

appelé origine du repère et (
−→
i ,
−→
j ,
−→
k ) un triplet vecteurs non coplanaires, appelé base de

−→
E .

Proposition 11.1.4. Soit (O,
−→
i ,
−→
j ,
−→
k ) un repère cartésien de l’espace. Alors :

(a) pour tout pointM ∈ E il existe un unique triplet de réels (x, y, z) tel que
−−→
OM = x

−→
i +y

−→
j +z

−→
k ,

(b) pour tout vecteur −→u ∈
−→
E il existe un unique triplet de réels (x, y, z) tel que −→u = x

−→
i +y

−→
j +z

−→
k .

On notera (de préférence) M(x, y, z) et −→u

Ö
x
y
z

è
.

On ne démontrera pas ces résultats.

11.1.3 Produit scalaire

Comme dans le plan, le produit scalaire euclidien de deux vecteurs −→u et −→v est le réel noté −→u ·−→v défini
par

−→u · −→v =

®
0 si −→u =

−→
0 ou −→v =

−→
0 ,

‖ −→u ‖ ‖ −→v ‖ cos θ sinon,

où θ est l’écart angulaire (ou angle géométrique) de ces vecteurs dans tout plan les contenant (ce plan
vectoriel est unique si les vecteurs sont non colinéaires). Rappelons que cet écart angulaire est noté
(−→u ,−→v ). L’inégalité de Cauchy-Schwarz (proposition 10.2.1) reste bien sûr valable.
On rappelle que les résultats de géométrie plane sont supposés valables dans tout plan (vectoriel ou
affine) de l’espace. On a toujours :

−→u⊥−→v ⇐⇒ −→u · −→v = 0.

Projection d’un vecteur sur un axe : les définitions et formules de la section 10.2.5 du chapitre
10 sont valables, sans changement, dans l’espace.

11.1.4 Mesures d’angles dans l’espace

Il existe une obstruction théorique à la définition et la mesure d’un angle orienté (÷−→u ,−→v ) : observons
simplement que si on dessine un angle droit direct sur une vitre (avec l’orientation qui nous semble
usuelle), il nous apparaîtra comme indirect si on l’observe depuis l’autre côté ...
Il nous faudra donc une méthode pour décider de l’orientation d’un plan de l’espace et ainsi lever
l’ambiguité.
Par contre, on a vu que l’on sait définir un écart angulaire, ou angle géométrique (celui du rapporteur !).
En utilisant le produit scalaire on a immédiatement le résultat suivant, applicable pour des calculs
effectifs :

173



Proposition 11.1.5. Soient −→u et −→v deux vecteurs non nuls de l’espace. L’écart angulaire, ou angle

géométrique, de ces vecteurs est l’unique réel θ de l’intervalle [0, π] tel que cos θ =
−→u · −→v

‖ −→u ‖‖ −→v ‖
.

On peut également définir un écart angulaire (ou angle géométrique) de deux droites D(A,−→u ) et

D′(B,−→v ) comme l’unique réel θ de l’intervalle [0,
π

2
] tel que cos θ =

|−→u · −→v |
‖ −→u ‖‖ −→v ‖

, en effet ce nombre

ne dépend pas du choix du couple (−→u ,−→v ) de vecteurs directeurs (exercice). On le note (D,D′).

On notera qu’il s’agit toujours d’ un « angle aigu ».
Deux droites D et D′ sont orthogonales si et seulement si (D,D′) =

π

2
.

Deux droites D et D′ sont parallèles si et seulement si (D,D′) = 0.

11.1.5 Bases et repère orthonormaux

Une base (
−→
i ,
−→
j ,
−→
k ) est orthogonale si les vecteurs

−→
i ,
−→
j et

−→
k sont deux à deux orthogonaux.

Un repère (O,
−→
i ,
−→
j ,
−→
k ) est orthogonal si la base (

−→
i ,
−→
j ,
−→
k ) est orthogonale.

Une base (
−→
i ,
−→
j ,
−→
k ) est orthonormale si elle est orthogonale et si les vecteurs de base

−→
i ,
−→
j ,
−→
k sont

de norme 1. Un repère est orthonormal si la base correspondante est orthonormale.
En appliquant le théorème de Pythagore deux fois, on démontre, que dans une base orthonormale,
on a pour −→u (x, y, z),

‖ −→u ‖=
»
x2 + y2 + z2.

Si dans une base orthonormale (
−→
i ,
−→
j ,
−→
k ), on a −→u (x, y, z) et −→v (x′, y′, z′), on a immédiatement

x = −→u · −→i , y = −→u · −→j , z = −→u ·
−→
k .

et (admis)
−→u · −→v = xx′ + yy′ + zz′

Remarque 11.1.3. Si on pose A =

Ö
x
y
z

è
et A′ =

Ö
x′

y′

z′

è
, on a également −→u · −→v = tAA′ =Ä

x y z
äÖx′

y′

z′

è
ainsi que ‖ −→u ‖2= tAA.

11.1.6 Orientation de l’espace, repère orthonormaux directs

On observe expérimentalement (la théorie sera faite plus tard) que si on veut superposer deux repères
orthogonaux (O,

−→
i ,
−→
j ,
−→
k ) et (O′,

−→
i ′,
−→
j ′,
−→
k ′) sans les déformer, alors une fois qu’on a amené O′ sur

O, puis
−→
i ′ sur

−→
i , puis

−→
j ′ sur

−→
j , on a soit

−→
k ′ =

−→
k , soit

−→
k ′ = −

−→
k .

Une fois fixé un repère orthogonal, on peut donc classer tous les autres en deux catégories : ceux pour
lesquels

−→
k ′ =

−→
k , et on dit que les deux repères définissent la même orientation, et ceux pour les

quels
−→
k ′ = −

−→
k .

On oriente l’espace en fixant arbitrairement un repère orthogonal, et on dit qu’un repère est ortho-
normal direct s’il a la même orientation que le repère de référence.

L’orientation usuelle est définie par la règle du bonhomme d’Ampère ou, de manière équivalente, par la
règle des trois doigts ou celle du tire-bouchon : http://uel.unisciel.fr/physique/outils_nancy/
outils_nancy_ch03/co/apprendre_03_03.html
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Par exemple, le bonhomme d’ampère qui est imaginé debout sur le plan (O,
−→
i ,
−→
j ) et pour lequel le

vecteur
−→
k pointe vers le haut, a le vecteur

−→
j à sa gauche s’il regarde dans la direction de

−→
i .

Sur la figure 11.2 ci dessous les repères (A,
−−→
AB,

−−→
AD,

−→
AE) et (E,

−−→
EH,

−−→
EF,

−→
EA), par exemple, sont

directs pour l’orientation usuelle. Le repère (C,
−−→
CG,

−−→
CB,

−−→
CD) est indirect.

Figure 11.2 – Repères orthonormaux directs

Abréviations : on écrira parfois « b.o.n.d. » pour base orthonormale directe et « r.o.n.d. » pour
repère orthonormal direct.

11.1.7 Orientation d’un plan de l’espace

Définition 11.1.6. Soit P un plan de E . Un vecteur non nul −→n est dit normal à P s’il est orthogonal
à tous les vecteurs de

−→
P .

Pour orienter un plan, on commence par se donner une orientation de l’espace, puis on choisit un
vecteur unitaire −→n normal au plan (deux choix possibles). On oriente alors le plan à l’aide du repère
orthonormal (

−→
i ,
−→
j ) tel que (

−→
i ,
−→
j ,−→n ) soit une base orthonormale directe de l’espace.

On dit que le plan est orienté par le vecteur normal −→n . En fait, on peut se donner un vecteur
qui n’est pas de norme 1 pour définir l’orientation : on se ramène facilement au cas précédent.
La phrase « La mesure de l’angle (÷−→u ,−→v ) dans le plan orienté par −→n est −π/3 » a alors un sens précis.

Figure 11.3 – Orientation d’un plan par un vecteur normal de l’espace orienté

On dit plus généralement que (−→u ,−→v ,−→n ) est une base directe si l’angle (÷−→u ,−→v ) dans le plan orienté
par −→n est dans l’intervalle [0, π].
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Le bonhomme d’Ampère, debout sur le plan dans la direction verticale donnée par
−→
k et regardant

dans la direction de −→u a le vecteur −→v qui pointe dans le demi-plan qui est à sa gauche.

Nous utiliserons cette généralisation dans la définition du produit vectoriel.

11.2 Produit vectoriel

Définition 11.2.1. Le produit vectoriel dans
−→
E est l’application

−→
E ×
−→
E →

−→
E qui associe à un couple

(−→u ,−→v ) un vecteur noté −→u ∧ −→v défini comme suit :

— si l’un des vecteurs −→u , −→v est nul alors −→u ∧ −→v =
−→
0 ,

— sinon, −→w = −→u ∧ −→v est tel que :
(a) −→w ⊥ −→u , −→w ⊥ −→v ,
(b) (−→u ,−→v ,−→w ) est une base directe,
(c) ‖ −→w ‖=‖ −→u ‖ ‖ −→v ‖ sin θ, où θ = (−→u ,−→v ).

Remarque 11.2.1. On peut aussi écrire ‖ −→w ‖=‖ −→u ‖ ‖ −→v ‖
∣∣∣ sin(÷−→u ,−→v )

∣∣∣, où (÷−→u ,−→v ) est une mesure
de l’angle orienté du couple (−→u ,−→v ) dans un plan les contenant et orienté de façon arbitraire (bien
noter la présence de la valeur absolue).
Si les vecteurs ne sont pas colinéaires, ils engendrent un plan que l’on peut orienter à l’aide de −→w :
comme (−→u ,−→v ,−→w ) est une base directe, la mesure principale θ de l’angle (÷−→u ,−→v ) est dans [0, π] et donc
sin θ > 0, ce qui permet dans ce cas d’omettre la valeur absolue.

Interprétation géométrique : aire d’un parallélogramme ou d’un triangle

Proposition 11.2.1. Soit ABDC un parallélogramme d’un plan P de l’espace. Son aire est donnée
par :

A(ABDC) =‖
−−→
AB ∧

−→
AC ‖

L’aire du triangle ABC est donnée par :

A(ABC) =
1

2
‖
−−→
AB ∧

−→
AC ‖

Preuve : la preuve peut être calquée sur celle de la proposition 10.2.3 où on calcule l’aire du triangle.
On remarque simplement que l’aire du parallélogramme est le double de celle du triangle.
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Figure 11.4 – Produit vectoriel

Exemple : soient A(1, 0, 1), B(2,−1, 3), C(0, 4, 1) : le triangle ABC est-il rectangle en B ? Quelle est
son aire ? Réponse : On a

−−→
BA(1,−1, 2),

−−→
BC(−2, 5,−2) et

−−→
BA.
−−→
BC = −11 6= 0,

−−→
BA ∧

−−→
BC =

Ö
−8
−2
3

è
.

Le triangle ABC n’est donc pas rectangle en B et son aire est
1√

82 + 22 + 32 =

√
77

2
.

Une autre application géométrique : construction d’un vecteur normal à un plan

Proposition 11.2.2.
Soit P (A,−→u ,−→v ) un plan. Le vecteur −→n = −→u ∧ −→v est un vecteur normal à ce plan.

Preuve : tout vecteur de ce plan est de la forme −→w = a−→u + b−→v . Or −→n · −→w = a−→n · −→u + b−→n · −→v = 0
car −→n⊥−→u et −→n⊥−→v .

On étudie maintenant les propriétés du produit vectoriel.

Proposition 11.2.3.
Si −→u et −→v sont orthogonaux et unitaires, alors (−→u ,−→v ,−→u ∧ −→v ) est une b.o.n.d. de

−→
E .

Le produit vectoriel est donc un outil pour construire facilement des bases orthonormales directes.
On vérifiera par exemple que si (

−→
i ,
−→
j ,
−→
k ) est une b.o.n.d. alors :

−→
i ∧ −→j =

−→
k ,
−→
j ∧
−→
k =

−→
i ,
−→
k ∧ −→i =

−→
j .

Comme conséquence directe de la définition on a :

Proposition 11.2.4. Deux vecteurs de l’espace sont colinéaires si et seulement si leur produit vec-
toriel est nul :

−→u //−→v ⇐⇒ −→u ∧ −→v =
−→
0

Voici les règles permettant de manipuler le produit vectoriel :
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Proposition 11.2.5. Soient −→u , −→v et −→w des vecteurs de l’espace et (α, β) des réels. Alors :
— antisymétrie du produit vectoriel :

−→v ∧ −→u = −−→u ∧ −→v

(le produit vectoriel n’est donc pas commutatif)
— propriétés de bilinéarité :

−→u ∧ (−→v +−→w ) = −→u ∧ −→v +−→u ∧ −→w ,

(−→u +−→v ) ∧ −→w = −→u ∧ −→w +−→v ∧ −→w ,

(distributivité par rapport à l’addition)

(α−→u ) ∧ −→v = α (−→u ∧ −→v ),

−→u ∧ (β−→v ) = β (−→u ∧ −→v ),

Preuve : la première propriété et les deux dernières sont aisément justifiables à partir de la définition.
Nous admettrons les autres.

Exercice : on vérifiera à partir des définitions que l’on a :

‖ −→u ∧ −→v ‖2=‖ −→u ‖2‖ −→v ‖2 − (−→u · −→v )
2

Proposition 11.2.6. Soient −→u

Ö
x
y
z

è
, −→v

Ö
x′

y′

z′

è
dans une b.o.n.d., alors

−→u ∧ −→v = (yz′ − y′z)−→i + (zx′ − xz′)−→j + (xy′ − x′y)
−→
k

c’est à dire encore :
−→u ∧ −→v =

y y′

z z′
−→
i +

z z′

x x′
−→
j +

x x′

y y′
−→
k

Preuve : on applique les propriétés de bilinéarité en tenant compte de −→a ∧ −→a =
−→
0 :

−→u ∧ −→v = (x
−→
i + y

−→
j + z

−→
k ) ∧ (x′

−→
i + y′

−→
j + z′

−→
k )

= xy′
−→
i ∧ −→j + xz′

−→
i ∧
−→
k + yx′

−→
j ∧ −→i + yz′

−→
j ∧
−→
k + zx′

−→
k ∧ −→i + zy′

−→
k ∧ −→j

et on termine en calculant chaque produit vectoriel avec l’aide du bonhomme d’Ampère, toujours
serviable.

Exemple : on présentera souvent les calculs, par commodité, en ne faisant figurer que les matrices
colonnes des coordonnées. Ainsi,

Ö
1
−2
1

è
∧

Ö
0
2
−1

è
=



−2 2
1 −1

1 −1
1 0

1 0
−2 2


=

Ö
0
1
2

è
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Comme le produit vectoriel de deux vecteurs est un vecteur, cela a un sens de se poser la question de
l’associativité, or on a le résultat suivant :

Proposition 11.2.7 (Double produit vectoriel). Soient −→u , −→v et −→w des vecteurs de l’espace, alors :

−→u ∧ (−→v ∧ −→w ) = (−→u · −→w )−→v − (−→u · −→v )−→w

Preuve : on peut établir ce résultat en la vérifiant à partir d’un calcul de coordonnées utilisant la
proposition 11.2.6. Les calculs sont fastidieux sauf si on utilise une b.o.n.d adaptée, construite à partir
des vecteurs donnés.

On peut en déduire la non associativité du produit vectoriel car on a par exemple :

−→
i ∧ (

−→
i ∧
−→
k ) =

−→
i ∧ (−−→j ) = −

−→
k ,

tandis que
(
−→
i ∧ −→i ) ∧

−→
k ) =

−→
0 ∧
−→
k =

−→
0 .

11.3 Produit mixte, déterminant

Définition 11.3.1. On appelle produit mixte l’application
−→
E ×
−→
E ×
−→
E → R qui à un triplet (−→u ,−→v ,−→w )

de vecteurs de l’espace associe le réel

[−→u ,−→v ,−→w ] = (−→u ∧ −→v ) · −→w

Remarque 11.3.1. Le produit mixte, comme le produit vectoriel, dépend de l’orientation : un chan-
gement d’orientation change le produit mixte en son opposé.

Une interprétation géométrique : volume d’un parallélépipède

Proposition 11.3.1. Soit (ABCDEFGH) un parallélépipède, avec
−→
AE =

−−→
BF =

−−→
CG =

−−→
DH ;

−−→
AD =

−−→
BC =

−−→
EH =

−−→
FG ;

−−→
AB =

−−→
DC =

−−→
EF =

−−→
HG. Son volume est donné par :

V(ABCDEFGH) =
∣∣∣[−−→AB,−−→AD,−→AE]

∣∣∣

Figure 11.5 – Volume d’un parallélépipède
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Preuve : le volume du parallélépipède est donné par le produit de l’aire de la base (ABCD) par la
hauteur relative à cette base :

V = A(ABCD)×AK

Or on a : A(ABCD) × AK =‖
−−→
AB ∧

−−→
AD ‖ ×AK =

∣∣∣(−−→AB ∧ −−→AD) ·
−−→
AK

∣∣∣ =
∣∣∣(−−→AB ∧ −−→AD) ·

−→
AE

∣∣∣ =∣∣∣[−−→AB,−−→AD,−→AE]
∣∣∣.

Le produit mixte donne un critère simple pour savoir si des vecteurs sont coplanaires :

Proposition 11.3.2. Trois vecteurs −→u , −→v , −→w sont coplanaires si et seulement si [−→u ,−→v ,−→w ] = 0.

Preuve : si −→u ∧ −→v =
−→
0 , l’équivalence est immédiate. Sinon la nullité du produit mixte équivaut à

−→w⊥−→u ∧−→v , donc à l’orthogonalité des trois vecteurs −→u , −→v , −→w à un même vecteur non nul −→n = −→u ∧−→v
donc au fait d’être dans le même plan vectoriel de vecteur normal −→n .

En utilisant les propriétés du produit scalaire et du produit vectoriel on onbtient immédiatement :

Proposition 11.3.3.
Soient −→u , −→u ′, −→v , −→v ′, −→w et −→w ′ des vecteurs de l’espace et (α, β) des réels. Alors :

— l’échange de deux vecteurs change le signe du produit mixte.
Par exemple [−→v ,−→u ,−→w ] = −[−→u ,−→v ,−→w ],

— le produit mixte est invariant par permutation circulaire :

[−→u ,−→v ,−→w ] = [−→v ,−→w ,−→u ] = [−→w ,−→u ,−→v ]

— propriétés de trilinéarité :

[α−→u + β−→u ′,−→v ,−→w ] = α[−→u ,−→v ,−→w ] + β[−→u ′,−→v ,−→w ],

[−→u , α−→v + β−→v ′,−→w ] = α[−→u ,−→v ,−→w ] + β[−→u ,−→v ′,−→w ],

[−→u ,−→v , α−→w + β−→w ′] = α[−→u ,−→v ,−→w ] + β[−→u ,−→v ,−→w ′].

Remarque 11.3.2. L’invariance du produit mixte par les permutations circulaires et la commutativité
du produit scalaire permettent de l’écrire indifféremment sous les formes suivantes :

[−→u ,−→v ,−→w ] = (−→u ∧ −→v ) · −→w = −→u · (−→v ∧ −→w )

De la proposition 11.2.6 et de la définition du produit mixte on déduit le calcul du produit mixte dans
une b.o.n.d. :

Proposition 11.3.4. Soient, dans une b.o.n.d., les vecteurs −→u

Ö
x
y
z

è
, −→v

Ö
x′

y′

z′

è
, −→w

Ö
x′′

y′′

z′′

è
. Alors :

[−→u ,−→v ,−→w ] = x”
y y′

z z′
+ y”

z z′

x x′
+ z”

x x′

y z′
(11.1)

En développant, on trouve

[−→u ,−→v ,−→w ] = xy′z′′ + yz′x′′ + zx′y′′ − xz′y′′ − yx′z′′ − zy′x′′. (11.2)
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Définition 11.3.2. On appelle déterminant de la matrice M =

Ö
x x′ x′′

y y′ y′′

z z′ z′′

è
∈ M3(R) le réel noté

det M ou
x x′ x′′

y y′ y′′

z z′ z′′
défini par :

det M = x”
y y′

z z′
+ y”

z z′

x x′
+ z”

x x′

y z′
(11.3)

= xy′z′′ + yz′x′′ + zx′y′′ − xz′y′′ − yx′z′′ − zy′x′′ (11.4)

Remarque 11.3.3. Dans la formule (11.3), les deuxième et troisième termes s’obtiennent à partir du
premier par permutations ciculaires de la forme x→ y → z → x.

Ce déterminant peut donc s’interpréter comme le produit mixte des vecteurs dont les coordonnées dans
une b.o.n.d. sont données par les trois colonnes de M .
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On constate facilement à partir de la formule développée (11.4) que det M = det tM :

x x′ x′′

y y′ y′′

z z′ z′′
=

x y z
x′ y′ z′

x′′ y′′ z′′
(11.5)

L’écriture du déterminant sous la forme (11.3) s’appelle « développement suivant la troisième colonne ».
On peut en fait avoir des formules analogues en développant suivant n’importe quelle ligne ou colonne
suivant le principe suivant :

— On affecte à chacun des 9 emplacements dans le tableau du déterminant un signe obtenu en
affectant le signe + en ligne 1-colonne 1 (L1C1) et en parcourant le tableau d’une ligne ou
colonne à la fois en changeant le signe : le signe affecté à LiCj est (−1)i+j . On obtient :

+ − +
− + −
+ − +

— si on décide par exemple de développer suivant la deuxième ligne, on écrit le déterminant, en
tenant compte de ces signes, sous la forme det M = −y a + y′ b− y′′ c avec :

a =
x′ x”
z′ z′′

b =
x x′′

z z′′
c =

x x′

z z′

Le coefficient de y, terme de (L2C1), est le déterminant obtenu quand on a rayé la ligne L2 et
la colonne C1 etc...

Remarque : la formulation (11.3) ne comporte que des signes + car on a préféré modifier le détermi-
nant en échangeant les deux lignes, de façon à procéder par permutations circulaires. Chacun utilisera
la méthode qui lui convient.

N’importe laquelle des formules obtenues donne (11.4) à l’ordre près des termes, ce qui suffit à les
justifier.

Conformément à ce qui a été vu pour le produit mixte :

- quand on permute deux lignes ou deux colonnes, on change seulement le signe du déterminant,

- si on fait des permutations circulaires des lignes ou des colonnes, on garde la même valeur.

De la propriété suivante du produit vectoriel

−→u ∧ −→v = −→u ∧ (−→v + α−→u )

on déduit qu’on peut ajouter à une colonne un multiple d’une autre sans changer la valeur
du déterminant.

Grâce à (11.5), on a la même propriété avec les lignes.
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11.4 Droites et plans en géométrie analytique

11.4.1 Représentations paramétriques

Il découle immédiablement des définitions vues en section 11.1.1 qu’une représentation paramétrique

de la droite passant par A(xA, yA, zA) de vecteur directeur −→u

Ö
xu
yu
zu

è
est donnée par

M(x, y, z) ∈ D(A,−→u )⇔ ∃α ∈ R,


x = xA + αxu
y = yA + α yu
z = zA + α zu

De même, on a

M(x, y, z) ∈ P (A,−→u ,−→v )⇔ ∃(α, β) ∈ R2,


x = xA + αxu + β xv
y = yA + α yu + β yv
z = zA + α zu + β zv

ce qui est par définition une représentation paramétrique du plan P (A,−→u ,−→v ).
Pour les plans, on a donc besoin de deux paramètres indépendants.

11.4.2 Équations cartésiennes

Par « équation(s) cartésienne(s) » on entend une condition nécessaire et suffisante portant sur les
coodonnées d’un point pour que ce point appartiennent à l’ensemble étudié (ici, droite ou plan).
On a deux façons d’obtenir de telles équations. L’une consiste à écrire les équations paramétriques et
éliminer les paramètres, l’autre à écrire des relations de colinéarité ou d’orthogonalité en utilisant les
outils que sont le produit scalaire, le produit vectoriel et le produit mixte.
On a choisi de les présenter sur des exemples :

Exemple 1 : soit D(A,−→u ) avec A(1, 2, 3) et −→u

Ö
1
−1
2

è
. Une représentation paramétrique est alors


x = 1 + α
y = 2− α
z = 3 + 2α

, α ∈ R

Il s’agit de trouver nécessaire et suffisante sur les coordonnées pour que le point M(x, y, z) appar-
tiennent à D, donc pour que α existe. On considère donc le système ci dessus comme un système de
trois équations linéaires à une inconnue α. Il équivaut à

α = x− 1
y = 2− (x− 1)
z = 3 + 2(x− 1)

Il admet donc la solution unique α = x − 1 si et seulement si les conditions de compatibilité données
par les deux dernières équations sont satisfaites. Autrement dit :

M(x, y, z) ∈ D(A,−→u )⇔
®
x+ y − 3 = 0
2x− z + 1 = 0

Ce système de deux équations constitue un système d’équations cartésiennes de D.
Cette méthode d’élimination du paramètre est la plus efficace pour les équations de droites dans
l’espace.
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Exemple 2 : soit P (B,−→u ,−→v ) avec B(1, 2,−3), −→u =

Ö
1
−1
1

è
, −→v =

Ö
−1
1
1

è
. Une représentation

paramétrique de ce plan est : 
x = 1 + α− β
y = 2− α+ β
z = −3 + α+ β

, α ∈ R

Un point M(x, y, z) donné est dans le plan si et seulement si il existe un couple (α, β) solution de ce
système de trois équations linéaires à deux inconnues. Il équivaut à

2α = x− 1 + z + 3 (L1 + L3)
2β = z + 3− x+ 1 (L3 − L1)

y = 2− 1

2
(x+ z + 2) +

1

2
(−x+ z + 4)

La condition de compatibilité est donnée par la dernière équation qui se simplifie en x+ y− 3 = 0. On
a montré

M(x, y, z) ∈ P (B,−→u ,−→v )⇔ x+ y − 3 = 0

Cette dernière équation, obtenue par élimination des paramètres α et β, est une équation cartésienne
de P . Observons que si on n’avait su qu’on obtiendrait a priori une seule équation, ce qui sera établi
plus loin, l’opération L1 + L2 aurait directement fourni l’équation cherchée.

Exposons maintenant une autre méthode ne passant pas par une représentation paramétrique. On sait
que M ∈ P (B,−→u ,−→v ) si et seulement si

−−→
BM,−→u ,−→v sont coplanaires et donc si et seulement si

[
−−→
BM,−→u ,−→v ] = 0

C’est à dire
x− xB xu xv
y − yB yu yv
z − zB zu zv

= 0

qui fournit, en le développant suivant la première ligne :

(x− xB)
yu yv
zu zv

+ (y − yB)
zu zv
xu xv

+ (z − zB)
xu xv
yu yv

= 0

Ceci est une équation cartésienne du plan. On pourra poursuivre les calculs et constater qu’on obtient
une équation équivalente à la précédente.

Exemple 3 : trouver une équation cartésienne du plan P passant par A(1,−1, 2), B(2, 1, 3), C(1, 1, 1).
La question sous-entend que les trois points définissent bien un plan, donc ne sont pas alignés, ce qu’il

faudra vérifier. On calcule deux vecteurs directeurs, par exemple
−−→
AB

Ö
1
2
1

è
et
−→
AC

Ö
0
2
−1

è
. On calcule

les coordonnées de
−−→
AB ∧

−→
AC :

−−→
AB ∧

−→
AC =

Ö
1
2
1

è
∧

Ö
0
2
−1

è
=

Ö
−4
1
2

è
Le produit vectoriel n’est pas nul, les trois points ne sont donc pas alignés et définissent
bien un plan. On a alors

[
−−→
AM,

−−→
AB,

−→
AC] =

−−→
AM · (

−−→
AB ∧

−→
AC) = (x− 1)(−4) + (y + 1)1 + (z − 2)2
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On obtient donc une équation cartésienne du plan en écrivant la condition pour que les vecteurs
−−→
AM ,−−→

AB et
−→
AC sont coplanaires :

M(x, y, z) ∈ P ⇐⇒ −4x+ y + 2z + 1 = 0.

Remarque 11.4.1. Posons −→n =
−−→
AB ∧

−→
AC : on a obtenu une équation cartésienne du plan passant

pas A et de vecteur normal −→n car la relation [
−−→
AM,

−−→
AB,

−→
AC] = 0 équivaut à

−−→
AM · −→n = 0. On peut

partir de cette relation pour obtenir une équation cartésienne.

On a obtenu à chaque fois une expression du type ax+ by + cz + d = 0, ce qui est général :

Proposition 11.4.1. Soit (a, b, c, d) ∈ R4 et E = {M(x, y, z) ∈ E ; ax+ by+ cz+ d = 0}. Alors :

— si (a, b, c) = (0, 0, 0) et d 6= 0 on a E = ∅,
— si (a, b, c) = (0, 0, 0) et d = 0 on a E = E,
— si (a, b, c) 6= (0, 0, 0) alors E est un plan de vecteur normal −→n (a, b, c).

Preuve : les deux premiers points sont immédiats. Pour le troisième, si par exemple a 6= 0 on trouve

un point de E sous la forme A(−d
a
, 0, 0) et en retranchant membre à membre l’équation de E et l’égalité

axA + byA + czA + d = 0 on obtient

a (x− xA) + b (y − yA) + c (z − zA) = 0

que l’on peut interpréter sous la forme −→n ·
−−→
AM = 0, ce qui permet de conclure.

Un plan donné n’a pas une seule équation cartésienne, en effet :

Proposition 11.4.2. Deux équations cartésiennes ax+ by + cz + d = 0 et a′x+ b′y + c′z + d′ = 0
avec (a, b, c) 6= (0, 0, 0) et (a′, b′, c′) 6= (0, 0, 0) définissent le même plan si et seulement si (a, b, c, d)
et (a′, b′, c′, d′) sont proportionnels

Preuve : même démonstration que dans le plan, avec une coordonnée en plus (exercice).

On peut maintenant interpréter les équations cartésiennes d’une droite. On a vu que ces équations
consistent en un système :

(S)

®
ax+ by + cz + d = 0
a′x+ b′y + c′z + d′ = 0

Elles consistent donc à écrire que la droite est l’intersection de deux plans : le plan P d’équation
cartésienne ax+ by + cz = 0 et le plan P ′ d’équation a′x+ b′y + c′z + d′ = 0. Comme tout vecteur de
P est orthogonal à −→n (a, b, c) et tout vecteur de P ′ est orthogonal à −→n ′(a′, b′, c′), on obtient que tout
vecteur directeur de D est orthogonal à −→n (a, b, c) et à −→n ′(a′, b′, c′), donc colinéaire à

−→
N = −→n ∧ −→n ′.

On a donc obtenu :

Le vecteur
−→
N

Ö
a
b
c

è
∧

Ö
a′

b′

c′

è
est un vecteur directeur de la droite représentée par (S).

Ceci fournit un moyen, pour une droite, de passer facilement des équations cartésiennes à une repré-
sentation paramétrique.
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Exemple : on considère la droite D représentée par le système d’équations cartésiennes®
2x+ y − z + 1 = 0
x− y + z + 2 = 0.

En donner une représentation paramétrique.
Pour trouver un point de D, on choisit une coordonnée z = 0 par exemple, et on résout le système
obtenu : ®

2x+ y = −1
x− y = −2

soit x = −1, y = 1. Le point A(−1, 1, 0) appartient donc à D. Puis on calcule un vecteur directeurÖ
2
1
−1

è
∧

Ö
1
−1
1

è
=

Ö
0
−3
−3

è
et, éventuellement, on choisit un vecteur directeur plus simple, ici −→u (0, 1, 1). On obtient alors une
représentation paramétrique de D (cf le paragraphe 11.4.1) :

x = −1
y = 1 + α
z = α

, α ∈ R

La méthode aboutit si le vecteur directeur trouvé n’est pas nul. Dans le cas contraire on a −→n //−→n ′ et
les plans sont parallèles ou confondus. On en déduit

Proposition 11.4.3. Le système

(S)

®
ax+ by + cz + d = 0
a′x+ b′y + c′z + d′ = 0

représente une droite si et seulement si (a, b, c) et (a′, b′, c′) ne sont pas proportionnels. C’est à direÖ
a
b
c

è
∧

Ö
a′

b′

c′

è
6= −→0

Preuve : elle sera faite dans la section suivante.

Attention : dans un plan, une droite est définie par deux équations paramétriques avec un paramètre
ou par une équation cartésienne.
Dans l’espace, une droite est définie par trois équations paramétriques avec un paramètre ou par deux
équations cartésiennes.
Dans l’espace, un plan est défini par trois équations paramétriques avec deux paramètres ou par une
équation cartésienne.

186



11.4.3 Intersections : plans et droites

Intersection de deux plans

Proposition 11.4.4. Soient P un plan d’équation ax + by + cz + d = 0 et P ′ un plan d’équation
a′x+ b′y + c′z + d′ = 0, alors :

— si (a, b, c) et (a′, b′, c′) ne sont pas proportionnels, i.e. si
−→
N = −→n

Ö
a
b
c

è
∧−→n ′

Ö
a′

b′

c′

è
6= −→0 , alors

P ∩P ′ est une droite D dirigée par
−→
N et admettant comme système d’équations cartésiennes®
ax+ by + cz + d = 0
a′x+ b′y + c′z + d′ = 0

— si (a, b, c, d) et (a′, b′, c′, d′) sont proportionnels, les deux plans sont confondus : P ∩P ′ = P =
P ′,

— si (a, b, c) et (a′, b′, c′) sont proportionnels et si (a, b, c, d) et (a′, b′, c′, d′) ne sont pas propor-
tionnels, on a P ∩ P ′ = ∅ : les plans sont strictement parallèles.

Figure 11.6 – Intersection de deux plans

Preuve : si (a, b, c) et (a′, b′, c′) ne sont pas proportionnels, un des déterminants a a′

b b′
, b b′

c c′
,

ou a a′

c c′
est différent de 0. Si par exemple a a′

c c′
6= 0, on écrit que le système est équivalent à®

ax+ cz = −by − d
a′x+ c′z = −b′y − d′

On a vu (chapitre 9) qu’alors on peut exprimer (x, y) en fonction de z qui joue le rôle de paramètre.
On vérifie ainsi qu’il y a une infinité de solutions dépendant d’un paramètre : c’est une droite.
Si (a, b, c) et (a′, b′, c′) sont proportionnels, il existe k 6= 0 tel que a′ = ka, b′ = kb, c′ = kc, le système
d’équation est équivalent à ®

ax+ by + cz + d = 0
d′ − kd = 0 L2 − kL1

Si d′−kd = 0, alors (a, b, c, d) et (a′, b′, c′, d′) sont proportionnels, les deux équations sont équivalentes,
les deux plans sont confondus.
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Si d′ − kd 6= 0, le système n’a pas de solution, l’intersection des deux plans est vide, les plans sont
strictement parallèles.

Intersection d’un plan et d’une droite

Soient P un plan d’équation αx + βy + γz + δ = 0 et D une droite ayant pour système d’équations
cartésiennes ®

ax+ by + cz + d = 0
a′x+ b′y + c′z + d′ = 0

Un point M(x, y, z) est commun à P et à D s’il vérifie le système de trois équations linéaires à trois
inconnues 

αx+ βy + γz + δ = 0
ax+ by + cz + d = 0
a′x+ b′y + c′z + d′ = 0,

les deux dernières n’étant pas équivalentes.

On résoudra ce système par la méthode de Gauss.
On sait (cf chapitre 9) qu’un tel système a soit une unique solution, soit aucune soit une infinité
dépendant d’un paramètre, on retrouve ainsi que :
Dans l’espace, l’intersection d’un plan et d’une droite est soit

— un point : la droite et le plan sont sécants,
— la droite elle même : la droite est incluse dans le plan,
— l’ensemble vide : la droite et le plan sont strictement parallèles.

Figure 11.7 – Intersection d’une droite et d’un plan

On dispose d’un critère simple pour savoir si une droite et un plan sont sécants, sans nécessairement
trouver le point d’intersection :

Proposition 11.4.5. Avec les notations précédentes, le plan et de la droite sont sécants si et seule-
ment si

α β γ
a b c
a′ b′ c′

6= 0

Preuve : on sait qu’un vecteur directeur −→u de la droite est donné par −→u = −→n ∧−→n ′ avec −→n

Ö
a
b
c

è
et

188



−→n ′

Ö
a′

b′

c′

è
. Soient

−→
N

Ö
α
β
γ

è
un vecteur normal au plan, A un point de la droite, B un point du plan.

M ∈ P ∩D ⇐⇒ ∃α ∈ R,
−−→
AM = α−→u et

−−→
BM ·

−→
N = 0.

En écrivant
−−→
BM =

−−→
BA+

−−→
AM on en déduit :

M ∈ P ∩D ⇐⇒ ∃α ∈ R,
−−→
BA ·

−→
N + α−→u ·

−→
N = 0.

L’existence et l’unicité de M équivaut à l’existence et l’unicité de α, ce qui est réalisé si et seulement
si le coefficient de α, c’est à dire −→u ·

−→
N , est non nul. Ce coefficient est le produit mixte [

−→
N,−→n ,−→n ′], il

est donc égal au déterminant
α a a′

β b b′

γ c c′
.

On en déduit un résultat important :

Proposition 11.4.6. Une matrice A de taille 3× 3 est inversible si et seulement si det A 6= 0.

Preuve : on sait qu’une matrice A est inversible si et seulement si le système linéaire AX = B
admet une et une seule solution pour tout second membre B. Il suffit d’interpréter ce système comme
l’intersection d’un plan donné par la première équation et d’une droite donnée par les deux autres.

Corollaire 11.4.1. Un système linéaire AX = B de taille 3 × 3admet une solution unique si et
seulement si det A 6= 0.

Intersection de deux droites dans l’espace

Deux droites de l’espace D et D′ ne se coupent pas en général. En effet :

Proposition 11.4.7. Si deux droites de l’espace sont sécantes, elles sont coplanaires.

Preuve : soient A = D ∩ D′, −→u un vecteur directeur de D, −→v un vecteur directeur de D′, il est
immédiat que D et D′ sont dans le plan P (A,−→u ,−→v ).

Il existe un critère simple pour savoir si deux droites sont coplanaires.

Proposition 11.4.8. Soient D(A,−→u ) et D′(A′,−→v ) deux droites de l’espace. Alors D et D′ sont
coplanaires si et seulement si [

−−→
AA′,−→u ,−→v ] = 0

Preuve : si les droites sont coplanaires alors les vecteurs
−−→
AA′, −→u et −→v le sont et donc leur produit

mixte est nul. Réciproquement supposons que [
−−→
AA′,−→u ,−→v ] = 0. Si −→u //−→v les droites sont paral-

lèles donc coplanaires, sinon on considère le plan P (A,−→u ,−→v ). Ce plan contient évidemment la droite
D(A,−→u ) et on veut montrer qu’il contient aussi D′(A′,−→v ).
Soit donc M ∈ D′ : ∃λ ∈ R,

−−→
A′M = λ−→v et on a :

[
−−→
AA′,−→u ,−→v ] = [

−−→
AM −

−−→
A′M,−→u ,−→v ] = [

−−→
AM − λ−→v ,−→u ,−→v ] = [

−−→
AM,−→u ,−→v ] = 0

ce qui prouve que M ∈ D′ et ainsi on a D′ ⊂ P . Les deux droites sont dans P donc coplanaires.
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Si les droites sont coplanaires, il y a deux cas de figures : si −→u //−→v les droites sont dites parallèles,
sinon, elles sont séantes et ont un et un seul point d’intersection.

Exemple 1 soient D donnée par les équations cartésiennes®
x+ y + z + 1 = 0
2x− y + z − 1 = 0

et D′ donnée par ®
x− 2y + 3z + 1 = 0
x− y + 2z − 2 = 0

D et D′ sont-elles sécantes ?
On est conduit à considérer le système de 4 équations linéaires à 3 inconnues

x+ y + z + 1 = 0
2x− y + z − 1 = 0
x− 2y + 3z + 1 = 0
x− y + 2z − 2 = 0

qu’on résout par la méthode de Gauss
x + y + z + 1 = 0

−3y + z − 1 = 0 L2 − 2L1

−3y + 2z = 0 L3 − L1

−2y + z − 2 = 0 L4 − L1

permutation de y et z : 
x + z + z + 1 = 0

z + −3y − 1 = 0
2z + −3y = 0
z + −2y − 2 = 0

élimination de z : 
x + z + z + 1 = 0

z + −3y − 1 = 0
−3y + 2 = 0 L3 − 2L2

y − 3 = 0 L4 − L2

Les deux dernières équations sont incompatibles : D et D′ ne se coupent pas.

L’utilisation du produit mixte nécessite de

1. Calculer les coordonnées d’un point A de D et d’un point A′ de D′

2. Calculer les vecteurs directeurs de D et D′

3. Calculer le produit mixte.

et peut s’avérer plus longue que l’approche directe qu’on vient de voir :

1. on trouve facilement A(0,−1, 0) ∈ D, A′(5, 3, 0) ∈ D′ et donc
−−→
AA′

Ö
5
4
0

è
2. coordonnées d’un vecteur directeur de D :

Ö
1
1
1

è
∧

Ö
2
−1
1

è
=

Ö
2
1
−3

è
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3. coordonnées d’un vecteur directeur de D′ :

Ö
1
−2
3

è
∧

Ö
1
−1
2

è
=

Ö
−1
1
1

è
4. Calcul du produit mixte :

5 2 1
4 1 −1
0 −3 2

= 5
1 −1
−3 2

− 4
2 1
−3 2

= −33.

Conclusion : le produit mixte est différent de 0, les droites ne se coupent pas.
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Exemple 2

Soient D(A,−→u ) avec A(1, 2, 1), −→u (1, 2,−3) et D′(B,−→v ) avec B(1,−1, 2), −→v (2,−2, 1), D et D′ sont-
elles sécantes ?
On a

M(x, y, z) ∈ D(A,−→u )⇔ ∃α ∈ R,


x = 1 + α
y = 2 + 2α
z = 1− 3α

M(x, y, z) ∈ D(B,−→v )⇔ ∃β ∈ R,


x = 1 + 2β
y = −1− 2β
z = 2 + β

On en déduit que sM ∈ D ∩D′ si et seulement si il existe (α, β) ∈ R2 tels que


1 + α = 1 + 2β
2 + 2α = −1− 2β
1− 3α = 2 + β

qui est un système de 3 équations linéaires à 2 inconnues :
α− 2β = 1
2α+ 2β = −3
3α− β = 2

On obtient :


α − 2β = 1

6β = −5 L2 − 2L1

5β = −1 L3 − 3L1

Les deux dernières équations sont incompatibles : D et D′ ne se coupent pas.

L’utilisation du produit mixte est ici plus rapide.

On calcule −→u ∧−→v =

Ö
1
2
−3

è
∧

Ö
2
−2
1

è
=

Ö
−4
−7
−6

è
6= −→0 : les droites ne sont pas parallèles. On calcule

alors
−−→
AB

Ö
0
−3
1

è
et le produit mixte [

−−→
AB,−→u ,−→v ] = 0.(−4) + (−3).(−7) + 1.(−6) = 15 6= 0 : les droites

ne sont pas coplanaires, donc pas concourantes.

11.4.4 Droites et plans : orthogonalité et perpendicularité

Il y a souvent une certaine confusion entre les notions d’orthogonalité et de perpendicularité. On se
propose de les préciser et de donner des critères. On pourra aussi consulter :

https://fr.wikipedia.org/wiki/Perpendicularité

Nous commençons par des exemples puis nous énonçons les définitions et les critères pratiques.
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— Les droites (AB) et (BC) sont orthogonales et perpendiculaires en B.
— Les droites (AB) et (FG) sont orthogonales mais ne sont pas perpendiculaires.
— La droite (AB) et le plan (CFG) sont perpendiculaires en B. Ils sont orthogonaux.
— Les plans (ABC) (le sol) et (ABF ) (un mur) sont perpendiculaires, d’intersection la droite

(AB).
— Les plans (ABC) (le sol) et (BDF ) sont perpendiculaires, d’intersection la droite (BD).

Définition 11.4.1. Deux sous ensembles de vecteurs de l’espace qui sont des directions de plans ou
de droites sont dits orthogonaux si tout vecteur de l’un est orthogonal à tout vecteur de l’autre.

Définition 11.4.2. Deux doites D et D′ de l’espace sont orthogonales (D⊥D′) si elles forment un
angle droit : (÷D,D′) =

π

2
.

En particulier D(A,−→u ) et D′(B,−→u ′) sont orthogonales si et seulement si −→u · −→u ′ = 0. En fait :

Proposition 11.4.9. Deux doites D et D′ de l’espace sont orthogonales si et seulement si leurs direc-
tions

−→
D et

−→
D ′ sont orthogonales.

Définition 11.4.3. Deux doites D et D′ de l’espace sont perpendiculaires si elles sont sécantes et
orthogonales : D∩D′ 6= ∅ et D⊥D′. Si alors D∩D′ = {A} on dit que D et D′ sont perpendiculaires
en A.

Dans le cas d’une droite et d’un plan les deux notions coïncident car une droite qui n’est pas parallèle
à un plan est toujours sécante à ce plan.

Définition 11.4.4. Une doite D et un plan P sont perpendiculaires (ou orthogonales) si D est ortho-
gonale à deux droites sécantes de P

Proposition 11.4.10. Une doite D et un plan P sont perpendiculaires si et seulement si leurs direc-
tions

−→
D et

−→
P sont orthogonales.

On a un critère très simple :

Proposition 11.4.11. Une doite D dirigée par −→u et un plan P sont perpendiculaires si et seulement
si −→u est un vecteur normal à

−→
P .

Définition 11.4.5. Un plan P est perpendiculaire à un plan P ′ s’il contient une droite perpendiculaire
à P ′. On démontre que cette relation est symétrique (i.e. on peut énoncer les plans dans un ordre
quelconque). On écrit P⊥P ′.
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Attention : les directions de deux plans perpendiculaires ne sont pas orthogonales car il est faux que
tout vecteur de

−→
P est orthogonal à tout vecteur de

−→
P ′ : un vecteur directeur de la droite d’intersection

n’est pas orthogonal à lui-même !

On a le critère pratique suivant :

Proposition 11.4.12. Deux plans sont perpendiculaires si et seulement si leur vecteurs normaux sont
orthogonaux.

Citons Wikipedia pour finir (on pourra faire des figures pour illustrer) :

« Il faut se méfier de la notion de plans perpendiculaires. Par exemple :
deux plans perpendiculaires peuvent contenir des droites parallèles,
deux plans perpendiculaires à un troisième ne sont pas forcément parallèles (voir les faces du cube).
Il reste cependant quelques propriétés :
Si deux plans sont perpendiculaires, un plan parallèle à l’un est perpendiculaire à l’autre
Si deux plans sont parallèles, un plan perpendiculaire à l’un est perpendiculaire à l’autre. »

11.5 Calculs de distances

On va examiner trois types de problèmes : calcul de la distance d’un point à un plan, d’un point à une
droite et entre deux droites.

11.5.1 Distance d’un point à un plan

Soient A(xA, yA, zA) un point de E et P un plan. Soit H la projection orthogonale de A sur P : on
déduit facilement du théorème de Pythagore que la plus courte distance entre A et un point quelconque
de P est ‖

−−→
AH ‖. C’est la distance de A au plan P , on la note d(A,P ). Pour la calculer, on distinguera

les cas où le plan est donnée par une équation cartésienne et celui où il est défini par un point et deux
vecteurs directeurs.

Proposition 11.5.1. Soient P un plan de l’espace et A(xA, yA, zA) un point.
— si le plan est défini par une équation cartésienne ax+ by+ cz + d = 0, alors la distance de A

au plan P est donnée par :

d(A,P ) =
|axA + byA + czA + d|√

a2 + b2 + c2

— si le plan est défini par un point B et un couple (−→u ,−→v ) de vecteurs non colinéaires, ou encore
par trois points non alignés (B,C,D), alors la distance de A au plan P est donnée par :

d(A,P ) =

∣∣∣[−−→AB,−→u ,−→v ]
∣∣∣

‖ −→u ∧ −→v ‖
=

∣∣∣[−−→BA,−−→BC,−−→BD]
∣∣∣

‖
−−→
BC ∧

−−→
BD ‖

Preuve : le cas d’une équation cartésienne s’établit comme pour la distance d’un point à une droite
en géométrie plane (formule 10.3.5), avec une coordonnée de plus. Le détail est laissé en exercice.
Lorsque le plan est défini par la donnée d’un point B et d’un couple (−→u ,−→v ) de vecteurs non colinéaires,
ou encore par trois points non alignés (B,C,D), on peut interpréter la distance d(A,P ) comme la
hauteur du paralléllépipède construit sur les vecteurs (−→u ,−→v ,

−−→
BA) (ou (

−−→
BC,

−−→
BD,

−−→
BA) au dessus du

parallélogramme de base construit sur (−→u ,−→v ) (ou (
−−→
BC,

−−→
BD)) dont l’aire est ‖ −→u ∧ −→v ‖.
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On a donc :

d(A,P ) = AH =
V
A

=

∣∣∣[−−→BA,−−→BC,−−→BD]
∣∣∣

‖
−−→
BC ∧

−−→
BD ‖

11.5.2 Distance d’un point à une droite

Cette notion de distance est la même qu’au chapitre 10, d’ailleurs une droite et un point sont toujours
dans un même plan.

Proposition 11.5.2. Soient A(xA, yA, zA) un point de E et D(B,−→u ) une droite. La distance de A
à D est donnée par :

d(A,D) =
‖
−−→
AB ∧ −→u ‖
‖ −→u ‖

Preuve : on se place dans le plan défini par A, B et −→u , on peut alors construire H la projection
orthogonale de A sur D (voir la figure 11.8 ci-dessous). La distance de A à D, c’est à dire la plus petite
distance de A à un point de D est donnée par d(A,D) =‖

−−→
AH ‖ (garanti par Pythagore). Soit C le

point de D tel que −→u =
−−→
BC : l’aire du triangle ABC est donnée par A(ABC) =

1

2
‖
−−→
AB ∧

−−→
BC ‖=

1

2
‖
−−→
AH ‖ ‖

−−→
BC ‖. Le résultat s’en suit immédiatement.

Figure 11.8 – Distance d’un point à une droite de l’espace
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Exemple : calculer la distance du point A(1,−1, 2) à la droite D d’équations cartésiennes®
x− y + z + 1 = 0
2x− y − z − 1 = 0

On calcule un vecteur directeur −→u de D :

−→u =

Ö
1
−1
1

è
∧

Ö
2
−1
−1

è
=

Ö
2
3
1

è
On calcule les coordonnées d’un point B de D en faisant x = 0 par exemple et en calculant (y, z), on
trouve y = 0, z = −1 donc B(0, 0,−1). On a alors

−−→
AB(−1, 1,−3), on calcule alors

−−→
AB ∧ −→u =

Ö
−1
1
−3

è
∧

Ö
2
3
1

è
=

Ö
10
−5
−5

è
,

On a

d(A,D) =
‖
−−→
AB ∧ −→u ‖
‖ −→u ‖

=

√
102 + 52 + 52

√
22 + 32 + 1

=
5
√

6√
15

=
√

10.

Ò

11.5.3 Distance entre deux droites

Soient D(A,−→u ) et D′(A′,−→u ′) deux droites de l’espace :
— si D//D′, ce qui équivaut à −→u //−→u ′, la distance d’un point de D à D′ ne dépend pas du point

considéré, c’est par définition aussi la distance de D à D′, elle est donnée par la formule de la
proposition 11.5.2 :

d(D,D′) =
‖
−−→
AA′ ∧ −→u ‖
‖ −→u ‖

=
‖
−−→
AA′ ∧

−→
u′ ‖

‖
−→
u′ ‖

(11.6)

— si les deux droites sont sécantes, alors d(D,D′) = 0.
— si on est dans le cas général de droites non coplanaires, on définit alors la distance entre D et

D′ comme la plus petite distance entre un point de D et un point de D′. C’est l’objet de la
proposition qui suit.

Proposition 11.5.3. Soient D(A,−→u ) et D′(A′,−→u ′) deux droites non coplanaires de l’espace. La
distance entre ces droites est donnée par :

d(D,D′) =
|[
−−→
AA′,−→u ,−→u ′]|
‖ −→u ∧ −→u ′ ‖

(11.7)

Preuve : grâce au théorème de Pythagore, on montre que la distance est atteinte pour H ∈ D et
H ′ ∈ D′ tels que

−−→
HH ′ ⊥ D et

−−→
HH ′ ⊥ D′ (voir la figure 11.9). On a donc

−−→
HH ′//(−→u ∧ −→u ′) d’où, en

posant −→n =
1

‖ −→u ∧ −→u ′ ‖
−→u ∧ −→u ′

d(D,D′) =‖ HH ′ ‖= |
−−→
HH ′ · −→n |

196



mais le projeté orthogonal du vecteur
−−→
AA′ sur Vect(−→n ) est

−−→
HH ′, donc

−−→
HH ′ ·−→n =

−−→
AA′ ·−→n et la formule

s’en suit.

Remarque 11.5.1. Cette dernière formule donne aussi le résultat correct (distance nulle) quand les
droites sont sécantes.

Figure 11.9 – Perpendiculaire commune et distance entre deux droites

Exemple :
soient A(1, 2, 3), B(−1, 1, 2), C(1, 1, 1) et D(−2, 1, 4), calculer la distance de la droite (AB) à la droite
(CD).

On applique le résultat avec D(A,
−−→
AB) et D′(C,

−−→
CD). On calcule

−−→
AB

Ö
−2
−2
−1

è
et
−−→
CD

Ö
−3
0
3

è
les

vecteurs directeurs des deux droites, puis
−−→
AB ∧

−−→
CD

Ö
−6
3
−6

è
qui n’est pas nul, les droites ne sont

donc pas parallèles. On calcule alors ‖
−−→
AB ∧

−−→
CD ‖=

√
62 + 32 + 62 = 9, puis

−→
AC

Ö
0
−1
−2

è
et enfin

[
−→
AC,
−−→
AB,

−−→
CD] = 0 · (−6) + (−1) · 3 + (−2) · (−6) = −15. On trouve donc

d((AB), (CD)) =
15

9
=

5

3
.

11.6 Translations, Homothéties, Projections, Symétries.

11.6.1 Introduction

On peut reprendre intégralement l’introduction 10.5.1 en remplaçant P par E et
−→
P par

−→
E .
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11.6.2 Les translations

Elle est définie comme dans le plan : la translation de vecteur −→a est la transformation t−→a de E qui, à
tout point M associe le point M ′ tel que

−−−→
MM ′ = −→a .

Si −→a a pour coordonnées (xa, ya, za) et M pour coordonnées (x, y, z) dans un repère, alors les coor-
données de M ′ sont 

x′ = x+ xa
y′ = y + ya
z′ = z + za

• Propriétés des translations : en plus des propriétés qu’on a donné dans le chapitre 10, on a
1. L’image par une translation d’un plan est le plan lui-même si les vecteurs directeurs du plan et

le vecteur de la translation sont coplanaires.
2. L’image par une translation d’un plan est un plan parallèle si les vecteurs directeurs du plan et

le vecteur de la translation ne sont pas coplanaires.
L’application vectorielle associée à la translation est l’identité, la démonstration est la même que dans
le plan.

11.6.3 Les homothéties

Soit Ω un point du plan et k un réel non nul. Comme dans le plan, l’homothétie de centre Ω et de
rapport k la transformation h(Ω, k) de E qui, à tout point M associe le point M ′ tel que

−−→
ΩM ′ = k

−−→
ΩM

Si Ω a pour coordonnées (xΩ, yΩ, zΩ et M a pour coordonnées (x, y, z, alors les coordonnées (x′, y′, z′)
de M ′ vérifient : 

x′ = xω + k (x− xω)
y′ = yω + k (y − yω)
z′ = zω + k (z − zω)

• Propriétés des homothéties : comme pour la translation, il faut ajouter aux propriétés déja
vues

1. L’image d’un plan passant par le centre de l’homothétie est le plan lui-même.
2. L’image d’un plan ne passant pas par le centre de l’homothétie est un plan parallèle.

L’homothétie vectorielle, associée à h(Ω, k), est la transformation linéaire −→u → k−→u donnée par :
x′ = kx
y′ = ky
z′ = kz

ou encore : Ö
x′

y′

z′

è
=

Ö
k 0 0
0 k 0
0 0 k

èÖ
x
y
z

è
.

La matrice associée à l’homothétie vectorielle est k I3.

11.6.4 Les projections et les symétries

On va maintenant projeter sur une droite suivant la direction d’un plan ou projeter sur un plan suivant
la direction d’une droite. Idem pour les symétries.
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Projection sur une droite parallèlement à un plan

Définition 11.6.1. Soient une droite D(A,−→u ) et
−→
P un plan vectoriel de vecteurs directeurs −→v , −→w tels

que −→u , −→v , −→w ne sont pas coplanaires. On appelle projection sur D parallèlement à
−→
P l’application

p de l’espace dans lui-même qui à tout point M associe le point p(M) tel que
— p(M) ∈ D,
—
−−−−−→
Mp(M) ∈

−→
P

Pour trouver les coordonnées (x′, y′, z′) de p(M) en fonction de celles de M(x, y, z), on calcule l’inter-
section du plan P (M,−→v ,−→w ) avec la droite D. Cette intersection est un point car −→u , −→v , −→w ne sont
pas coplanaires.

Symétrie par rapport à une droite parallèlement à un plan

Définition 11.6.2. On appelle symétrie par rapport à D parallèlement à
−→
P l’application s de

l’espace dans lui-même qui à tout point M associe le point s(M) tel que
— le milieu I du segment [M, s(M)] appartient à D (I = p(M),
—
−−−−−→
Ms(M) ∈

−→
P

Figure 11.10 – Projections et symétries par rapport à une droite parallèlement à un plan
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Pour trouver s(M)(x′, y′, z′), on écrit les deux équations qui expriment que I(
x+ x′

2
,
y + y′

2
,
z + z′

2
)

est un point de d et l’équation [
−−−−−→
Ms(M),−→u ,−→v ] = 0 qui exprime que

−−−−−→
Ms(M), −→u , −→v sont coplanaires :

on a un système de trois équations à trois inconnues.

Projection sur un plan parallèlement à une droite

Définition 11.6.3. Soient un plan P (A,−→u ,−→v ) et
−→
D(−→w ) la direction d’une droite tels que −→u , −→v , −→w

ne sont pas coplanaires. On appelle projection sur P parallèlement à
−→
D l’application p de l’espace

dans lui-même qui à tout point M associe le point p(M) tel que
— p(M) ∈ P ,
—
−−−−−→
Mp(M) ∈

−→
D

Pour trouver les coordonnées (x′, y′, z′) de p(M) en fonction de celles de M(x, y, z), on calcule l’in-
tersection du plan P (A,−→v ,−→w ) avec la droite D(M,−→w ) : c’est un point car −→u , −→v , −→w ne sont pas
coplanaires.

Symétrie par rapport à un plan parallèlement à une droite

Définition 11.6.4. On appelle symétrie par rapport à P parallèlement à
−→
D l’application s de

l’espace dans lui-même qui à tout point M associe le point s(M) tel que
— le milieu I du segment [M, s(M)] appartient à P (I = p(M),
—
−−−−−→
Ms(M) ∈

−→
D

Figure 11.11 – Projections et symétries par rapport à un plan parallèlement à une droite
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Pour trouver s(M)(x′, y′, z′), on écrit l’ équation cartésienne qui exprime que I(
x+ x′

2
,
y + y′

2
,
z + z′

2
)

est un point de P et la relation
−−−−−→
Ms(M) = α−→w . On a un système de quatre équations à quatre inconnues

(x′, y′, z′, α) à résoudre.

• Projections et symétries orthogonales :
Ces transformations sont dites orthogonales si la droite et le plan qui les définissent sont orthogonaux.

• Propriétés des projections et des symétries :

1. Une projection est caractérisée par le fait que p ◦ p = p. La droite ou le plan sur lequel on
projette est l’ensemble des points invariants.

2. Une symétrie est caractérisée par le fait que s ◦ s = Id. La droite ou le plan par rapport auquel
on fait la symétrie est l’ensemble des points invariants.

3. L’image d’une droite ou d’un plan par une symétrie est une droite ou un plan.
4. Une symétrie orthogonale conserve la distance entre deux points, change les angles en leurs

opposés et transforme une droite en une autre droite, un cercle en un autre cercle.

Exemple
Soient A(1, 2, 3) et B(−1, 3, 1), C(2, 1, 3), D(4, 1,−2). Calculer les coordonnées de D′ symétrique or-
thogonal de D par rapport au plan (ABC).

Soit (x′, y′, z′) les coordonnées de D′. On a une symétrie orthogonale par rapport au plan (ABC), la

direction de la symétrie est donc donnée par
−−→
AB ∧

−→
AC, on a

−−→
AB

Ö
−2
1
−2

è
,
−→
AC

Ö
1
−1
0

è
, on en déduit

−−→
AB ∧

−→
AC

Ö
−2
−2
1

è
.
−−→
DD′//

−−→
AB ∧

−→
AC s’écrit :

∃k ∈ R,


x′ = 4− 2k
y′ = 1 + k
z′ = −2− 2k

Le milieu I de (D,D′) a pour coordonnées (
4 + x′

2
,
1 + y′

2
,
−2 + z′

2
).

I ∈ (ABC) s’écrit
−→
AI · (

−−→
AB ∧

−→
AC) = 0.

On a
−→
AI(

x′

2
+ 1,

y′

2
− 3

2
,
z′

2
− 4) et on obtient finalement, après calcul :

−x′ − y′ + z′, 2− 3 = 0.

On a à résoudre 
x′ = 4− 2k
y′ = 1 + k
z′ = −2− 2k

−x′ − y′ + z′, 2− 3 = 0

On calcule k avec la dernière ligne −4 + 2k − 1 − k − 1 + k − 3 = 0 soit 2k = 9 et on obtient les
coordonnées de D′ : 

x′ = −5

y′ =
11

2
z′ = −11

d’où D′(−5, 11, 2,−11).
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