Formulaire de dérivées

Dérivées des fonctions usuelles

Fonction	Dérivable sur	Dérivée
f(x) = k	\mathbb{R}	f'(x) = 0
$f(x) = x^{\alpha}, \ \alpha \in \mathbb{R}$	$]0,+\infty[$	$f'(x) = \alpha x^{\alpha - 1}$
$f(x) = \exp(x)$	\mathbb{R}	$f'(x) = \exp(x)$
$f(x) = \ln(x)$	$]0,+\infty[$	$f'(x) = \frac{1}{x}$
$f(x) = a^x, a \in \mathbb{R}_+^*$	$\mathbb R$	$f'(x) = \ln a \cdot a^x$
$f(x) = \cos(x)$	\mathbb{R}	$f'(x) = -\sin(x)$
$f(x) = \sin(x)$	$\mathbb R$	$f'(x) = \cos(x)$
$f(x) = \tan(x)$	$\mathbb{R} \setminus \left\{ (2k+1)\frac{\pi}{2}, k \in \mathbb{Z} \right\}$	$f'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
$f(x) = \arcsin(x)$] - 1, 1[$f'(x) = \frac{1}{\sqrt{1 - x^2}}$
$f(x) = \arccos(x)$] - 1, 1[$f'(x) = -\frac{1}{\sqrt{1-x^2}}$
$f(x) = \arctan(x)$	$\mathbb R$	$f'(x) = \frac{1}{1+x^2}$
$f(x) = \cosh(x)$	$\mathbb R$	$f'(x) = \sinh(x)$
$f(x) = \sinh(x)$	$\mathbb R$	$f'(x) = \cosh(x)$
$f(x) = \tanh(x)$	${\mathbb R}$	$f'(x) = 1 - \tanh^2(x)$

Opération sur les dérivées

Hypothèses	Dérivabilité	Fonction dérivée
f et g dérivable sur I	f + g dérivable sur I	(f+g)'(x) = f'(x) + g'(x)
f et g dérivable sur I	fg dérivable sur I	(fg)'(x) = f'(x)g(x) + f(x)g'(x)
f dérivable sur $I, \lambda \in \mathbb{R}$	λf dérivable sur I	$(\lambda f)'(x) = \lambda f'(x)$
f et g dérivable sur I et $\forall x \in I$, $g(x) \neq 0$	$\frac{f}{g}$ dérivable sur I	$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$
f dérivable sur I et $\forall x \in I$, $f(x) \neq 0$	$\frac{1}{f}$ dérivable sur I	$\left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f^2(x)}$
g dérivable sur I et f dérivable sur $g(I)$	$f \circ g$ dérivable sur I	$(f \circ g)'(x) = g'(x)f'(g(x))$

Composition de fonctions usuelles et dérivées

Hypothèses	Dérivabilité	Fonction dérivée
$n \in \mathbb{N}^*, f$ dérivable sur I	f^n dérivable sur I	$(f^n)'(x) = nf'(x) (f(x))^{n-1}$
$n \in \mathbb{N}^*, f$ dérivable sur I et $\forall x \in I, f(x) \neq 0$	$\frac{1}{f^n}$ dérivable sur I	$\left(\frac{1}{f^n}\right)'(x) = -n\frac{f'(x)}{\left(f(x)\right)^{n+1}}$
$\alpha \in \mathbb{R}, f$ dérivable sur I et $\forall x \in I, f(x) > 0$	f^{α} dérivable sur I	$(f^{\alpha})'(x) = \alpha f'(x) (f(x))^{\alpha - 1}$
f dérivable sur I et $\forall x \in I$, $f(x) > 0$	\sqrt{f} dérivable sur I	$\left(\sqrt{f}\right)'(x) = \frac{f'(x)}{2\sqrt{f(x)}}$
f dérivable sur I et $\forall x \in I$, $f(x) \neq 0$	$\ln(f)$ dérivable sur I	$\left(\ln(f)\right)'(x) = \frac{f'(x)}{f(x)}$
f dérivable sur I	$\exp(f)$ dérivable sur I	$\left(\exp(f)\right)'(x) = f'(x)\exp(f(x))$
f dérivable sur I	$\sin(f)$ dérivable sur I	$(\sin(f))'(x) = f'(x)\cos(f(x))$
f dérivable sur I	$\cos(f)$ dérivable sur I	$\left(\cos(f)\right)'(x) = -f'(x)\sin(f(x))$