Corrigé de la feuille 5 - Fonctions usuelles

Exercice 1. Questions de cours

- 1. Définition des fonctions puissances. Qu'est-ce que $\pi^{\sqrt{2}}$? $(-2)^{\sqrt{2}}$? Définition de $\sqrt[n]{x}$ pour n > 3?
- 2. Donner la définition d'une fonction périodique. Exemples ?
- 3. Définition et dérivée de la fonction tangente (sous deux formes).
- 4. (Trigo) Retrouver rapidement les formules de transformation de produit en somme et de somme en produit.

Solution. Noter que $(-2)^{\sqrt{2}}$ n'est pas défini. Pour le reste, se reporter au polycopié.

Exercice 2. Soient les fonctions $f: \left\{ egin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sqrt[3]{x} \end{array} \right.$ et $g: \left\{ egin{array}{ll} [-\pi,\pi] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \cos x \end{array} \right.$ On note $h=f\circ g$ et $k=g\circ f$. Préciser les domaines de définition de f,g,h,k ainsi que les expressions

de h(x) et k(x).

Solution. $\mathcal{D}_f = [0, +\infty[, \mathcal{D}_g = [-\pi, \pi], \mathcal{D}_h = \{x \in [-\pi, \pi]; \cos x \ge 0\} = [-\frac{\pi}{2}, \frac{\pi}{2}], h(x) = \sqrt[3]{\cos x}$ $\mathcal{D}_k = \{x \in [0, +\infty[; \sqrt[3]{x} \in [-\pi, \pi] \} = [0, \pi^3], k(x) = \cos \sqrt[3]{x}.$

Exercice 3. Soient f et g deux fonctions réelles impaires définies sur \mathbb{R} . Étudier la parité de $g \circ f$ et de fg.

Solution. Les fonctions considérées sont définies sur \mathbb{R} , donc ont un domaine symétrique par rapport à 0. De plus:

 $\forall x \in \mathbb{R}, (g \circ f)(-x) = g(f(-x)) = g(-f(x)) = -g(f(x)) = -(g \circ f)(x)$ donc $g \circ f$ est impaire. $\forall x \in \mathbb{R}, (fg)(-x) = f(-x)g(-x) = (-f(x))(-g(x)) = f(x)g(x) = (fg)(x)$ donc fg est paire.

Exercice 4. Soit la fonction $f: \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 2|-x+3|-\sqrt{x^2-2x+1} \end{array} \right.$

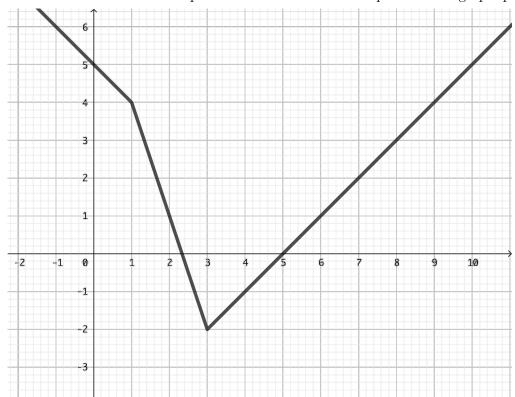
- 1. Quel est le domaine de cette fonction? Étudier sa continuité.
- 2. Exprimer f(x) sans valeur absolue ni radical, suivant les valeurs de x. Tracer la courbe représentative de f.

Solution.

- 1. On remarque que $x^2 2x + 1 = (x 1)^2 \ge 0$ donc $\mathcal{D}_f = \mathbb{R}$. Les fonctions racine carrée et valeur absolue sont continues sur leur domaine, les fonctions polynômes sur \mathbb{R} , donc par les théorèmes usuels on conclut que f est continue sur \mathbb{R} .
- 2. Grâce à la remarque précédente on a f(x) = 2|-x+3|-|x-1|.

x	$-\infty$		1		3		$+\infty$
-x+3		+	2	+	0	_	
x-1		_	0	+	2	+	
-x+3		-x + 3	2	-x+3	0	x-3	
x-1		-x + 1	0	x-1	2	x-1	
f(x)		-x + 5	4	-3x + 7	-2	x-5	

On obtient donc une fonction affine par morceaux dont voici la représentation graphique :

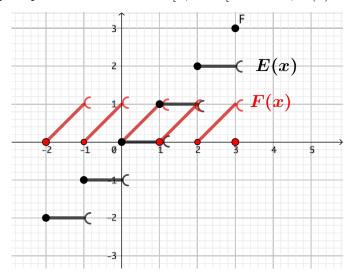


Exercice 5. Pour tout réel x on note |x| sa partie entière, définie par :

$$\lfloor x \rfloor \in \mathbb{Z} \quad et \quad \lfloor x \rfloor \le x < \lfloor x \rfloor + 1.$$

Représenter graphiquement, sur l'intervalle [-2,3], les fonctions E et F définies sur \mathbb{R} par $E(x) = \lfloor x \rfloor$ et F(x) = x - |x| (partie fractionnaire de x). Montrer que F est 1-périodique.

Solution. La fonction E a été représentée dans le cours. Pour la fonction F (partie fractionnaire d'un réel) il suffit de remarquer que sur tout intervalle [n, n+1[où $n \in \mathbb{Z}, F(x) = x-n \in [0,1[$.



Rappelons que la partie entière de x, notée ici E(x), est caractérisé par :

$$E(x) \in \mathbb{Z}$$
 et $E(x) \le x < E(x) + 1$

on a donc immédiatement $E(x)+1\in\mathbb{Z}$ et $E(x)+1\leq x+1<(E(x)+1)+1$, ce qui prouve que E(x+1)=E(x)+1.

F vérifie donc : F(x + 1) = (x + 1) - E(x + 1) = (x + 1) - (E(x) + 1) = x - E(x) = F(x). Elle est donc 1-périodique.

Exercice 6. Donner, sans calculs (ni calculatrice), l'allure des représentations graphiques des fonctions a, b, c, d, e, f, g, h définies par :

$$a(x) = x |x|$$
 $b(x) = -(x-1)^2$ $c(x) = x^2 |x|$ $d(x) = \sqrt{x+2} + 1$ $e(x) = \frac{1}{x-2}$ $f(x) = e^{-x}$ $g(x) = \ln(|x|)$ $h(x) = |\sin x|$

Solution. Le principe est de se ramener à des fonctions usuelles simples.

La fonction $a: a(x) = x^2$ si $x \ge 0$ et $a(x) = -x^2$ sinon,

La fonction $c: c(x) = x^3$ si $x \ge 0$ et $a(x) = -x^3$ sinon. En fait $a(x) = |x^3|$,

La fonction f: c'est une fonction usuelle.

Pour les autres, on utilise les principes suivants :

Si f a pour courbe représentative \mathcal{C} dans le repère (O, \vec{i}, \vec{j}) , alors

- $\varphi: \varphi(x) = f(x-a)$ admet pour courbe représentative le translaté de \mathcal{C} par le vecteur $a\vec{i}$,
- $\psi: \psi(x) = f(x) + b$ admet pour courbe représentative le translaté de \mathcal{C} par le vecteur $b\vec{j}$

On peut bien sûr combiner les deux. Ceci s'applique aux fonctions b, d et e. D'autre part, avec un repère orthogonal:

- si le domaine de f est inclus dans \mathbb{R}_+ ou dans \mathbb{R}_- , $\varphi: \varphi(x)=f(|x|)$ admet pour courbe représentative la réunion de \mathcal{C} avec son symétrique par rapport à l'axe des ordonnées,
- $\psi: \psi(x) = |f(x)|$ admet pour courbe représentative la réunion de $\mathcal{C} \cap \{y \geq 0\}$ avec le symétrique de $\mathcal{C} \cap \{y \leq 0\}$ par rapport à l'axe des abscisses.

Ceci s'applique aux fonctions a, g et h.

Exercice 7. Soit
$$a \in \mathbb{R}^{+*}$$
. Simplifier $A = \frac{a^3}{\sqrt{a}}$, $B = \frac{a^{2/3}}{\sqrt[3]{a}}$, $C = (a^2)^{2/3} \times (a^4)^{2/3} \times (\sqrt[3]{a})^2$.

Solution.
$$A = a^2 \sqrt{a}$$
, $B = \frac{a^{2/3}}{a^{1/3}} = a^{1/3} = \sqrt[3]{a}$, $C = a^{4/3} \times a^{8/3} \times a^{2/3} = a^{14/3}$ ou, si on préfère, $C = a^4 \sqrt[3]{a^2}$.

Exercice 8.

- 1. Résoudre dans \mathbb{R} les équations : $8^{6x} 3 \times 8^{3x} 4 = 0$ et $\left(\frac{1}{7}\right)^{x^2 3x} = 49$.
- 2. Résoudre dans \mathbb{R} les inéquations : $(2^x 3)(3^x 2) \le 0$ et $5^x 3 \times 5^{-x} \ge -2$.

Solution.

1. Pour la première équation on pose $X=8^{3x}$ et on résout $X^2-3X-4=0$: X=-1 ou X=4. Comme $8^{3x}=e^{3x\ln 8}>0$ l'équation équivaut à $8^{3x}=4$ soit $3x\ln 8=2\ln 2$. Donc $x=\frac{2\ln 2}{3\ln 8}=\frac{2\ln 2}{9\ln 2}=\frac{2}{9}$.

La deuxième équation équivaut à $(x^2-3x)\ln\frac{1}{7}=\ln(49)(=2\ln7)$, soit $x^2-3x+2=0$ car $\ln \frac{1}{7} = -\ln 7$. L'ensemble des solutions est donc $\{1, 2\}$.

2. Première inéquation :

$$(2^{x} - 3)(3^{x} - 2) \le 0 \Leftrightarrow \begin{cases} 2^{x} - 3 \ge 0 \\ \text{et} \\ 3^{x} - 2 \le 0 \end{cases} \quad \text{ou} \begin{cases} 2^{x} - 3 \le 0 \\ \text{et} \\ 3^{x} - 2 \ge 0 \end{cases}.$$
Donc il faut résoudre
$$\begin{cases} 2^{x} \ge 3 \\ et \\ 3^{x} \le 2 \end{cases} \quad \text{ou} \begin{cases} 2^{x} \le 3 \\ \text{et} \\ 3^{x} \ge 2 \end{cases}$$

Donc il faut résoudre
$$\begin{cases} 2^x \ge 3 \\ et \\ 3^x \le 2 \end{cases} \quad \text{ou} \quad \begin{cases} 2^x \le 3 \\ et \\ 3^x \ge 2 \end{cases}$$

L'inéquation est donc équivalente à
$$\begin{cases} x \geq \frac{\ln 3}{\ln 2} \\ \text{et} \end{cases} \quad \text{ou} \quad \begin{cases} x \leq \frac{\ln 3}{\ln 2} \\ \text{et} \end{cases}$$

$$x \leq \frac{\ln 2}{\ln 3} \quad x \leq \frac{\ln 2}{\ln 3}$$

Or la fonction ln est croissante, donc $\ln 2 \le \ln 3$ et donc $\frac{\ln 2}{\ln 3} \le \frac{\ln 3}{\ln 2}$

Il n' y a donc pas de solution pour $\begin{cases} x \geq \frac{\ln 3}{\ln 2} \\ et \\ x \leq \frac{\ln 2}{\ln 3} \end{cases}$ et finalement on trouve $S = \left[\frac{\ln 2}{\ln 3}, \frac{\ln 3}{\ln 2}\right]$.

Deuxième inéquation : on pose $X=5^x$ et on est ramené à résoudre $X-\frac{3}{X}\geq -2$, soit $X^2+2X-3\geq 0$ car X>0. On obtient $X\leq -3$ ou $X\geq 1$ et on ne retient que $X\geq 1$. Finalement l'inéquation équivaut à $5^x\geq 1$ c'est à dire $x\geq 0$ (prendre le logarithme de chaque membre).

Exercice 9.

- 1. Trouver le domaine de définition et la période de la fonction $f: x \mapsto \tan(2x+1)$.
- 2. Mêmes questions avec la fonction $f: x \mapsto \tan(\omega x + \frac{\pi}{4})$ avec $\omega \neq 0$.
- 3. Montrer que la droite d'équation $x = \pi$ est un axe de symétrie pour la courbe représentative de la fonction cosinus dans un repère orthonormal du plan.

Solution.

- 1. f est définie pour $2x+1\neq \frac{\pi}{2}+k\pi$, $k\in\mathbb{Z}$, soit $x\in\mathbb{R}\setminus\{\frac{\pi-2}{4}+k\frac{\pi}{2},\,k\in\mathbb{Z}\}$. Si T>0 est une période on a $f(x+T)=\tan(2x+1+2T)=f(x)=\tan(2x+1)$. La fonction tangente étant périodique de période π on obtient donc une période T telle que $2T=\pi$ soit $T=\frac{\pi}{2}$.
- 2. Le même raisonnement donne $\mathcal{D}_f = \mathbb{R} \setminus \{\frac{\pi}{4\omega} + k\frac{\pi}{\omega}, k \in \mathbb{Z}\}$ et $T = \frac{\pi}{\omega}$.
- 3. Il suffit de remarquer que : $\forall x \in \mathbb{R}$, $\cos(\pi + x) = \cos(\pi x)$ (= $-\cos x$).

Exercice 10.

- 1. Soit $a \in \mathbb{R}$. Résoudre dans \mathbb{R} les équations $\cos x = \cos a$ et $\cos x = \sin a$.
- 2. Résoudre dans \mathbb{R} l'équation $2\cos^2 x 5\cos x + 2 = 0$.

Solution.

- 1. $\cos x = \cos a \iff x \equiv a + 2k\pi$ ou $x = -a + 2k\pi$ avec $k \in \mathbb{Z}$. Comme $\sin a = \cos(\frac{\pi}{2} - a)$ on peut se ramener au cas précdent : $\cos x = \sin a \iff \cos x = \cos(\frac{\pi}{2} - a) \iff x = \frac{\pi}{2} - a + 2k\pi \text{ ou } x = a - \frac{\pi}{2} + 2k\pi \text{ avec } k \in \mathbb{Z}.$
- 2. On pose $X = \cos x$. Alors $2X^2 5X + 2 = 0 \iff X = \frac{1}{2}$ ou X = 2. $\cos x = 2$ n'a pas de solution et $\cos x = \frac{1}{2} \iff x = \pm \frac{\pi}{3} + 2k\pi$. L'ensemble des solutions est donc $\{-\frac{\pi}{3} + 2k\pi ; k \in Z\} \cup \{\frac{\pi}{3} + 2k\pi ; k \in Z\}$.

Exercice 11. Soient a, b, ω des réels tels que $(a,b) \neq (0,0)$ et $\omega \neq 0$. On pose $A = \sqrt{a^2 + b^2}$.

1. Montrer qu'il existe au moins un réel φ tel que $\cos \varphi = \frac{a}{A}$ et $\sin \varphi = \frac{b}{A}$.

Indication : montrer que le point de coordonnées $(\frac{a}{A}, \frac{b}{B})$ appartient au cercle trigonométrique.

2. En déduire qu'il existe toujours un couple (A, φ) de réels tels que :

$$\forall x \in \mathbb{R}, \ a\cos(\omega x) + b\sin(\omega x) = A\cos(\omega x - \varphi).$$

- 3. Appliquer ce qui précède à $\cos x \sqrt{3} \sin x$ et résoudre l'équation $\cos x \sqrt{3} \sin x = 0$.
- 4. Résoudre l'équation $\cos x + \sin x = 0$ de deux manières différentes.

Solution.

- 1. On a $\left(\frac{a}{A}\right)^2 + \left(\frac{b}{A}\right)^2 = 1$ donc le point de coordonnées $\left(\frac{a}{A}, \frac{b}{A}\right)$ est sur le cercle trigonométrique et il existe un réel φ tel que $\cos \varphi = \frac{a}{A}$ et $\sin \varphi = \frac{b}{A}$.
- 2. $a\cos(\omega x) + b\sin(\omega x) = A\left(\frac{a}{A}\cos(\omega x) + \frac{b}{A}\sin(\omega x)\right) = A\left(\cos\varphi\cos(\omega x) + \sin\varphi\sin(\omega x)\right) = A\cos(\omega x \varphi).$
- 3. On a ici $A=2,\,\omega=1$ et $\cos\varphi=\frac{1}{2},\,\sin\varphi=-\frac{\sqrt{3}}{2}$ d'où $\varphi=-\frac{\pi}{3}\left[2\pi\right]$:

$$\cos x - \sqrt{3}\sin x = 2\cos(x + \frac{\pi}{3})$$

$$\cos x - \sqrt{3}\sin x = 0 \Longleftrightarrow \cos(x + \frac{\pi}{3}) = 0 \Longleftrightarrow x + \frac{\pi}{3} = \frac{\pi}{2} + k\pi \Longleftrightarrow x = \frac{\pi}{6} + k\pi, \ k \in \mathbb{Z}.$$

4. Première méthode: $\cos x + \sin x = 0 \iff \cos x = -\sin x = \cos(x + \frac{\pi}{2})$ et donc

$$\cos x + \sin x = 0 \iff x = x + \frac{\pi}{2} + 2k\pi \text{ ou } x = -x - \frac{\pi}{2} + 2k\pi$$

La première équation n'a pas de solution et l'autre donne : $x=-\frac{\pi}{4}+k\pi,\ k\in\mathbb{Z}.$

Deuxième méthode : on transforme le premier membre selon la méthode vue en première question. On vérifiera que $\cos x + \sin x = \sqrt{2}\cos(x - \frac{\pi}{4})$. Alors :

$$\cos x + \sin x = 0 \Longleftrightarrow \cos(x - \frac{\pi}{4}) = 0 \Longleftrightarrow x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi \Longleftrightarrow x = \frac{3\pi}{4} + k\pi, \ k \in \mathbb{Z}$$

Il s'agit bien du même ensemble de solutions (placer les points images sur le cercle unité).

Exercice 12. Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{\sin x}{\cos x + \sin x} \end{array} \right.$$

- 1. Déterminer le domaine de définition de f (on pourra utiliser le résultat de la question 4 de l'exercice 11), étudier la parité de f et montrer qu'elle est périodique de période π . En déduire un intervalle d'étude.
- 2. Faire l'étude des variations de f et donner l'allure de sa courbe représentative.

Solution.

- 1. D'après la question 4 de l'exercice 11, le domaine de f est $\mathcal{D}_f = \mathbb{R} \setminus \{-\frac{\pi}{4} + k\pi, k \in \mathbb{Z}\}$. On constate facilement que f n'est ni paire ni impaire et que $f(x+\pi) = \frac{-\sin x}{-\cos x \sin x} = f(x)$ donc π est une période pour f: compte tenu du domaine, un intervalle d'étude pour f est par exemple $]-\frac{\pi}{4}, \frac{3\pi}{4}[$. À partir du tracé de la courbe sur cet intervalle, on déduit le tracé global par des translations de vecteurs $k\pi$ \overrightarrow{i} .
- 2. Pour $x \in \mathcal{D}_f$ on a $f'(x) = \frac{\cos x (\cos x + \sin x) \sin x (-\sin x + \cos x)}{(\cos x + \sin x)^2} = \frac{1}{(\cos x + \sin x)^2} > 0$ donc f est strictement croissante sur chaque intervalle de son domaine. À partir des limites suivantes :

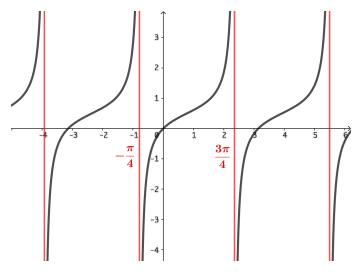
$$\lim_{x \to -\frac{\pi}{4}^+} \sin x = \lim_{x \to \frac{3\pi}{4}^-} \sin x = \frac{\sqrt{2}}{2},$$

$$\lim_{x \to -\frac{\pi}{4}^+} (\cos x + \sin x) = \lim_{x \to -\frac{\pi}{4}^+} \sqrt{2} \cos(x - \frac{\pi}{4}) = \lim_{u \to -\frac{\pi}{2}^+} \sqrt{2} \cos u = 0^+,$$

$$\lim_{x \to \frac{3\pi}{4}^{-}} (\cos x + \sin x) = \lim_{x \to \frac{3\pi}{4}^{-}} \sqrt{2} \cos(x - \frac{\pi}{4}) = \lim_{u \to \frac{\pi}{2}^{-}} \sqrt{2} \cos u = 0^{+},$$

on obtient :

$$\lim_{x \to -\frac{\pi}{4}^+} f(x) = -\infty$$
 et $\lim_{x \to \frac{3\pi}{4}^-} f(x) = +\infty$.

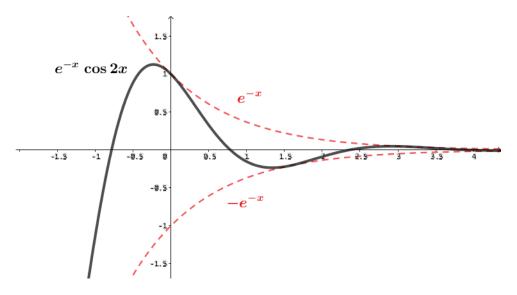


Pour travailler en autonomie

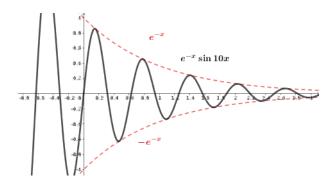
Exercice 13. Donner sans calcul l'allure de la courbe représentative de la fonction définie sur $[0, +\infty[$ $par f(x) = e^{-x} \cos(2x)$.

Indication: encadrer f par deux fonctions plus simples et donner la période de la fonction $x \mapsto \cos 2x$. Même question avec $g(x) = e^{-x} \sin(10x)$.

Solution. On a les inégalités $-e^{-x} \le f(x) \le e^{-x}$ avec égalité à gauche quand $\cos(2x) = -1$ $(x = \pm pi + 2k\pi)$ et à droite quand $\cos(2x) = (x = 2k\pi)$. Enfin $x \mapsto \cos 2x$ est périodique de période π .



Raisonnement similaire avec g.



Exercice 14. Soit $f: \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \dfrac{\sin x}{\cos(2x)} \end{array} \right.$

- 1. Déterminer le domaine de définition de f étudier la parité et la périodicité. Vérifier que $f(\pi - x) = f(x)$ et déduire de l'étude précédente que l'on peut prendre $[0, \frac{\pi}{2}]$ comme intervalle d'étude. Comment obtenir alors toute la courbe ?
- 2. Étudier les variations de f sur $[0, \frac{\pi}{2}]$ et tracer la courbe représentative de f.