Chapitre 7 : fonctions numériques Dérivabilité, accroissements finis

L1 MATH103_MISPI

Sommaire

- Dérivation : définitions
- 2 Théorèmes généraux
- 3 Dérivation et extrema d'une fonction
- Théorèmes de Rolle et des accroissements finis
- Dérivées successives

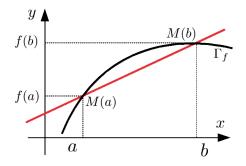
Sommaire

- Dérivation : définitions
- 2 Théorèmes généraux
- Dérivation et extrema d'une fonction
- 4 Théorèmes de Rolle et des accroissements finis
- Dérivées successives

Définition

Soient $a, b \in I$ avec $a \neq b$. On appelle *taux de variation* (ou *taux d'accroissement*) de f entre a et b le réel $\tau(a,b) = \frac{f(b) - f(a)}{b - a}$

 $\tau(a,b)$: coefficient directeur de la sécante (M(a)M(b))



Exemples : on peut illuster cette notion dans deux situations différentes :

- La variable x est une distance horizontale sur une carte topographique et y est l'altitude. Alors τ(a, b) est la pente moyenne sur le parcours entre M(a) et M(b). Cette valeur est parfois affichée à l'attention des cyclistes (en %)
- La variable x est le temps et y la position d'un point mobile sur un axe (ici celui des ordonnées) : τ(a, b) est la vitesse movenne du point entre les instants a et b

Exemples : on peut illuster cette notion dans deux situations différentes :

- La variable x est une distance horizontale sur une carte topographique et y est l'altitude. Alors $\tau(a,b)$ est la pente moyenne sur le parcours entre M(a) et M(b). Cette valeur est parfois affichée à l'attention des cyclistes (en %)
- La variable x est le temps et y la position d'un point mobile sur un axe (ici celui des ordonnées) : τ(a, b) est la vitesse moyenne du point entre les instants a et b

Dans chacun de ces deux exemples, on peut être intéressé par une information plus précise :

- dans le premier, la pente à l'endroit où on se trouve (c'est ce que ressentent les mollets du cycliste),

Dans chacun de ces deux exemples, on peut être intéressé par une information plus précise :

- dans le second, la vitesse instantanée (celle, plus ou moins, qu'indique le compteur)

Il s'agit dans les deux cas de considérer des points *a* et *b* « très voisins »

Mathématiquement parlant, il s'agit de passer à la limite quand b tend vers a: on aura alors ces informations en x = a

Dérivabilité en un point

Définition

On dit que f est dérivable en $a \in I$ si le taux de variation $\tau(a, a + h)$ a une limite finie quand $h \to 0$, c'est-à-dire si

$$\lim_{\substack{h\to 0\\h\neq 0}} \frac{f(a+h)-f(a)}{h} \text{ existe (et est finie)}.$$

On note alors f'(a) cette limite, appelée nombre dérivé de f en a.

On a aussi

$$f'(a) = \lim_{\substack{x \to a \\ x \neq a}} \frac{f(x) - f(a)}{x - a}.$$

en ayant posé x = a + h.

Dérivabilité en un point

Il existe une caractérisation équivalente de la dérivabilité :

Proposition

f est dérivable en $a \in I$ si et seulement si il existe une fonction ε de limite nulle en zéro telle que :

$$\forall x \in I, f(x) = f(a) + f'(a)(x - a) + (x - a)\varepsilon(x - a)$$

(développement limité à l'ordre un de f en a)

Ou encore, en posant x = a + h:

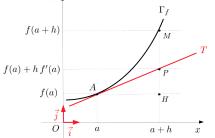
$$f(a+h) = f(a) + f'(a) h + h \varepsilon(h)$$
 avec $\lim_{h\to 0} \varepsilon(h) = 0$

Interprétation graphique

Position limite des sécantes (AM): tangente T à Γ_f au point A. La droite tangente T a pour coefficient directeur f'(a) et pour équation:

$$y = f(a) + f'(a)(x - a)$$

 $x \mapsto f(a) + f'(a)(x - a)$: fonction affine tangente à f en a.



$$\overline{AH} = h$$
: accroissement en x

$$\overline{\mathit{HP}} = h \, f'(a)$$
: acccroissement de la fonction affine tangente

$$\overline{HM} = f(a+h) - f(a)$$
: accoroissement de f

$$\overline{PM} = h \, \epsilon(h)$$
: écart courbe - tangente

$$\overline{HM} = \overline{HP} + \overline{PM}$$

Dérivée à gauche et à droite

Définition

f est dérivable à gauche en a si $\lim_{h\to 0^-} \frac{f(a+h)-f(a)}{h} \in \mathbb{R}$.

Dans ce cas, on note $f'_g(a)$ cette limite

f est dérivable à droite en a si $\lim_{h\to 0^+} \frac{f(a+h)-f(a)}{h} \in \mathbb{R}$.

Dans ce cas, on note $f'_d(a)$ cette limite

Exemple

$$f(x) = |x^{2} - x| \text{ en } a = 1$$

$$\frac{f(a+h) - f(a)}{h} = \frac{|(1+h)^{2} - (1+h)|}{h} = \frac{|h(1+h)|}{h}$$

$$\lim_{\begin{subarray}{c} h \to 0 \\ h > 0 \end{subarray}} \frac{f(a+h) - f(a)}{h} = \lim_{\begin{subarray}{c} h \to 0 \\ h > 0 \end{subarray}} 1 + h = 1$$

$$\lim_{\begin{subarray}{c} h \to 0 \\ h < 0 \end{subarray}} \frac{f(a+h) - f(a)}{h} = \lim_{\begin{subarray}{c} h \to 0 \\ h < 0 \end{subarray}} -(1+h) = -1$$

Exemple

$$f(x) = |x^2 - x|$$
 en $a = 1$

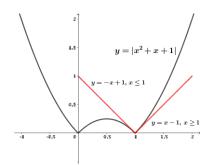
$$f'_d(1) = 1$$
 et $f'_g(1) = -1$

f est-elle dérivable en a = 1?

Exemple

$$f(x) = |x^2 - x|$$
 en $a = 1$

NON! La limite du taux d'accroissement en a=1 existe si et seulement si $f'_d(1)$ et $f'_g(1)$ existent et sont égales; ce n'est pas le cas ici.



Dérivabilité sur un intervalle

Définition

On dit que f est dérivable sur un intervalle ouvert I si f est dérivable en chaque point de I

On définit alors la fonction dérivée de f, notée f', qui associe à tout $x \in I$ le nombre dérivé de f au point x:

$$f'(x) = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(x+h) - f(x)}{h}$$

f est dérivable sur [a, b] si f est dérivable sur [a, b], dérivable à gauche en b et dérivable à droite en a

Sommaire

- Dérivation : définitions
- 2 Théorèmes généraux
- Dérivation et extrema d'une fonction
- 4 Théorèmes de Rolle et des accroissements finis
- Dérivées successives

Dérivabilité et continuité

Proposition

Si f dérivable en a alors f est continue en a

Attention : la réciproque est fausse

Une fonction continue en *a* n'est pas nécessairement dérivable en *a* : voir l'exemple précédent ou la valeur absolue en 0

Dérivabilité et continuité

Proposition

Si f dérivable en a alors f est continue en a

Fonction de Bolzano : continue sur [0, 1]... mais dérivable en aucun point de cet intervalle

Dérivabilité et continuité

Proposition

Si f dérivable en a alors f est continue en a

On dit qu'une fonction dérivable est « plus régulière » qu'une fonction seulement continue.

Dérivabilité et opérations

Proposition

Soient u, v définies sur I et dérivables en $a \in I$ et $\lambda \in \mathbb{R}$. u + v. λu et uv sont dérivables en a et

$$(u+v)'(a) = u'(a) + v'(a), \quad (\lambda u)'(a) = \lambda u'(a),$$

 $(uv)'(a) = u'(a) v(a) + u(a) v'(a)$

Si de plus v ne s'annule pas en a alors $\frac{u}{v}$ est dérivable en a et

$$\left(\frac{u}{v}\right)'(a) = \frac{u'(a) v(a) - u(a) v'(a)}{v(a)^2}$$

Dérivée d'une composée de fonctions

Proposition

Soit u dérivable en $a \in I$, f définie sur un intervalle J contenant u(I) et dérivable en b = u(a). Alors $f \circ u$ est dérivable en a et

$$(f \circ u)'(a) = f'(u(a)) u'(a) = f'(b) u'(a)$$

Dérivée d'une composée de fonctions : exemple

$$(f \circ u)'(a) = f'(u(a)) u'(a) = f'(b) u'(a)$$

Exemple : $F(x) = (x^2 + x)^3$

$$F(x) = f(u(x)) \text{ avec } u(x) = x^2 + x \text{ et } f(y) = y^3$$

$$u'(x) = 2x + 1, f'(y) = 3y^2$$

$$F'(x) = f'(u(x)) u'(x) = 3(x^2 + x)^2 (2x + 1)$$

Dérivées particulières

Dérivée de uⁿ :

soit u une fonction dérivable sur un intervalle I et $n \in \mathbb{Z}$, alors u^n est dérivable :

- en tout point de *I* lorsque $n \ge 0$,
- en tout point de I où u ne s'annule pas, si $n \le -1$, et, dans les deux cas,

$$(u^{n}(x))' = n u(x)^{n-1} u'(x)$$

Dérivées particulières

• **Plus généralement**, si u > 0 sur I alors pour tout réel α la fonction u^{α} est dérivable sur I et on a :

$$(u^{\alpha}(x))' = \alpha u(x)^{\alpha-1} u'(x)$$

• **Dérivée de** \sqrt{u} : soit u une fonction dérivable et <u>strictement</u> positive sur un intervalle I, alors \sqrt{u} est dérivable sur I et :

$$(\sqrt{u(x)})' = \frac{u'(x)}{2\sqrt{u(x)}}$$

Exemples

$$f(x) = \frac{1}{(2x^2 + 1)^3} = [u(x)]^{-3}, \quad \mathcal{D}_f = \mathbb{R}$$

$$n = -3, \ u(x) = 2x^2 + 1, \ u'(x) = 4x$$

$$\text{donc } f'(x) = -3u'(x) [u(x)]^{-4} = \cdots \text{ (compléter)}$$

$$f(x) = \sqrt{x^3 + 1} = \sqrt{u(x)}, \quad \mathcal{D}_f = [-1, +\infty[$$

$$u(x) = x^3 + 1, \ u'(x) = 3x^2$$

$$\text{donc } f \text{ est dérivable sur }] - 1, +\infty[\text{ et } f'(x) = \cdots \text{ (compléter)}$$

Sommaire

- Dérivation : définitions
- 2 Théorèmes généraux
- 3 Dérivation et extrema d'une fonction
- 4 Théorèmes de Rolle et des accroissements finis
- Dérivées successives

Extrema

Définition (Extremum local, extremum global)

Soit $f: \mathbb{R} \to \mathbb{R}$ et $\mathbf{c} \in \mathcal{D}_f$

- On dit que f présente un *maximum local* (ou *relatif*) en c, si et seulement si, il existe un intervalle ouvert $]\alpha, \beta[$, contenant c, tel que $f(x) \le f(c)$ pour tout $x \in]\alpha, \beta[\cap \mathcal{D}_f]$
- On dit que f présente un *minimum local* en c, si et seulement si, il existe un intervalle ouvert $]\alpha, \beta[$, contenant c, tel que $f(x) \ge f(c)$ pour tout $x \in]\alpha, \beta[\cap \mathcal{D}_f$
- On appelle extremum local un maximum local ou un minimum local

On parle d'*extremum global* (ou absolu) quand les inégalités sont valables pour tout $X \in \mathcal{D}_f$

Extrema

Définition (Extremum local, extremum global)

Soit $f: \mathbb{R} \to \mathbb{R}$ et $\mathbf{c} \in \mathcal{D}_f$

- On dit que f présente un *maximum local* (ou *relatif*) en c, si et seulement si, il existe un intervalle ouvert $]\alpha, \beta[$, contenant c, tel que $f(x) \le f(c)$ pour tout $x \in]\alpha, \beta[\cap \mathcal{D}_f]$
- On dit que f présente un *minimum local* en c, si et seulement si, il existe un intervalle ouvert $]\alpha, \beta[$, contenant c, tel que $f(x) \ge f(c)$ pour tout $x \in]\alpha, \beta[\cap \mathcal{D}_f$
- On appelle extremum local un maximum local ou un minimum local

On parle d'*extremum global* (ou absolu) quand les inégalités sont valables pour tout $X \in \mathcal{D}_f$

Extrema

Définition (Extremum local, extremum global)

Soit $f: \mathbb{R} \to \mathbb{R}$ et $\mathbf{c} \in \mathcal{D}_f$

- On dit que f présente un *maximum local* (ou *relatif*) en c, si et seulement si, il existe un intervalle ouvert $]\alpha, \beta[$, contenant c, tel que $f(x) \le f(c)$ pour tout $x \in]\alpha, \beta[\cap \mathcal{D}_f]$
- On dit que f présente un *minimum local* en c, si et seulement si, il existe un intervalle ouvert $]\alpha, \beta[$, contenant c, tel que $f(x) \ge f(c)$ pour tout $x \in]\alpha, \beta[\cap \mathcal{D}_f$
- On appelle extremum local un maximum local ou un minimum local

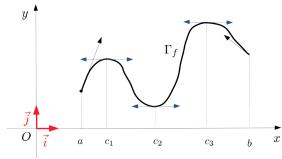
On parle d'*extremum global* (ou absolu) quand les inégalités sont valables pour tout $X \in \mathcal{D}_f$

Résultat fondamental

Proposition

Soit $f:]a, b[\rightarrow \mathbb{R}$ dérivable en $c \in]a, b[$. Si f présente un extremum local en un point $c \in]a, b[$ alors f'(c) = 0

La tangente à la courbe de Γ_f au point (c, f(c)) est alors horizontale : cas de $x = c_1, c_2, c_3$.



Preuve

Supposons par exemple que c soit un maximum local et soit α, β un intervalle ouvert inclus dans a, b, sur lequel on a f(x) < f(c).

Soit $h \in \mathbb{R}^*$ tel que $c + h \in]\alpha, \beta[$:

• si h > 0 alors $\frac{f(c+h) - f(c)}{h} \le 0$, donc $f'_d(c) \stackrel{\text{def}}{=} \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$

$$f_d'(c) \stackrel{\text{déf}}{=} \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$$

• si au contraire h < 0 alors $f'_{\alpha}(c) \ge 0$.

Comme f est dérivable en c on a $0 \le f'_{a}(c) = f'(c) = f'_{d}(c) \le 0$, ce qui entraîne f'(c) = 0

Attention -1-

Si f'(c) = 0, c n'est pas nécessairement un point d'extremum. On dit que c est un point *critique* de f

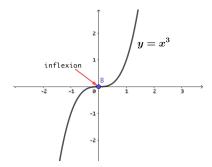
Pour un extremum, la dérivée doit s'annuler et changer de signe, ou bien rester nulle sur un intervalle ouvert de centre c (elle est alors constante sur cet intervalle)

Attention -1-

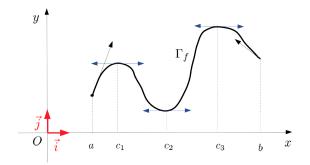
Si f'(c) = 0, c n'est pas nécessairement un point d'extremum. On dit que c est un point critique de f

Exemple :
$$f(x) = x^3$$
, $c = 0$, $f'(x) = 3x^2$

f'(0) = 0 et 0 est un point critique de f, mais pas un extremum de f



Attention -2-



Si *f* est définie en une extrémité de l'intervalle, on peut avoir un extremum sans que la dérivée s'annule...

Observer ce qui se passe aux points a et b

Attention -3-

Si *f* n'est pas dérivable en *c*, on peut quand même avoir un extremum local en *c*...

mais dans ce cas, on n'a pas de tangente horizontale : pour la fonction valeur absolue, c=0 est minimum absolu strict

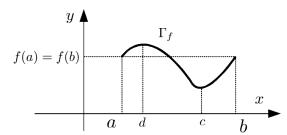
Sommaire

- Dérivation : définitions
- Théorèmes généraux
- 3 Dérivation et extrema d'une fonction
- 4 Théorèmes de Rolle et des accroissements finis
- Dérivées successives

Théorème de Rolle

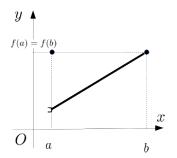
Théorème

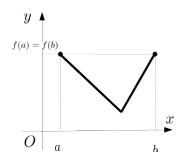
Soit a < b et $f : [a, b] \to \mathbb{R}$ une fonction continue sur [a, b], dérivable sur [a, b], et telle que f(a) = f(b). Alors $\exists c \in [a, b[$, f'(c) = 0.



Attention

Il ne faut pas retenir seulement l'hypothèse f(a) = f(b). Dans les deux figures ci-dessous, où elle est vérifiée mais pas la conclusion, on cherchera quelle est l'hypothèse manquante.





D'après le théorème sur l'image d'un segment par une fonction continue, il existe des points α et β de [a,b] tels que $f([a,b])=[f(\alpha),f(\beta)]$ donc $\forall x\in [a,b], f(\alpha)\leq f(x)\leq f(\beta)$.

• Si α et β sont les bornes de [a,b], la condition f(a) = f(b) entraı̂ne que f([a,b]) est réduit à un point : f est constante sur [a,b].

Sa dérivée est alors nulle partout et n'importe quel point c de]a,b[convient (par exemple $c:=\frac{a+b}{2}$).

Preuve

D'après le théorème sur l'image d'un segment par une fonction continue, il existe des points α et β de [a,b] tels que $f([a,b]) = [f(\alpha), f(\beta)]$ donc $\forall x \in [a,b], f(\alpha) \le f(x) \le f(\beta)$.

• Si au contraire l'un des points au moins α ou β est un point de a, b alors désignons-le par a:

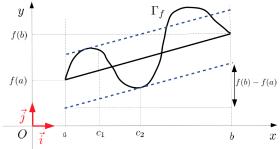
c'est un extremum absolu (minimum absolu pour α , maximum absolu pour β) et on a donc f'(c) = 0.

Théorème des accroissements finis

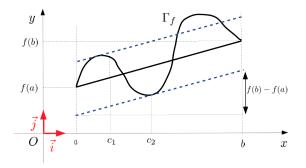
Théorème (AF)

Soit a < b et $f : [a, b] \to \mathbb{R}$ une fonction continue sur [a, b] et dérivable sur [a, b].

Alors
$$\exists$$
c ∈]*a*, *b*[, $f(b) - f(a) = (b - a) f'(c)$.



Théorème des accroissements finis



Sur la figure il y a trois réels c qui conviennent, dont c_1 et c_2 En c_2 , par exemple, le cycliste ressent exactement la pente qui, si elle était partout la même, réaliserait le même dénivelé f(b) - f(a)...

La sécante qui passe par les points (a, f(a)) et (b, f(b)) a pour équation $y = g(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$.

La fonction définie sur [a, b] par h(x) = f(x) - g(x) vérifie h(a) = h(b) = 0, de plus elle est continue sur [a, b] (f et g le sont) et dérivable sur [a, b] (c'est le cas pour f, par hypothèse, et g est dérivable sur \mathbb{R}).

D'après le théorème de Rolle : $\exists c \in]a, b[, h'(c) = 0.$

$$h'(x) = f'(x) - g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a},$$

et

$$h'(c) = 0 \Longleftrightarrow \frac{f(b) - f(a)}{b - a} = f'(c)$$

Inégalité des accroissements finis

Corollaire (IAF)

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur l'intervalle I.

• S'il existe des réels m et M tels que $\forall x \in I, m \le f'(x) \le M$, alors pour tout couple $(a,b) \in I \times I$ tel que $a \le b$ on a

$$m(b-a) \leq f(b) - f(a) \leq M(b-a).$$

② S'il existe un réel $k \ge 0$ tel que $\forall x \in I$, $|f'(x)| \le k$, alors

$$\forall (x, y) \in l^2, |f(y) - f(x)| < k|y - x|.$$

Exemple

Votre vitesse reste comprise entre 30km/h et 90 km/h...

En 20 min vous parcourez une distance comprise entre 10 km et 30 km

Ce n'est pas plus compliqué que cela!

Attention tout de même aux hypothèses...

Application : sens de variation

Un résultat intuitif, admis dans les classes antérieures :

Proposition

Soit f une fonction dérivable sur un intervalle f. Si la dérivée est nulle sur f ($\forall x \in f$, f'(x) = 0), alors f est constante sur f.

Preuve: l'inégalité $|f(y) - f(x)| \le k |y - x|$ est vérifiée pour tout $x, y \in I$ avec k = 0, donc : $\forall (x, y) \in I$, |f(y) - f(x)| = 0 *i. e.* f(x) = f(y)

Croissance et dérivée

Proposition

Soit f une fonction dérivable sur un intervalle I. Alors

f est croissante sur I si et seulement si $\forall x \in I$, $f'(x) \geq 0$.

Croissance et dérivée

f est croissante sur I si et seulement si $\forall x \in I, f'(x) \geq 0$

Preuve :

(⇒) si f est croissante sur I et si $a \in I$, alors pour tout x dans $I \setminus \{a\}$ les quantités f(x) - f(a) et x - a sont de même signe, donc $\frac{f(x)-f(a)}{x-a} \ge 0$. Ainsi

$$f'(a) = \lim_{\substack{x \to a \\ x \neq a}} \frac{f(x) - f(a)}{x - a} \ge 0.$$

(\Leftarrow) supposons $f'(x) \ge 0$ sur I et soit $(x, y) \in I^2$ avec x < y. L'inégalité des accroissements finis, côté gauche, avec donne $0 \le f(y) - f(x)$, ce qui prouve la croissance de **ET MONTAGNE**

Croissance stricte et dérivée

Proposition

Soit f une fonction dérivable sur un intervalle I.

 $Si \forall x \in I, f'(x) > 0$, alors f est strictement croissante sur I.

Remarque: on ne peut pas utiliser l'IAF dans ce cas, car on ne peut pas garantir que m > 0. En effet la borne inférieure d'un ensemble de nombres strictement positifs (ici, les dérivées) peut être nulle (par exemple inf $\mathbb{R}_{+}^{*} = 0$)

Croissance stricte et dérivée

si $\forall x \in I$, f'(x) > 0, alors f est strictement croissante sur I

Preuve: supposons f' > 0 sur I et soit $(x, y) \in I^2$ avec x < y. D'après le théorème des accroissements finis, il existe un réel c tel que x < c < y et $f(y) - f(x) = \underbrace{f'(c)}_{>0} \underbrace{(y - x)}_{>0}$, donc f(y) > f(x)

Croissance stricte et dérivée

si $\forall x \in I$, f'(x) > 0, alors f est strictement croissante sur I

Remarque: si $f'(x) \ge 0$ sur I et si cette dérivée ne s'annule qu'en un nombre fini de points, on a le même résultat

En effet, si x < a avec f'(a) = 0 « isolé » alors

$$f(x) - f(a) = f'(c)(x - a) \text{ avec } c \in]x, a[\text{ d'où } f(x) < f(a).$$

De manière analogue,

$$a < x \Rightarrow f(a) < f(x)$$
.

Exemple: $f(x) = x^3 \operatorname{sur} \mathbb{R}$

Bijections strictement monotones

Corollaire

- Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b], dérivable sur [a,b[et telle que f'(x) > 0 pour tout $x \in]a,b[$, alors f est une bijection strictement croissante de [a,b] sur [f(a),f(b)]
- Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b], dérivable sur]a,b[et telle que f'(x) < 0 pour tout $x \in]a,b[$, alors f est une bijection strictement décroissante de [a,b] sur [f(b),f(a)].

Bijections strictement monotones

Corollaire

- Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b], dérivable sur [a,b[et telle que f'(x) > 0 pour tout $x \in]a,b[$, alors f est une bijection strictement croissante de [a,b] sur [f(a),f(b)]
- Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b], dérivable sur]a,b[et telle que f'(x) < 0 pour tout $x \in]a,b[$, alors f est une bijection strictement décroissante de [a,b] sur [f(b),f(a)].

Etudions un exemple : considérons la fonction f définie sur $\mathbb R$ par

$$f(x) = \begin{cases} \frac{1}{4}x^2 - \frac{3}{2}x + 3 & \text{si} \quad x < 4, \\ \sqrt{x - 3} & \text{si} \quad x \ge 4 \end{cases}$$

Étudions un exemple : considérons la fonction f définie sur $\mathbb R$ par

$$f(x) = \begin{cases} \frac{1}{4}x^2 - \frac{3}{2}x + 3 & \text{si} \quad x < 4, \\ \sqrt{x - 3} & \text{si} \quad x \ge 4 \end{cases}$$

Cette fonction est continue et dérivable pour x < 4 et x > 4 par simple application des théorèmes généraux. On trouve sans difficulté que les limites de f à gauche et à droite en a = 4 sont égales à 1 : elle est donc continue... mais est-elle dérivable en ce point?

$$f(x) = \begin{cases} \frac{1}{4}x^2 - \frac{3}{2}x + 3 & \text{si} \quad x < 4, \\ \sqrt{x - 3} & \text{si} \quad x \ge 4 \end{cases}$$

Pour
$$x < 4$$
 on a $f'(x) = \frac{x}{2} - \frac{3}{2}$ et ainsi $\lim_{x \to 4^-} f'(x) = \frac{1}{2}$
Pour $x > 4$ on a $f'(x) = \frac{1}{2\sqrt{x-3}}$ et donc $\lim_{x \to 4^+} f'(x) = \frac{1}{2}$

Les tangentes de part et d'autre du point d'abscisse a on la même position limite en ce point et l'intuition nous dit que f est dérivable en a=4 avec $f'(4)=\frac{1}{2}$

Est-ce correct?

La réponse est ici :

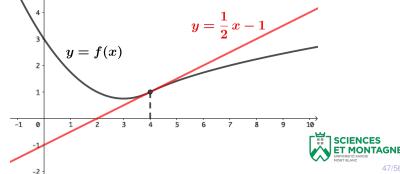
Proposition

Soit $f: I \to \mathbb{R}$ continue en $a \in I$ et dérivable sur $I \setminus \{a\}$. Si la dérivée f' admet une limite finie ℓ en a (resp. à droite, à gauche en a) alors f est dérivable en a (resp. à droite, à gauche en a) et $f'(a) = \ell$ (resp. $f'_d(a) = \ell$, $f'_d(a) = \ell$)

C'est ce résultat que l'on applique : on conclut

successivement que
$$f_g'(4) = \frac{1}{2}$$
, $f_g'(4) = \frac{1}{2}$ et donc, en effet, que

f est dérivable en
$$a = 4$$
 avec $f'(4) = \frac{1}{2}$



Remarque : on montre en fait que si f' a une limite en un point, alors le taux d'accroissement a la même limite

Cela reste valable avec une limite infinie : il n'y a alors pas dérivabilité mais existence d'une tangente verticale

Attention : la réciproque est fausse

Il se peut que le taux d'accroissement ait une limite (donc qu'il y ait dérivabilité) sans que f' ait une limite en a

Autrement dit, une dérivée n'est pas nécessairement continue!

Exemple: on considère la fonction f définie sur \mathbb{R} par :

$$f(0) = 0$$
 et si $x \neq 0$, $f(x) = x^2 \sin \frac{1}{x}$.

Le taux d'accroissement entre 0 et $x \neq 0$ est

$$\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}=x\sin\frac{1}{x}\to 0 \text{ quand } x\to 0.$$

f est donc dérivable en zéro et f'(0) = 0

En revanche, pour $x \neq 0$ on a $f'(x) = 2x \sin \frac{1}{y} - \cos \frac{1}{y}$ qui n'a pas de limite en zéro (pourquoi?)

Règles de l'Hôpital

Pour une limite de la forme $\lim_{\substack{x \to a \\ y \neq z}} \frac{f(x)}{g(x)}$ supposée indéterminée :

Proposition (règle de l'Hôpital-1)

Soient f et g deux fonctions définies et dérivables sur un intervalle ouvert I et $a \in I$

Si
$$f(a) = g(a) = 0$$
 et $g'(a) \neq 0$ alors

$$\lim_{\substack{x \to a \\ x \neq a}} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$$

Preuve: pour
$$x \neq a$$
, $\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{x - a} \cdot \frac{x - a}{g(x) - g(a)} \cdot \cdots$

Règles de l'Hôpital

Pour une limite de la forme $\lim_{\substack{x\to a\\x\neq a}}\frac{f(x)}{g(x)}$ supposée indéterminée :

Proposition (règle de l'Hôpital-2)

Soit I un intervalle ouvert, $a \in I$, f et g deux fonctions continues sur I et dérivables sur $I \setminus \{a\}$.

Supposons f(a) = g(a) = 0 et $g'(x) \neq 0$ sur $I \setminus \{a\}$ (donc $g \neq 0$ au voisinage de a). Si $\frac{f'(x)}{g'(x)} \to \ell$ quand $x \to a$ alors

$$\lim_{\substack{x \to a \\ x \neq a}} \frac{f(x)}{g(x)} = \lim_{\substack{x \to a \\ x \neq a}} \frac{f'(x)}{g'(x)} = \ell.$$

Preuve : voir le polycopié...

- Le deuxième résultat est également valable pour $\ell=\pm\infty$, ou si f et g tendent vers l'infini en a ou encore si $a=\pm\infty$; c'est donc une règle très souple.
- On peut aussi écrire les mêmes résultats en termes de limites à droite ou à gauche.
- On peut si besoin appliquer ces règles plusieurs fois de suite jusqu'à lever l'indétermination (voir l'exemple).
- ① On notera qu'on énonce des conditions suffisantes (si la limite de $\frac{f'(x)}{g'(x)}$ existe alors...) Les réciproques sont

- Le deuxième résultat est également valable pour $\ell=\pm\infty$, ou si f et g tendent vers l'infini en a ou encore si $a=\pm\infty$; c'est donc une règle très souple.
- On peut aussi écrire les mêmes résultats en termes de limites à droite ou à gauche.
- On peut si besoin appliquer ces règles plusieurs fois de suite jusqu'à lever l'indétermination (voir l'exemple).
- ① On notera qu'on énonce des conditions suffisantes (si la limite de $\frac{f'(x)}{g'(x)}$ existe alors...) Les réciproques sont

- Le deuxième résultat est également valable pour $\ell=\pm\infty$, ou si f et g tendent vers l'infini en a ou encore si $a=\pm\infty$; c'est donc une règle très souple.
- On peut aussi écrire les mêmes résultats en termes de limites à droite ou à gauche.
- On peut si besoin appliquer ces règles plusieurs fois de suite jusqu'à lever l'indétermination (voir l'exemple).
- ① On notera qu'on énonce des conditions suffisantes (si la limite de $\frac{f'(x)}{g'(x)}$ existe alors...) Les réciproques sont

- Le deuxième résultat est également valable pour $\ell=\pm\infty$, ou si f et g tendent vers l'infini en a ou encore si $a=\pm\infty$; c'est donc une règle très souple.
- On peut aussi écrire les mêmes résultats en termes de limites à droite ou à gauche.
- On peut si besoin appliquer ces règles plusieurs fois de suite jusqu'à lever l'indétermination (voir l'exemple).
- On notera qu'on énonce des conditions suffisantes (si la limite de $\frac{f'(x)}{g'(x)}$ existe alors...) Les réciproques sont fausses!

Ici,
$$f(x) = \sin x - x$$
, $g(x) = x^3$.

On a
$$f(0) = g(0) = 0$$
, $f'(x) = \cos x - 1$ et $g'(x) = 3x^2$

Hélas,
$$\frac{\cos x - 1}{3x^2}$$
 conduit encore à une indétermination « $\frac{0}{0}$ »

On recommence donc avec les dérivées de ces fonctions, c'est à dire $-\sin x$ et 6x

On a
$$\lim_{x\to 0} \frac{-\sin x}{6x} = -\frac{1}{6}$$
, donc finalement :

$$\lim_{x\to 0}\frac{\sin x-x}{x^3}=-\frac{1}{6}$$

Sommaire

- Dérivation : définitions
- 2 Théorèmes généraux
- Dérivation et extrema d'une fonction
- 4 Théorèmes de Rolle et des accroissements finis
- Dérivées successives

Dérivées successives

Définition

Soit $f: I \to \mathbb{R}$. Par convention : $f^{(0)} = f$ et

- si f est dérivable sur I on note $f^{(1)} = f'$ sa dérivée,
- si de plus f' est dérivable, on pose $f^{(2)} = (f')' = f''$: dérivée seconde de f (ou dérivée d'ordre deux),
- de proche en proche, si f admet une dérivée d'ordre $n \in \mathbb{N}$ qui est elle-même dérivable, on pose $f^{(n+1)} = (f^{(n)})'$

Exemple :
$$f(x) = x^3 + 2x + 1$$

$$f'(x) = 3x^2 + 2$$
 $f''(x) = 6x$

$$f^{(3)}(x) = 6$$
 $f^{(4)}(x) = 0$

Régularité des fonctions

Définition

- Par convention une fonction f continue sur I est dite de classe C^0 sur I. On écrit $f \in C^0(I)$
- Une fonction n fois dérivable et de dérivée n-ième continue est dite de classe C^n : $f \in C^n(I)$
- Une fonction qui est de classe C^n quel que soit $n \in \mathbb{N}$ est dite de classe C^{∞}

Exemples: les fonctions polynômes, les fonction cosinus, sinus, exponentielle sont de classe \mathcal{C}^{∞} sur \mathbb{R} ; les fonctions rationnelles sont \mathcal{C}^{∞} sur leur domaine de définition; la fonction $\sqrt{\cdot}$ est \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .

Formule de Leibniz

Proposition

Soient $f, g: I \to \mathbb{R}$ des fonctions n fois dérivables sur I. Alors le produit $f \cdot g$ est n fois dérivables sur I et sa dérivée d'ordre n est donnée par la **formule de Leibniz** :

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} \cdot f^{(n-k)} g^{(k)}$$

Ce résultat se démontre par récurrence sur n

Noter l'analogie avec la formule du binôme de Newton.

Formule de Leibniz

Proposition

Soient $f, g: I \to \mathbb{R}$ des fonctions n fois dérivables sur I. Alors le produit $f \cdot g$ est n fois dérivables sur I et sa dérivée d'ordre n est donnée par la **formule de Leibniz** :

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} \cdot f^{(n-k)} g^{(k)}$$

Exemple:

$$(f \cdot g)^{(4)} = f^{(4)} \cdot g + 4 f^{(3)} \cdot g' + 6 f'' \cdot g'' + 4 f' \cdot g^{(3)} + f \cdot g^{(4)}$$