

Maître d'Ouvrage

DRE Auvergne / Service Maîtrise d'ouvrage

Approuvé par le maître d'ouvrage

DRE Auvergne / SMO 7 rue Léo Lagrange 63033 Clermont Ferrand

RN 88 Contournement du PUY EN VELAY

Opération n° 03 Q 43 A

VIADUC DE TAULHAC

Dossier de consultation des opérateurs économiques

2-3.5 - Note de calcul des appuis et des fondations

Maître d'Oeuvre

DIR Massif Central / Service Ingénierie Routière du Puy

DIR MC / SIR 18 rue Jean Solvain 43000 Le Puy en Velay Etabli et présenté par le maître d'oeuvre

Date:

_		,			
п	n	nnn	e du	nin	• • •
u	vII	nées	o uu	DIE	u .

Diamètre du fût	φ =	1.600 m	Nombre de files	2
Section du fût	A =	2.01062 m ²	Nombre de pieux/file	4
Périmètre du fût	P =	5.0265 m	Espace entre pieux	8.400 m

Géométrie commune des piles :

Hauteur du chevêtre	Hc =	1.800 m	Section chevêtre :	38.65460 m²
Largeur longitudinale	BI =	5.800 m	Section fût :	15.68000 m ²

Largeur transversale Bt = 6.800 m Inertie selon l'axe transversale :

Epaisseur du fût creux Ec = 0.700 m Chevêtre : 110.514379 m^4

Trou d'homme ($\phi = 1,0$ m) dans chevêtre Fût : 72.230667 m⁴

Largeur longitudinale de la semelle (B) 11.600 m

Largeur transversale de la semelle (L) 12.800 m Volume semelle : 371.20000 m³ Hauteur de la semelle 2.500 m Poids semelle : 9.65120 MN

Coefficient de frottement maximal d'un appareil : $\mu_{max} = 3.50\%$

Précision de pose de l'appareil : PP = 0.30% H = $(\mu_{max} + PP)xV$

Efforts horizontaux pour les appareils d'appui à pot fixes :

Nombre d'appareils d'appui à pot glissants :	n =	10	μ _a =	2.85%
Coefficient de dégressivité :	$\alpha =$	0.5	μ_r =	0.80%

PILE P1

Descente de charge par appareil d'appui :

	Appui gauche	e - multi	Appui droit - mono
ELS quasi-perm min	22.241	MN	22.252 MN
ELS quasi-perm max	24.907	MN	24.916 MN
ELS caractéristique min	18.761	MN	18.773 MN
ELS caractéristique max	32.631	MN	32.641 MN
ELU fondamental min	18.116	MN	18.070 MN
ELU fondamental max	34.587	MN	34.541 MN

Hauteur H1 = 24.87 m Volume chevêtre : 69.57828 m^3

Volume fût : 361.7376 m³
Poids de la pile : 11.21421 MN

Torseur appliqué en tête de pile : M = 0.05xV + H1xH

	V	Н		M
ELS quasi-perm min	44.49300 MN	1.69073	MN	44.27320 MN.m
ELS quasi-perm max	49.82300 MN	1.89327	MN	49.57687 MN.m
ELS caractéristique min	37.53400 MN	1.42629	MN	37.34858 MN.m
ELS caractéristique max	65.27200 MN	2.48034	MN	64.94956 MN.m
ELU soutenu min	46.71765 MN	1.77527	MN	46.48686 MN.m
ELU soutenu max	52.31415 MN	1.98794	MN	52.05572 MN.m
ELU fondamental min	36.18600 MN	1.37507	MN	36.00724 MN.m
ELU fondamental max	69.12800 MN	2.62686	MN	68.78651 MN.m

V à l'ELS fût + semelle : 20.86541 MN V à l'ELU fût + semelle : 28.16831 MN

Valeur du facteur de portance k_p :

Nature de la formation porteuse : Argiles limoneuses (classe C) Annexe E.1 Elément mis en œuvre sans refoulement du sol : $\mathbf{k}_p = \mathbf{1.3}$ Annexe C.3

Valeur de la pression limite nette équivalente : Annexe E.2

```
SP1-1
            Profondeur du toit de la formation non porteuse :
                                                                      Znp =
                                                                                  14.500 m
            Hauteur de l'élément dans la formation porteuse :
                                                                         h =
                                                                                  14.500 m
            Valeur de la profondeur a, fonction de φ:
                                                                                   0.800 m
                                                                         a =
            Valeur de la profondeur a, fonction de a et h :
                                                                         b =
                                                                                   0.800 m
                                       I (MN/m) I = Intégrale de p_{le}(z) de (Znp+h-b) à (Znp+h+3a)
                          p_{le}(z) (Mpa)
                z (m)
                  28.000
                                3.970
                  28.200
                                3.968
Znp+h-b
                  29.000
                                3.960
                                                                Longueur du pieu:
                                           3.1712
                  30.000
                                3.750
                                           3.8550
                                                                        H =
                                                                                  26.000 m
                  31.000
                                           3.7050
                                3.660
Zpn+h+3a
                  31.400
                                4.136
                                            1.5592
                  32.000
                                4.850
                                  I =
                                          12.2904 MN/m
                                                                        p_{le} =
                                                                                 3.84075 MPa
SP1-2
            Profondeur du toit de la formation non porteuse :
                                                                      Znp =
                                                                                  18.000 m
                                                                                  11.000 m
            Hauteur de l'élément dans la formation porteuse :
                                                                         h =
            Valeur de la profondeur a, fonction de φ:
                                                                                   0.800 m
                                                                         a =
            Valeur de la profondeur a, fonction de a et h :
                                                                                   0.800 m
                                                                         b =
                                       I (MN/m) I = Intégrale de p_{le}(z) de (Znp+h-b) à (Znp+h+3a) :
                z (m)
                          p_{le}(z) (Mpa)
                  28.000
                                4.050
Znp+h-b
                  28.200
                                4.060
                  29.000
                                4.100
                                            3.2640
                                                                Longueur du pieu:
                  30.000
                                4.490
                                           4.2950
                                                                        H =
                                                                                  26.000 m
                  31.000
                                3.970
                                           4.2300
Zpn+h+3a
                  31.400
                                3.958
                                           1.5856
                  32.000
                                3.940
                                  I =
                                          13.3746 MN/m
                                                                        p_{le} =
                                                                                 4.17956 MPa
                                                                                 4.01016 MPa
                                                                    p_{lemoy} =
Valeur de la contrainte de rupture sous la pointe :
                                                                                          Annexe C3
                                                                                 5.21320 MPa
                                                                        q_u =
Valeur de l'effort limite mobilisable sous la pointe :
                                                                                          Annexe C2
                                                                                10.48177 MN
                                                                       Q_{pu} =
Valeurs du frottement latéral unitaire limite :
                                                                                          Annexe C3
Couche 1: Sable et limons argileux (classe B)
Courbe Q2:
                                 q_{sn} =
                                              0.08 MPa
                                                                                      2.0 MPa
                                                                        p_n =
            J = Intégrale de q_s(z) de 0 à H
    SP1-1:
                z (m)
                          p_{le}(z) (Mpa)
                                       J (MN/m)
                                                        SP1-2:
                                                                             p_{le}(z) (Mpa)
                                                                                           J (MN/m)
                                                                   z (m)
                                                                      3.000
                                                                                   0.200
                   2.000
                                0.860
                                                                      4.000
                                                                                   0.380
                                                                                               0.0215
                                                                                               0.0418
                   3.000
                                0.980
                                                                      5.000
                                                                                   0.870
                                           0.0566
                   3.797
                                2.000
                                           0.0582
                                                                      6.000
                                                                                   1.670
                                                                                               0.0683
                   4.000
                                2.260
                                                                      7.000
                                                                                   1.310
                                                                                               0.0746
                   4.867
                                2.000
                                           0.0856
                                                                      7.340
                                                                                   2.000
                                                                                               0.0261
                   5.000
                                1.960
                                           0.0107
                                                                      8.000
                                                                                   3.340
                   6.000
                                0.850
                                                                     10.000
                                                                                   2.950
                                           0.0709
                   7.000
                                0.820
                                           0.0529
                                                                     10.401
                                                                                   2.000
                                                                                               0.2449
                   8.000
                                0.740
                                                                     11.000
                                                                                   0.580
                                                                                               0.0399
                                           0.0502
                   9.000
                                                                     12.000
                                                                                   1.260
                                                                                               0.0559
                                0.970
                                           0.0537
                  10.000
                                0.980
                                           0.0590
                                  J =
                                           0.4977 MN/m
                                                                                      J =
                                                                                               0.5729 MN/m
Couche 2: Brèche altérée (classe A)
Courbe Q6:
                                                                                      1.4 MPa
                                                                        p_n =
    SP1-1:
                          p_{le}(z) (Mpa)
                                                                             p<sub>le</sub>(z) (Mpa)
                z (m)
                                        J (MN/m)
                                                        SP1-2:
                                                                   z (m)
                                                                                           J (MN/m)
                  10.000
                                0.980
                                                                     12.000
                                                                                   1.260
```

-	_				
-	-^	nc	101	חוי	ns
- 1	U	יווע	ıαι	ıv	I IO

10.093	1.400	0.0148	12.056	1.400	0.0097
11.000	5.480	0.2249	13.000	3.750	0.2068
12.000	5.840	0.3220	14.000	3.750	0.2583
13.000	5.850	0.3282	15.000	3.130	0.2480
14.000	2.140	0.2665	16.000	5.070	0.2700
15.000	2.140	0.2047	17.000	5.220	0.3048
			18.000	5.210	0.3072
	J =	1.3610 MN/m		J =	1.6049 MN/m

Couche 3: Argile limoneuse (classe C)

Courbe Q1: 0.04 MPa $p_n =$ 1.5 MPa $q_{sn} =$ SP1-2: SP1-1: p_{le}(z) (Mpa) J (MN/m) p_{le}(z) (Mpa) J (MN/m) z (m) z (m) 15.000 2.140 18.000 5.210 29.000 3.960 29.000 0.5600 4.100 0.4400

J = 0.5600 MN/m J =0.4400 MN/m

 $q_{su} =$ 2.51827 MN/m Valeur de l'effort limite mobilisable par frottement latéral :

Annexe C2 $Q_{sii} =$ 12.65822 MN

Charge limite en compression : $Q_{cu} =$ 23.13999 MN

Charge de fluage en compression : $Q_{cc} =$ 14.10164 MN

 $Q_{tc} =$ Charge de fluage en traction : 8.86076 MN

Justifications: Chapitre C4 Effort maxi par pieu à l'ELS / Vmax Nmax = 12.70020 MN OK pour fluage Effort mini par pieu à l'ELS / Vmax Nmin = OK pour fluage 8.83415 MN Nmax = OK pour fluage Effort maxi par pieu à l'ELS / Vmin 8.41149 MN Effort mini par pieu à l'ELS / Vmin Nmin = 6.18836 MN OK pour fluage Effort maxi par pieu à l'ELU / Vmax Nmax = 14.20926 MN OK pour effort limite Effort mini par pieu à l'ELU / Vmax Nmin = 10.11482 MN OK pour effort limite OK pour effort limite Effort maxi par pieu à l'ELS / Vmin Nmax = 9.11593 MN Effort mini par pieu à l'ELS / Vmin OK pour effort limite Nmin = 6.97264 MN

PILE P2

Descente de charge par appareil d'appui :

	Appui gauche	e - mono	Appui droit - f	ixe
ELS quasi-perm min	23.477	MN	23.462	MN
ELS quasi-perm max	26.019	MN	26.006	MN
ELS caractéristique min	19.719	MN	19.698	MN
ELS caractéristique max	34.311	MN	34.298	MN
ELU fondamental min	18.741	MN	18.656	MN
ELU fondamental max	36.498	MN	36.414	MN

69.57828 m³ Hauteur 26.51 m Volume chevêtre : H2 =

> Volume fût : 387.4528 m³ Poids de la pile : 11.88281 MN

Effort horizontal repris par appareils d'appui à pot fixes de la pile P2 à l'ELS : H = 2.700 MN La pile P2 reprend la totalité des efforts de freinage (30 tonnes). H = 0.300 MN

Torseur appliqué en tête de pile : M = 0.05xV + H2xH

				Candatio	200		
				Fondation	วทร		
ELC succi s		V	NANI	H	N 4 N I	M 70,0000	NANI was
ELS quasi-p		46.93900 52.02500		2.70015		73.92803 74.18233	
ELS quasi-p ELS caracté		39.41700		2.70015 2.70015		73.55193	
	ristique max	68.60900		2.70015		75.01153	
ELU souteni	•	49.28595		3.64521		99.09876	
ELU souteni		54.62625		3.64521		99.36577	
ELU fondam		37.39700		3.64521		98.50431	
ELU fondam		72.91200		3.64521		100.28006	
V à l'ELS fût	: + semelle :	21.53401	MN	V à l'ELU fût	+ semelle :	29.07091	MN
	acteur de porta						
	formation porte		Argiles limon	,	•		Annexe E.1
Elément mis	en œuvre sans	refoulemen	t du sol :	$k_p =$	1.3		Annexe C.3
Valeur de la	pression limit	e nette égu	ivalente :				Annexe E.2
SP2-1	Profondeur du			orteuse :	Znp =	23.000	
	Hauteur de l'éle		•		h =	7.000	
	Valeur de la pr			•	a =	0.800	m
	Valeur de la pr	ofondeur a,	fonction de a	et h:	b =	0.800	m
	z (m) p	_{le} (z) (Mpa)	I (MN/m)	I = Intégrale	de p _{le} (z) de (Zr	np+h-b) à (Z	np+h+3a)
	29.000	4.100					
Znp+h-b	29.200	5.040					
	30.000	8.800	5.5360		Longueur du p	ieu :	
	31.000	4.620	6.7100		H =	27.000	m
	32.000	4.090	4.3550				
Zpn+h+3a	32.400	4.226	1.6632				
	33.000	4.430					
		l =	18.2642	MN/m	p _{le} =	5.70756	MPa
SP2-2	Profondeur du	toit de la for	mation non n	orteuse :	Znp =	29.000	m
0.22	Hauteur de l'éle				h =	1.000	
	Valeur de la pr			•	a =	0.800	
	Valeur de la pr				b =	0.800	
	•	_{le} (z) (Mpa)			de p _{le} (z) de (Zr		
	29.000	4.850	. ()		a. a. la life(—). a. a. (—.	.,, (—	
Znp+h-b	29.200	4.780					
p 0	30.000	4.500	3.7120		Longueur du p	ieu :	
	31.000	4.900	4.7000		H =	27.000	m
	32.000	4.830	4.8650				
Zpn+h+3a	32.400	4.698	1.9056				
	33.000	4.500					
		I =	15.1826	MN/m	$p_{le} =$	4.74456	MPa
					p _{lemoy} =	5.22606	MPa
Valeur de la	contrainte de	rupture sou	us la pointe :				Annexe C3
		•	•		$q_u =$	6.79388	
Valeur de l'	effort limite mo	bilisable so	ous la pointe):	·iu		Annexe C2
			•		Q _{pu} =	13.65991	
Valeurs du	frottement laté	ral unitaire	limite :		pu		Annexe C3
	Limons sableux		- - -				21.2
Courbe Q1 :		$q_{sn} =$	0.04	MPa	$p_n =$	1.5	MPa
	J = Intégrale de				L II	0	
CD2 4 -	- (m) n	,		CD2.2.	- (m)	o (z) (Mno)	1 (N/N1/ms)

SP2-2:

z (m)

 $p_{le}(z)$ (Mpa) J (MN/m)

 $p_{le}(z)$ (Mpa) J (MN/m)

z (m)

SP2-1:

				Toridatio	_			
	3.000	0.550			3.000	0.910		
	4.000		0.0224		4.000	0.610		
	5.000		0.0222		5.000	0.700		
			0.0222					
	6.000				5.920	1.500		
	7.000		0.0299		6.000	1.570		
	7.890		0.0314		6.140	1.500		
	8.000	1.610			7.000	1.070	0.0335	
	8.100	1.500	0.0084		7.339	1.500	0.0132	
	9.000		0.0308		8.000	2.340		
	10.000		0.0297		8.587		0.0500	
	10.560		0.0216		9.000			
			0.0210					
	11.000		0.0004		10.000			
	11.320		0.0304		11.000	1.090	0.0367	
	12.000		0.0243					
		J =	0.2798	MN/m		J =	0.2836	MN/m
Couche 2: B	rèche altéré	ée (classe A)						
Courbe Q6 :		,			p _n =	1.4	MPa	
SP2-1:	z (m)	p _{le} (z) (Mpa)	J (MN/m)	SP2-2 :	z (m)	p _{le} (z) (Mpa)	J (MN/m)	
	12.000	0.650			11.000	1.090		
	12.170	1.400	0.0243		11.151	1.400	0.0249	
	13.000		0.1998		12.000			
	14.000		0.2737		13.000			
	15.000		0.2217		14.000			
	16.000		0.1913		15.000			
	17.000		0.2073		16.000			
	18.000		0.2302		17.000	3.680	0.2788	
	19.000	4.360	0.2547		18.000	2.650	0.2388	
		J =	1.6029	MN/m		J =	1.7598	MN/m
Couche 3: L	imons cend	reux (classe A						
			•)					
Courba O1 ·		α =	0.04	MDa	n =	1.5	MDa	
Courbe Q1:				MPa	p _n =		MPa	
Courbe Q1 : SP2-1 :	z (m)	$q_{sn} = p_{le}(z) (Mpa)$				1.5 p _{le} (z) (Mpa)		
	z (m) 19.000	p _{le} (z) (Mpa)				p _{le} (z) (Mpa)	J (MN/m)	
	19.000	p _{le} (z) (Mpa) 4.360	J (MN/m)		z (m) 18.000	p _{le} (z) (Mpa) 2.650	J (MN/m)	
	` ,	p _{le} (z) (Mpa) 4.360 3.360	J (MN/m) 0.1600	SP2-2 :	z (m)	p _{le} (z) (Mpa) 2.650 4.850	J (MN/m) 0.4400	MN/m
SP2-1 :	19.000 23.000	p _{le} (z) (Mpa) 4.360 3.360 J =	J (MN/m) 0.1600 0.1600	SP2-2 :	z (m) 18.000	p _{le} (z) (Mpa) 2.650	J (MN/m) 0.4400	MN/m
SP2-1:	19.000 23.000	p _{le} (z) (Mpa) 4.360 3.360 J = euse (classe C	J (MN/m) 0.1600 0.1600)	SP2-2 :	z (m) 18.000 29.000	p _{le} (z) (Mpa) 2.650 4.850 J =	J (MN/m) 0.4400 0.4400	MN/m
SP2-1 :	19.000 23.000	p _{le} (z) (Mpa) 4.360 3.360 J =	J (MN/m) 0.1600 0.1600)	SP2-2 :	z (m) 18.000	p _{le} (z) (Mpa) 2.650 4.850 J =	J (MN/m) 0.4400	MN/m
SP2-1:	19.000 23.000 rgile limone	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 4.360 \\ 3.360 \\ J = \\ euse \ (classe \ C \\ q_{sn} = \end{array}$	J (MN/m) 0.1600 0.1600)	SP2-2 :	z (m) 18.000 29.000 p _n =	p _{le} (z) (Mpa) 2.650 4.850 J = 1.5	J (MN/m) 0.4400 0.4400 MPa	MN/m
SP2-1 : Couche 4 : A Courbe Q1 :	19.000 23.000 rgile limone z (m)	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 4.360 \\ 3.360 \\ J = \\ euse \ (classe \ C \\ q_{sn} = \\ p_{le}(z) \ (Mpa) \end{array}$	J (MN/m) 0.1600 0.1600) 0.04	SP2-2 : MN/m MPa	z (m) 18.000 29.000 p _n = z (m)	$p_{le}(z)$ (Mpa) 2.650 4.850 J = 1.5 $p_{le}(z)$ (Mpa)	J (MN/m) 0.4400 0.4400 MPa J (MN/m)	MN/m
SP2-1: Couche 4: A Courbe Q1:	19.000 23.000 rgile limone z (m) 23.000	$p_{le}(z) \text{ (Mpa)} \ 4.360 \ 3.360 \ J = \ \text{euse (classe C} \ q_{sn} = \ p_{le}(z) \text{ (Mpa)} \ 3.360$	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m)	SP2-2 : MN/m MPa	z (m) 18.000 29.000 p _n = z (m) 29.000	$p_{le}(z)$ (Mpa) 2.650 4.850 J = 1.5 $p_{le}(z)$ (Mpa) 4.850	J (MN/m) 0.4400 0.4400 MPa J (MN/m)	MN/m
SP2-1: Couche 4: A Courbe Q1:	19.000 23.000 rgile limone z (m)	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800	SP2-2 : MN/m MPa SP1-2 :	z (m) 18.000 29.000 p _n = z (m)	p _{le} (z) (Mpa) 2.650 4.850 J = 1.5 p _{le} (z) (Mpa) 4.850 4.100	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400	
SP2-1: Couche 4: A Courbe Q1:	19.000 23.000 rgile limone z (m) 23.000	$p_{le}(z) \text{ (Mpa)} \ 4.360 \ 3.360 \ J = \ \text{euse (classe C} \ q_{sn} = \ p_{le}(z) \text{ (Mpa)} \ 3.360$	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m)	SP2-2 : MN/m MPa SP1-2 :	z (m) 18.000 29.000 p _n = z (m) 29.000 30.000	p _{le} (z) (Mpa) 2.650 4.850 J = 1.5 p _{le} (z) (Mpa) 4.850 4.100 J =	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400	
SP2-1: Couche 4: A Courbe Q1: SP1-1:	19.000 23.000 rgile limone z (m) 23.000 30.000	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J =	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	z (m) 18.000 29.000 p _n = z (m) 29.000	p _{le} (z) (Mpa) 2.650 4.850 J = 1.5 p _{le} (z) (Mpa) 4.850 4.100	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m	
SP2-1: Couche 4: A Courbe Q1:	19.000 23.000 rgile limone z (m) 23.000 30.000	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J =	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	z (m) 18.000 29.000 p _n = z (m) 29.000 30.000	p _{le} (z) (Mpa) 2.650 4.850 J = 1.5 p _{le} (z) (Mpa) 4.850 4.100 J =	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400	
SP2-1: Couche 4: A Courbe Q1: SP1-1:	19.000 23.000 rgile limone z (m) 23.000 30.000	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J =	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	z (m) 18.000 29.000 p _n = z (m) 29.000 30.000 q _{su} =	p _{le} (z) (Mpa) 2.650 4.850 J = 1.5 p _{le} (z) (Mpa) 4.850 4.100 J =	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2	
SP2-1: Couche 4: A Courbe Q1: SP1-1:	19.000 23.000 rgile limone z (m) 23.000 30.000	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J =	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	z (m) 18.000 29.000 p _n = z (m) 29.000 30.000	p _{le} (z) (Mpa) 2.650 4.850 J = 1.5 p _{le} (z) (Mpa) 4.850 4.100 J = 2.42308	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff	19.000 23.000 rgile limone z (m) 23.000 30.000	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J =	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = 0$	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ \\ 12.17970 \\ \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN	
SP2-1: Couche 4: A Courbe Q1: SP1-1:	19.000 23.000 rgile limone z (m) 23.000 30.000	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J =	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	z (m) 18.000 29.000 p _n = z (m) 29.000 30.000 q _{su} =	p _{le} (z) (Mpa) 2.650 4.850 J = 1.5 p _{le} (z) (Mpa) 4.850 4.100 J = 2.42308	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite	19.000 23.000 rgile limone z (m) 23.000 30.000	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J = mobilisable paragraphs	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = Q_{su} = Q_{cu} = 0$	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ \\ 12.17970 \\ 25.83961 \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff	19.000 23.000 rgile limone z (m) 23.000 30.000	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J = mobilisable paragraphs	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = 0$	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ \\ 12.17970 \\ \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite	19.000 23.000 rgile limone z (m) 23.000 30.000	$p_{le}(z)$ (Mpa) 4.360 3.360 J = euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J = mobilisable paragraphs	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = Q_{su} = Q_{cu} = 0$	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ \\ 12.17970 \\ 25.83961 \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite Charge de flu	19.000 23.000 rgile limone z (m) 23.000 30.000 fort limite n en compre	$p_{le}(z)$ (Mpa) 4.360 3.360 $J =$ euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 $J =$ mobilisable paragraphs	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = Q_{cu} = Q_{cc} = 0$	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ \\ 12.17970 \\ 25.83961 \\ 15.35575 \\ \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite	19.000 23.000 rgile limone z (m) 23.000 30.000 fort limite n en compre	$p_{le}(z)$ (Mpa) 4.360 3.360 $J =$ euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 $J =$ mobilisable paragraphs	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = Q_{su} = Q_{cu} = 0$	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ \\ 12.17970 \\ 25.83961 \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite Charge de flu Charge de flu	19.000 23.000 rgile limone z (m) 23.000 30.000 fort limite n en compre age en con	$p_{le}(z)$ (Mpa) 4.360 3.360 $J =$ euse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 $J =$ mobilisable paragraphs	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800	SP2-2 : MN/m MPa SP1-2 :	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = Q_{cu} = Q_{cc} = 0$	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ \\ 12.17970 \\ 25.83961 \\ 15.35575 \\ \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN MN	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite Charge de flu Justifications	19.000 23.000 rgile limone z (m) 23.000 30.000 fort limite n en compre age en con age en trac	$p_{le}(z)$ (Mpa) 4.360 3.360 J = Puse (classe C $q_{sn} =$ $p_{le}(z)$ (Mpa) 3.360 8.800 J = mobilisable paragraphic size in the control of the con	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800 ar frottemen	SP2-2 : MN/m MPa SP1-2 : MN/m t latéral :	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = z_{su} = z_{$	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ 12.17970 \\ 25.83961 \\ 15.35575 \\ 8.52579 \\ \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN MN MN Chapitre C4	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite Charge de flu Justifications Effort maxi par	19.000 23.000 rgile limone z (m) 23.000 30.000 fort limite n en compre age en con age en trac : pieu à l'EL	p _{le} (z) (Mpa) 4.360 3.360 J = euse (classe C q _{sn} = p _{le} (z) (Mpa) 3.360 8.800 J = mobilisable pa ession : estion : ction :	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800 ar frottemen	SP2-2 : MN/m MPa SP1-2 : MN/m t latéral :	$z (m)$ 18.000 29.000 $p_n =$ $z (m)$ 29.000 30.000 $q_{su} =$ $Q_{cu} =$ $Q_{cc} =$ $Q_{tc} =$ MN	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ \\ 12.17970 \\ 25.83961 \\ 15.35575 \\ 8.52579 \\ \\ OK \ pour \ flua \\ \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN MN MN Chapitre C4 ge	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite Charge de flu Justifications	19.000 23.000 rgile limone z (m) 23.000 30.000 fort limite n en compre age en con age en trac : pieu à l'EL	p _{le} (z) (Mpa) 4.360 3.360 J = euse (classe C q _{sn} = p _{le} (z) (Mpa) 3.360 8.800 J = mobilisable pa ession : estion : ction :	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800 ar frottemen	SP2-2 : MN/m MPa SP1-2 : MN/m t latéral :	$z (m)$ 18.000 29.000 $p_n =$ $z (m)$ 29.000 30.000 $q_{su} =$ $Q_{cu} =$ $Q_{cc} =$ $Q_{tc} =$ MN	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ 12.17970 \\ 25.83961 \\ 15.35575 \\ 8.52579 \\ \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN MN MN Chapitre C4 ge	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite Charge de flu Charge de flu Justifications Effort maxi par Effort mini par	19.000 23.000 rgile limone z (m) 23.000 30.000 fort limite n en compre age en con age en trac : pieu à l'ELS	p _{le} (z) (Mpa) 4.360 3.360 J = euse (classe C q _{sn} = p _{le} (z) (Mpa) 3.360 8.800 J = nobilisable pa ession : etion : S / Vmax S / Vmax	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800 ar frottemen Nmax = Nmin =	SP2-2: MN/m MPa SP1-2: MN/m t latéral: 13.50036 9.03539	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = Q_{cu} = Q_{cc} = Q_{tc} = MN$ MN	$p_{le}(z)$ (Mpa) 2.650 4.850 J = 1.5 $p_{le}(z)$ (Mpa) 4.850 4.100 J = 2.42308 12.17970 25.83961 15.35575 8.52579 OK pour flua OK pour flua	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN MN Chapitre C4 ge	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite Charge de flu Charge de flu Justifications Effort maxi par Effort maxi par	19.000 23.000 rgile limone z (m) 23.000 30.000 fort limite n en compre age en con age en trac : pieu à l'ELS pieu à l'ELS	p _{le} (z) (Mpa) 4.360 3.360 J = euse (classe C q _{sn} = p _{le} (z) (Mpa) 3.360 8.800 J = mobilisable pa ession : etion : S / Vmax S / Vmin	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800 ar frottemen	SP2-2 : MN/m MPa SP1-2 : MN/m t latéral :	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = Q_{cu} = Q_{cc} = Q_{tc} = MN$ MN	$\begin{array}{c} p_{le}(z) \ (Mpa) \\ 2.650 \\ 4.850 \\ J = \\ \\ 1.5 \\ p_{le}(z) \ (Mpa) \\ 4.850 \\ 4.100 \\ J = \\ 2.42308 \\ \\ 12.17970 \\ 25.83961 \\ 15.35575 \\ 8.52579 \\ \\ OK \ pour \ flua \\ \end{array}$	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN MN Chapitre C4 ge	
SP2-1: Couche 4: A Courbe Q1: SP1-1: Valeur de l'eff Charge limite Charge de flu Charge de flu Justifications Effort maxi par Effort mini par	19.000 23.000 rgile limone z (m) 23.000 30.000 fort limite n en compre age en con age en trac : pieu à l'ELS pieu à l'ELS	p _{le} (z) (Mpa) 4.360 3.360 J = euse (classe C q _{sn} = p _{le} (z) (Mpa) 3.360 8.800 J = mobilisable pa ession : etion : S / Vmax S / Vmin	J (MN/m) 0.1600 0.1600) 0.04 J (MN/m) 0.2800 0.2800 ar frottemen Nmax = Nmin =	SP2-2: MN/m MPa SP1-2: MN/m t latéral: 13.50036 9.03539	$z (m)$ 18.000 29.000 $p_n = z (m)$ 29.000 30.000 $q_{su} = Q_{cu} = Q_{cc} = Q_{tc} = MN$ MN MN	$p_{le}(z)$ (Mpa) 2.650 4.850 J = 1.5 $p_{le}(z)$ (Mpa) 4.850 4.100 J = 2.42308 12.17970 25.83961 15.35575 8.52579 OK pour flua OK pour flua	J (MN/m) 0.4400 0.4400 MPa J (MN/m) 0.0400 0.0400 MN/m Annexe C2 MN MN MN MN Chapitre C4 ge ge	

=ດ			

Effort maxi par pieu à l'ELU / Vmax	Nmax =	15.73239 MN	OK pour effort limite OK pour effort limite
Effort mini par pieu à l'ELU / Vmax	Nmin =	9.76334 MN	
Effort maxi par pieu à l'ELS / Vmin	Nmax =	11.24016 MN	OK pour effort limite OK pour effort limite
Effort mini par pieu à l'ELS / Vmin	Nmin =	5.37681 MN	

PILE P3

	Appui gauche	e - multi	Appui droit - mono
ELS quasi-perm min	23.498	MN	23.527 MN
ELS quasi-perm max	26.041	MN	26.062 MN
ELS caractéristique min	19.738	MN	19.762 MN
ELS caractéristique max	34.330	MN	34.351 MN
ELU fondamental min	18.763	MN	18.715 MN
ELU fondamental max	36.517	MN	36.469 MN

Volume chevêtre: 69.57828 m³ Hauteur H3 = 21.146 m

Volume fût: 303.34528 m³ 9.69601 MN Poids de la pile :

Annexe E.2

Torseur appliqué en tête de pile :

Torseur appliqué en tête d				M = 0.05xV + H2xH	
	V		Н		M
ELS quasi-perm min	47.02500	MN	1.78695	MN	40.13809 MN.m
ELS quasi-perm max	52.10300	MN	1.97991	MN	44.47241 MN.m
ELS caractéristique min	39.50000	MN	1.50100	MN	33.71515 MN.m
ELS caractéristique max	68.68100	MN	2.60988	MN	58.62253 MN.m
ELU soutenu min	49.37625	MN	1.87630	MN	42.14500 MN.m
ELU soutenu max	54.70815	MN	2.07891	MN	46.69603 MN.m
ELU fondamental min	37.47800	MN	1.42416	MN	31.98927 MN.m
ELU fondamental max	72.98600	MN	2.77347	MN	62.29705 MN.m

V à l'ELS fût + semelle : 19.34721 MN V à l'ELU fût + semelle : 26.11874 MN

Valeur du facteur de portance k_p :

Nature de la formation porteuse :	Sables silteux (d	classe C)		Annexe E.1
Elément mis en œuvre sans refouleme	nt du sol :	k _p =	1.3	Annexe C.3

Valeur de la pression limite nette équivalente :

SP3-1	Profondeur du toit de la formation non porteuse :	Znp =	23.000 m
	Hauteur de l'élément dans la formation porteuse :	h =	1.000 m
	Valeur de la profondeur a, fonction de ϕ :	a =	0.800 m
	Valeur de la profondeur a, fonction de a et h :	b =	0.800 m

	z (m)	p _{le} (z) (Mpa)	I (MN/m)	I = Intégrale	de p _{le} (z) de (Znp	+h-b) à (Zı	np+h+3a)
	23.000	5.170					
Znp+h-b	23.200	5.190					
	24.000	5.270	4.1840		Longueur du pie	u:	
	25.000	5.350	5.3100		H =	21.000	m
	26.000	5.810	5.5800				
Zpn+h+3a	26.400	4.930	2.1480				
	27.000	3.610					
		I =	17.2220	MN/m	$p_{le} =$	5.38188	MPa

SP3-2 Znp = Profondeur du toit de la formation non porteuse : 20.000 m h = 4.000 m

Hauteur de l'élément dans la formation porteuse : Valeur de la profondeur a, fonction de ϕ : a = 0.800 m

				Fondatio	ns			
	Valeur de la	profondeur a,	fonction de a	et h:	b =	0.800	m	
	z (m)	p _{le} (z) (Mpa)		I = Intégrale d	de p _{ia} (z) de (2			
	` '	6.040	· (w. 4/11)	. mograto c	20 Pie(2) 00 (2	p · 5 / a (2		
7	23.000							
Znp+h-b	23.200	5.972						
	24.000	5.700	4.6688		Longueur du	•		
	25.000	5.540	5.6200		H =	21.000	m	
	26.000	5.320	5.4300					
Zpn+h+3a	26.400	5.104	2.0848					
_p ••	27.000	4.780						
	27.000		47 0000	NANI/wa		F F0000	MD-	
		l =	17.8036	IVIN/M	p _{le} =	5.56363	мРа	
					$p_{lemoy} =$	5.47275	MPa	
Valeur de la	a contrainte d	le rupture soi	is la pointe				Annexe C3	
valour do n		o rupturo cot	ao la politic	•	a -	7.11458		
					$q_u =$			
Valeur de l'	effort limite n	nobilisable so	ous la pointe) :			Annexe C2	
					$Q_{pu} =$	14.30470	MN	
Valeurs du	frottement la	téral unitaire	limite :				Annexe C3	
	Sables beige							
Courbe Q1	•	$q_{sn} =$	0.04	MPa	n =	1.5	MPa	
					p _n =			
SP3-1	: z (m)	p _{le} (z) (Mpa)	J (MN/m)	SP3-2 :	z (m)	p _{le} (z) (Mpa)	J (MN/m)	
	3.000	3.880			3.000	1.250		
	4.000	3.800			4.000	0.960	0.0371	
	5.000	3.400			5.000	1.120	0.0362	
	6.000	3.780			6.000	1.170	0.0378	
	7.000				7.000	1.170	0.0376	
			0.0000					
	8.000	4.840	0.2000		7.386	1.500	0.0397	
					8.000	1.850		
					9.000	1.630		
					9.277	1.500	0.0756	
					10.000	1.160	0.0393	
		J =	0.2000	MN/m		J =	0.3043	MN/m
Couche 2:	Brèche altére					_		
Courbe Q6		30 (0.000071)			n -	1 1	MPa	
					$p_n =$			
SP3-1	: z (m)	p _{le} (z) (Mpa)	J (MN/m)	SP3-2 :	z (m)	p _{le} (z) (Mpa)	J (MN/m)	
	8.000	4.840			10.000	1.160		
	9.000	7.140	0.3330		10.107	1.400	0.0180	
	10.000	4.810	0.3325		11.000	3.400	0.1905	
	11.000	4.830	0.2940		12.000	2.430	0.2305	
	12.000	4.420	0.2875		13.000	5.210	0.2607	
	13.000	4.830	0.2875		14.000	5.550	0.3127	
	14.000	5.120	0.2992		15.000	5.070	0.3103	
	15.000	4.980	0.3017		16.000	5.180	0.3042	
	16.000	5.160	0.3023		17.000	5.510	0.3115	
	17.000	5.150	0.3052		18.000	5.380	0.3148	
	18.000	4.910	0.3010		19.000	5.080	0.3077	
	19.000	3.900	0.2802		20.000	5.380	0.3077	
	20.000	6.090	0.2998		_5.550	2.000	2.30.7	
	21.000	4.840	0.2330					
	22.000	4.830	0.2945					
	23.000	5.170	0.3000					
		J =	4.5338	MN/m		J =	2.8685	MN/m
		/ - l A \						
	Sables silteu	x (classe A)						
Couche 3 : Courbe Q1		x (classe A) q _{sn} =	0.04	MPa	$p_n =$		MPa	
	:	` ,	0.04 J (MN/m)	MPa SP3-2 :	p _n = z (m)		MPa J (MN/m)	
Courbe Q1	: : z (m)	$q_{sn} = p_{le}(z)$ (Mpa)			z (m)	$p_{le}(z)$ (Mpa)		
Courbe Q1	:	$q_{sn} = p_{le}(z)$ (Mpa)						

J = J =0.0400 MN/m 0.1600 MN/m

4.05333 MN/m $q_{su} =$ Valeur de l'effort limite mobilisable par frottement latéral :

Annexe C2

 $Q_{su} =$ 20.37425 MN

Charge limite en compression : $Q_{cu} =$ 34.67896 MN

 $Q_{cc} =$ Charge de fluage en compression : 21.41433 MN

 $Q_{tc} =$ Charge de fluage en traction : 14.26198 MN

Justifications: Chapitre C4

Effort maxi par pieu à l'ELS / Vmax Nmax = OK pour fluage 12.74824 MN Effort mini par pieu à l'ELS / Vmax Nmin = 9.25881 MN OK pour fluage Effort maxi par pieu à l'ELS / Vmin Nmax = 8.35933 MN OK pour fluage Effort mini par pieu à l'ELS / Vmin Nmin = 6.35247 MN OK pour fluage Nmax = 14.24217 MN Effort maxi par pieu à l'ELU / Vmax OK pour fluage Effort mini par pieu à l'ELU / Vmax Nmin = 10.53401 MN OK pour fluage Effort maxi par pieu à l'ELS / Vmin Nmax = 8.90165 MN OK pour fluage Effort mini par pieu à l'ELS / Vmin Nmin = 6.99753 MN OK pour fluage

PILE P4

Descente de charge par appareil d'appui :

	Appui gauche - mi	ulti Appui droit - mono
ELS quasi-perm min	22.257 MN	22.241 MN
ELS quasi-perm max	24.933 MN	24.909 MN
ELS caractéristique min	18.775 MN	18.759 MN
ELS caractéristique max	32.663 MN	32.639 MN
ELU fondamental min	18.134 MN	18.057 MN
ELU fondamental max	34.617 MN	34.539 MN

Hauteur H4 = 12.09 m Volume chevêtre : 69.57828 m³

> 161.3472 m³ Volume fût :

Poids de la pile : 6.00406 MN

Torseur appliqué en tête de pile : M = 0.05xV + H2xH

Μ ELS quasi-perm min 44.49800 MN 1.69092 MN 22.66817 MN.m 25.39051 MN.m ELS quasi-perm max 49.84200 MN 1.89400 MN ELS caractéristique min 37.53400 MN 1.42629 MN 19.12057 MN.m. ELS caractéristique max 65.30200 MN 2.48148 MN 33.26614 MN.m ELU soutenu min 1.77547 MN 23.80158 MN.m 46.72290 MN 52.33410 MN 1.98870 MN ELU soutenu max 26.66004 MN.m ELU fondamental min 36.19100 MN 1.37526 MN 18.43642 MN.m ELU fondamental max 69.15600 MN 2.62793 MN 35.22945 MN.m

V à l'ELS fût + semelle : 15.65526 MN V à l'ELU fût + semelle : 21.13460 MN

Valeur du facteur de portance k_p :

Nature de la formation porteuse : Brèches altérées (classe A) Annexe E.1 Elément mis en œuvre sans refoulement du sol : $k_p =$ 1.3 Annexe C.3

Valeur de la pression limite nette équivalente : Annexe E.2

```
SP4-1
             Profondeur du toit de la formation non porteuse :
                                                                       Znp =
                                                                                    3.000 m
             Hauteur de l'élément dans la formation porteuse :
                                                                         h =
                                                                                   14.000 m
             Valeur de la profondeur a, fonction de φ:
                                                                                    0.800 m
                                                                         a =
             Valeur de la profondeur a, fonction de a et h :
                                                                         b =
                                                                                    0.800 m
                                       I (MN/m) I = Intégrale de p_{le}(z) de (Znp+h-b) à (Znp+h+3a)
                          p_{le}(z) (Mpa)
                z (m)
                  16.000
                                5.090
                  16.200
                                5.158
Znp+h-b
                  17.000
                                5.430
                                                                Longueur du pieu:
                                            4.2352
                  18.000
                                5.470
                                            5.4500
                                                                         H =
                                                                                   14.000 m
                  19.000
                                5.470
                                            5.4700
Zpn+h+3a
                  19.400
                                5.466
                                            2.1872
                  20.000
                                5.460
                                   I =
                                           17.3424 MN/m
                                                                        p_{le} =
                                                                                  5.41950 MPa
SP4-2
             Profondeur du toit de la formation non porteuse :
                                                                       Znp =
                                                                                    4.000 m
                                                                                   13.000 m
             Hauteur de l'élément dans la formation porteuse :
                                                                         h =
             Valeur de la profondeur a, fonction de φ:
                                                                                    0.800 m
                                                                         a =
             Valeur de la profondeur a, fonction de a et h :
                                                                         b =
                                                                                    0.800 m
                                       I (MN/m) I = Intégrale de p_{le}(z) de (Znp+h-b) à (Znp+h+3a)
                z (m)
                          p_{le}(z) (Mpa)
                  16.000
                                4.580
Znp+h-b
                  16.200
                                4.806
                  17.000
                                5.710
                                            4.2064
                                                                Longueur du pieu:
                  18.000
                                4.830
                                            5.2700
                                                                         H =
                                                                                   14.000 m
                  19.000
                                4.660
                                            4.7450
Zpn+h+3a
                  19.400
                                4.832
                                            1.8984
                  20.000
                                5.090
                                   1 =
                                           16.1198 MN/m
                                                                        p_{le} =
                                                                                  5.03744 MPa
                                                                                  5.22847 MPa
                                                                     p_{lemov} =
Valeur de la contrainte de rupture sous la pointe :
                                                                                          Annexe C3
                                                                                  6.79701 MPa
Valeur de l'effort limite mobilisable sous la pointe :
                                                                                          Annexe C2
                                                                                 13.66620 MN
                                                                       Q_{pu} =
Valeurs du frottement latéral unitaire limite :
                                                                                          Annexe C3
Couche 1: Limons (classe C)
Courbe Q1:
                                              0.04 MPa
                                                                                       1.5 MPa
                                 q_{sn} =
                                                                         p_n =
                          p<sub>le</sub>(z) (Mpa)
    SP4-1:
                                                                    z (m)
                                                                              p_{le}(z) (Mpa)
                                        J (MN/m)
                                                        SP4-2:
                                                                                            J (MN/m)
                z (m)
                   3.000
                                5.010
                                                                       3.000
                                                                                    1.890
                                                                       3.600
                                                                                    1.500
                                                                                                0.0240
                                                                       4.000
                                                                                    1.240
                                                                                                0.0158
                                            0.0000 MN/m
                                  J = 1
                                                                                                0.0398 MN/m
                                                                                      J =
Couche 2: Brèches altérées (classe A)
Courbe Q3:
                                              0.12 MPa
                                                                                      2.5 MPa
                                 q_{sn} =
                                                                        p_n =
                                                        SP4-2:
    SP4-1:
                          p<sub>le</sub>(z) (Mpa)
                                        J (MN/m)
                                                                              p_{le}(z) (Mpa)
                                                                                            J (MN/m)
                z (m)
                                                                    z (m)
                   3.000
                                                                       4.000
                                                                                    1.240
                                5.010
                  17.000
                                            1.6800
                                                                                    1.640
                                5.090
                                                                       5.000
                                                                                                0.0982
                                                                                                0.0698
                                                                       5.606
                                                                                    2.500
                                                                       6.000
                                                                                    3.060
                                                                      17.000
                                                                                    4.580
                                                                                                1.3673
                                            1.6800 MN/m
                                                                                                1.5353 MN/m
                                  J =
                                                                                      J =
                                                                                  1.62757 MN/m
                                                                       q_{su} =
Valeur de l'effort limite mobilisable par frottement latéral :
                                                                                          Annexe C2
                                                                                  8.18107 MN
                                                                       Q_{su} =
                                                                       Q_{cu} =
                                                                                21.84727 MN
```

Charge limite en compression :

Charge de fluage en compression :

Q_{cc} = 12.55985 MN

Charge de fluage en traction :

Q_{tc} = 5.72675 MN

Justifications :			Chapitre C4
Effort maxi par pieu à l'ELS / Vmax	Nmax =	11.10972 MN	OK pour fluage
Effort mini par pieu à l'ELS / Vmax	Nmin =	9.12959 MN	OK pour fluage
Effort maxi par pieu à l'ELS / Vmin	Nmax =	7.21772 MN	OK pour fluage
Effort mini par pieu à l'ELS / Vmin	Nmin =	6.07959 MN	OK pour fluage
Effort maxi par pieu à l'ELU / Vmax	Nmax =	12.33482 MN	OK pour fluage
Effort mini par pieu à l'ELU / Vmax	Nmin =	10.23783 MN	OK pour fluage
Effort maxi par pieu à l'ELS / Vmin	Nmax =	7.71440 MN	OK pour fluage
Effort mini par pieu à l'ELS / Vmin	Nmin =	6.61700 MN	OK pour fluage

CULEE C5

Descente de charge par appareil d'appui :

	Appui gauche - multi			Appui droit - mono		
ELS quasi-perm min	3.989	MN	3.993	MN		
ELS quasi-perm max	4.716	MN	4.719	MN		
ELS caractéristique min	2.052	MN	2.056	MN		
ELS caractéristique max	8.322	MN	8.325	MN		
ELU fondamental min	1.601	MN	1.603	MN		
ELU fondamental max	9.305	MN	9.307	MN		

CULEE C0

Descente de charge par appareil d'appui :

	•		
Appui gauch	e - multi	Appui droit - ı	mono
4.005	MN	4.002	MN
4.726	MN	4.723	MN
2.066	MN	2.062	MN
8.335	MN	8.332	MN
1.612	MN	1.607	MN
9.323	MN	9.318	MN