

Maître d'Ouvrage

DRE Auvergne / Service Maîtrise d'ouvrage

Approuvé par le maître d'ouvrage

DRE Auvergne / SMO 7 rue Léo Lagrange 63033 Clermont Ferrand

RN 88 Contournement du PUY EN VELAY

Opération n° 03 Q 43 A

VIADUC DE TAULHAC

Dossier de consultation des opérateurs économiques

2-1.2.3 - Rapport de synthèse

Maître d'Oeuvre

DIR Massif Central / Service Ingénierie Routière du Puy

DIR MC / SIR 18 rue Jean Solvain 43000 Le Puy en Velay Etabli et présenté par le maître d'oeuvre

Date:

CENTRE D'EXPERTISE DU BATIMENT ET DES TRAVAUX PUBLICS

CENTRE D'ETUDES ET D'ESSAIS DE CLERMONT-FERRAND 11, rue Louis Rosier – PAT La Pardieu 63000 CLERMONT-FERRAND Tél. 04 73 27 72 00 - Fax. 04 73 27 74 57

DDE DE LA HAUTE-LOIRE
Service Opérationnel - CDOA
13, rue des Moulins
B.P. 350
43012 LE PUY EN VELAY Cedex

22 avril 2005

RN 88 – Contournement de l'agglomération du Puy-en-Velay

Viaduc de Taulhac - Rapport de synthèse

Opération n° 03Q 43A

Dossier n° E652.4.114-8

ETUDE DE FAISABILITE GEOTECHNIQUE

Le présent rapport comprend un texte de 71 pages et une annexe de 88 pages.

SOMMAIRE

I – PREAMBULE	5
II – PRESENTATION DU CONTEXTE	6
II.1 – MISSION DU CEBTP	
11.2 – LE SITE	7
11.3 – LE 811E	/
<u>II.3 – LE PROJET</u>	y
III – MOYENS MIS EN OEUVRE	10
BI – LE PROJET AU DROIT DE C0	12
BII – RESULTATS DES INVESTIGATIONS	13
BII.1 – MOYENS MIS EN OEUVRE	13
BII.2 – GEOLOGIE	153
BII.3 – HYDROGEOLOGIE	15
BII.4 – GEOMECANIQUE	15
BIII – ADAPTATION AU SITE	4-
BIII – ADAPTATION AU STE	······································
BIII.1 - FONDATIONS	13
BIII.2 – STABILITE	158
BIII.3 – DISPOSITIONS CONSTRUCTIVES	15
CI – PROJET AU DROIT DE P1	21
CII – RESULTATS DES INVESTIGATIONS	22
CII.1 - MOYENS MIS EN OEUVRE	242
CII.2 – GEOLOGIE	242
CII.3 – HYDROGEOLOGIE	24
CII.4 – GEOMECANIQUE	24
CIII – ADAPTATION AU SITE	25
CIII.1 – PRINCIPE DE FONDATIONS	2.45
CIII.2 – PREDIMENSIONNEMENT	27
DI – PROJET AU DROIT DE P2	32
DII – RESULTATS DES INVESTIGATIONS DII.1 – MOYENS MIS EN OEUVRE	33
DII.2 – GEOLOGIE	253
<u>DII.3 – GEOLOGIE</u>	344
DII.4 – GEOMECANIQUE	
DII.T GEOMEONINGUE	JJ

DIII - ADAPTATION AU SITE	36
DIII.1 - PRINCIPE DE FONDATIONS	346
DIII.2 – PREDIMENSIONNEMENT	357
EI – PROJET AU DROIT DE P3	41
EII – RESULTATS DES INVESTIGATIONS	42
EII.1 – MOYENS MIS EN OEUVRE	42
EII.2 – GEOLOGIE	
EII.3 – HYDROGEOLOGIE	42
EII.4 – GEOMECANIQUE	42
EIII – ADAPTATION AU SITE	40
EIII – ADAPTATION AU STIE	42
<u> EIII.1 – PRINCIPE DE FONDATIONS</u> EIII.2 – PREDIMENSIONNEMENT	
EIII.2 – PREDIMENSIONNEMEN I	40
FI – LE PROJET	42
FII - RESULTATS DES INVESTIGATIONS	42
FII.1 - MOYENS MIS EN OEUVRE	421
<u>FII.2 – GEOLOGIE</u>	421
FII.3 – HYDROGEOLOGIE	
FII.4 – GEOMECANIQUE	422
EUL ADADTATION ALLOITE	40
FIII – ADAPTATION AU SITE	42
FIII.1 – PRINCIPE DE PONDATIONSFIII.2 – PREDIMENSIONNEMENT	421 425
GI – LE PROJET	42
GII – RESULTATS DES INVESTIGATIONS	42
GII.1 – MOYENS MIS EN OEUVRE	
GII.2 – GEOLOGIE	
GII.3 – HYDROGEOLOGIE	
GII.2 – GEOMECANIQUE	422
GIII – ADAPTATION AU SITE	
<u>GIII.1 – PRINCIPE DE FONDATIONS</u>	42
GIII.2 – PREDIMENSIONNEMENT	42
GIII.3 -REMBLAIS	
HI – DISPOSITIONS CONSTRUCTIVES	40
- DISFOSITIONS CONSTRUCTIVES	42
HII - CONCLUSIONS	42
ANNEXES	70/71

A - INTRODUCTION

Dossier: E652.4.114-8 du 22/04/2005

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

I - PREAMBULE

Dans le cadre du marché d'études géotechniques de la RN 88 (marché n° 3/41/040/00/226/43/75), contournement de l'agglomération du Puy-en-Velay, opération N° 03Q 43A.

à la demande de la DIRECTION DEPARTEMENTALE DE L'EQUIPEMENT DE LA HAUTE-LOIRE, Service Opérationnel, 13 rue des Moulins, B.P. 350, 43012 LE PUY EN VELAY Cedex,

représentée par Monsieur David FAYARD,

l'Unité Routes du Centre d'Expertise du Bâtiment et des Travaux Publics (CEBTP), Centre d'Etudes et d'Essais de Clermont-Ferrand, 11 rue Louis Rosier, PAT de la Pardieu, 63000 CLERMONT-FERRAND,

a réalisé une étude géotechnique, au droit des appuis du viaduc de Taulhac, permettant à la future RN88 de franchir le vallon des Saliens.

La présente étude fait état de la reconnaissance effectuée au droit de chaque appui.

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

II - PRESENTATION DU CONTEXTE

II.1 – MISSION DU CEBTP

II.1.1 - Les objectifs

Conformément à la demande du Client, l'intervention du CEBTP porte sur les points suivants :

- ⇒ contexte géologique et hydrogéologique,
- ⇒ caractéristiques mécaniques des sols,
- ⇒ types de fondations envisageables en fonction des éléments communiqués concernant le projet,
- ⇒ paramètres de pré-dimensionnement des fondations (contraintes de calcul, tassements),
- ⇒ sujétions d'exécution des travaux de terrassement et de fondations liées aux conditions géotechniques du site et à l'environnement,
- ⇒ conditions de stabilité de l'ouvrage,
- ⇒ conditions liées aux caractéristiques sismiques.

II.1.2 - Type d'étude

Cette étude a été effectuée dans le cadre d'une mission du type G0 + G1.2 (voir norme NF P 94-500, du 5 juin 2000 jointe).

Elle avait fait l'objet de notre proposition technique E652.5.0019 du 08/02/05, dans le cadre du marché n° 03/41/040/00/226/43/75.

II.1.3 - Documents d'étude

Les documents suivants nous ont été communiqués et ont été utilisés dans le cadre de cette étude :

- ⇒ plan de situation,
- ⇒ plan général format AUTOCAD,

Dossier: E652.4.114-8 du 22/04/2005

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

II.2 - LE SITE

II.2.1 - Etat des lieux

Le terrain concerné par le projet se situe à Taulhac, à environ 2 km au Sud de la ville du PUY EN VELAY, quartier des Saliens.

Le terrain était normalement accessible. L'implantation envisagée des points de reconnaissance a donc pu être conservée.

II.2.2 - Topographie

Culée C0

Le terrain étudié est pratiquement horizontal (plateau) en aspect Ouest de la Garde d'Ours.

La topographie du site se caractérise par une altitude, sur le plateau, comprise entre 798 et 802 m NGF.

Une rupture de pente forte, signe la limite du plateau en regard Ouest pour atteindre, en pied de talus, une cote de 786 m NGF.

Pile P1

Le terrain étudié est pratiquement horizontal (zone d'habitation en pied du plateau) en aspect Ouest de la Garde d'Ours.

La topographie du site se caractérise par une altitude, comprise entre 778 NGF et 781 NGF.

Pile P2

Le terrain étudié est pratiquement horizontal (zone d'habitation en pied du plateau) en aspect Ouest de la Garde d'Ours.

La topographie du site se caractérise par une altitude, comprise entre 777 NGF et 779 NGF.

Pile P3

Le terrain étudié présente une forte pente vers l'Est, vers le fond du valon (zone d'habitation en pied du plateau) en aspect Ouest de la Garde d'Ours.

La topographie du site se caractérise par une altitude, comprise entre 782 NGF et 785 NGF avec une pente orientée vers l'Est.

Dossier: E652.4.114-8 du 22/04/2005

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

Pile P4

Le terrain étudié présente une pente vers l'Est, vers le fond du valon (zone d'habitation en pied du plateau) en aspect Ouest de la Garde d'Ours.

La topographie du site se caractérise par une altitude, comprise entre 796 NGF et 800 NGF avec une pente orientée vers l'Est.

Culée C5

Le terrain étudié présente une pente vers le Sud-Est, vers le fond du valon (zone d'habitation en pied du plateau et du lieu-dit "Chaveyre") en aspect Ouest de la Garde d'Ours.

On note un ressaut topographique d'au moins 2 m au niveau du quart Sud de l'appui ainsi qu'un pente importante en amont.

La topographie du site se caractérise par une altitude, comprise entre 802 NGF et 806 NGF avec une pente orientée vers l'Est.

II.2.3 - Contexte géologique et hydrogéologique

D'après la carte géologique du PUY EN VELAY au 1/50 000^e (n° 791) et les éléments en notre possession, on pouvait s'attendre à rencontrer, dans cette zone, les formations basaltiques post Villafranchien (coulées basaltiques et scories associées), surmontant les formations sédimentaires fluvio - lacustres du Villafranchien (sables et argiles).

II.2.4 - Contexte sismique

Du point de vue sismique, le projet se situe en zone 0 (décret n° 91-461 du 14/05/1991 relatif à la prévention du risque sismique).

Dossier : E652.4.114-8 du 22/04/2005

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

II.3 – LE PROJET

D'après les informations qui nous ont été communiquées, il est prévu la réalisation d'un viaduc de 422 m de long.

Cet ouvrage comportera 5 travées ; les longueurs de celles-ci dépendront de la solution technique retenue :

⇒ solution béton précontraint :

61 m + 100 m + 100 m + 100 m + 61 m

 \Rightarrow solution mixte béton / acier :

73 m + 92 m + 92 m + 92 m + 73 m

Affaire: RN 88 - Contournement de l'agglomération du Puy-en-Velay - Viaduc de Taulhac - Synthèse

III - MOYENS MIS EN OEUVRE

Le programme des reconnaissances et des essais avait été défini par nos soins, en accord avec le Service Opérationnel du Maître d'Oeuvre.

Compte-tenu du contexte géologique du site et de la nature du projet, nous avons réalisé les reconnaissances suivantes :

□ 16 forages destructifs en diamètre 64 mm, réalisés en roto-percussion. Ils ont été descendus à des profondeurs comprises entre 30,0 m et 42,62 m pour un total de 620,21 m. Ils ont permis l'établissement de coupes géologiques. □ 583 essais pressiométriques répartis dans les forages destructifs dont 253 essais haute pression (> 5 MPa). Ils ont été réalisés conformément à la norme NF P 94.110 - 1 et ont permis la mesure des paramètres de portance et de déformabilité des sols : module pressiométrique (Ep), pression limite nette (pl-po), pression de fluage (pf). □ 620,21 m d'enregistrement des paramètres de forage pour préciser les coupes géologiques (vitesse d'avancement, poussée sur l'outil, pression d'injection, couple de rotation). □ 5 équipements piézométriques □ 4 sondages carottés de 30 à 40 m de profondeur pour un total de 150,40 m, pour l'établissement de coupes géologiques

On trouvera en annexe:

- le schéma d'implantation des points de reconnaissance,
- les coupes géologiques des sondages,
- les résultats des essais pressiométriques (pressions limites et modules),

□ 3 dispositifs de sismique réfraction, avec 3 sondages par dispositif.

les dromochroniques de sismique - réfraction.

Les profondeurs des différents ensembles lithologiques sont définies par rapport au niveau du terrain naturel tel qu'il était au moment des reconnaissances (Février à Mars 2005).

Les têtes de sondages ont été nivelées et les altitudes rattachées au système NGF.

B – CULEE CO

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

BI – LE PROJET AU DROIT DE CO

Le niveau fini du tablier est prévu à 808,49 NGF.

Les actions induites par le projet (fournies), aux états limites de service, sont les suivantes :

Solution BP (MN)

S	Rare maxi	13,594
ELS	Permanent	9,652
	Fondamental maxi	18,352
ELU	Permanent	13,031

Mixte (non communiqué).

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

BII – RESULTATS DES INVESTIGATIONS

BII.1 - MOYENS MIS EN OEUVRE

- □ 2 forages destructifs en diamètre 64 mm, notés SP0-1 et SP0-2, réalisés en rotopercussion. Ils ont été descendus à des profondeurs comprises entre 30,0 m et 31,3 m pour un total de 61,3 m.
- □ 58 essais pressiométriques répartis dans les forages destructifs dont 55 essais haute pression (> 5 MPa).
- □ 61,3 m d'enregistrement des paramètres de forage
- ☐ 1 équipement piézométrique de 30 m mis en place dans le forage SP0-1.
- □ Reconnaissance géophysique :
 - → Matériel mis en œuvre :
 - enregistreur sismique de type Terraloc Mark III, de marque ABEM :
 - enregistreur 24 canaux,
 - écran de visualisation,
 - flûtes sismiques,
 - géophones.
 - → <u>Travaux réalisés</u> : il a été réalisé 3 sondages sismique réfraction (SSR) (notés D1 à D3), avec la configuration suivante :

longueur du dispositif : 50 mnombre de capteurs : 12

source sismique : chute de poidsnombre de tirs : 3 tirs sans offset

Le traitement réalisé sur les mesures a consisté en la réalisation d'un filtrage "passe bande" de 60 Hz / 250 Hz. Le calcul des épaisseurs a été réalisé par la méthode des "intercepts".

BII.2 - GEOLOGIE

Les reconnaissances effectuées nous ont permis de mettre en évidence la succession de terrains suivante :

- ⇒ une couverture limoneuse à blocs de basalte,
- ⇒ la coulée basaltique post –Villafranchien, fracturée en tête, plus compacte en base,
- ⇒ un horizon de sables basaltiques très compacts, indurés, correspondant à un horizon de pyroclastites sous coulée,

Dossier: E652.4.114-8 du 22/04/2005

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

⇒ des sables Villafranchien, de teinte gris – verdâtre à marron, très compacts, correspondant à des alluvions fluvio – lacustres, d'après la carte géologique du Puy,

- ⇒ un niveau de basalte (ou blocaille basaltique) de faible épaisseur,
- ⇒ des sables bruns, compacts à très compacts, pouvant correspondre à un horizon bréchique.

Par rapport aux reconnaissances antérieures, on peut remarquer un amincissement relatif de la coulée basaltique au droit de la reconnaissance effectuée (bordure d'un paléo thalweg ?).

Les sondages de sismique – réfraction ont permis de caractériser le basalte post-Villafranchien en terme d'onde de compression. En corrélation avec les enregistrements des paramètres de foration, on note :

- → une zone de basalte fracturé en tête avec des vitesses d'onde de compression comprises entre 1 100 et 1 200 m/s,
- → le basalte compact avec des vitesses d'onde de compression de 2 200 m/s.

Les éléments sont reportés sur les coupes géologiques interprétatives, données en annexe.

Le tableau ci-après récapitule, par sondage, les épaisseurs et cotes de toit des différents horizons :

Sondage	Sondage SP 0-1		SP 0-2		SP56*		SP57*	
Faciès	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)
Limons à blocs	0,60	798,48	0,80	800,72	0,80	801,44	0,80	801,15
Basalte fracturé	3,7	797,88	3,3	799,92	4,10	800,64	4,20	800,35
Basalte compact	6,9	794,18	10,5	796,62	11,4	796,54	10,7	796,95
Sables pyroclastiques indurés	6,7	787,28	6,4	786,07	> 3,4	785,34	?	785,45
Sables Villafranchien	9,3	780,56	6,6	779,57				
Blocaille basaltique	2,4	771,28	1,5	772,92				
Sable bréchique brun	> 1,7	768,88	> 0,7	770,67				

^{*} sondages AIS, campagne 2002.

Les résultats sont reportés sur les coupes géologiques interprétatives (profil Nord et profil Sud), données en annexe.

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

BII.3 – HYDROGEOLOGIE

Le niveau d'eau statique suivant a été relevé en fin de travaux sur le site :

Sondage	SP0-1	SP0-2
Profondeur (m)	14,00	7,70
Altitude (NGF)	784,48	793,02
Date	07/02/05	03/02/05

Les niveaux d'eau cités ci-dessus ne sont pas nécessairement stabilisés et ne sont valables qu'aux dates de mesures. Ils ne sauraient représenter l'amplitude des variations saisonnières de la nappe. Ces types d'observations à plus long terme nécessitent un suivi piézométrique particulier qui n'entre pas dans le cadre de la présente étude.

Les niveaux décrits ci-dessus sont à rapprocher des données pluviométriques applicables à l'époque des mesures.

A la faveur du sondage SP0-1, nous avons installé un équipement piézométrique. Il permettra un suivi éventuel des niveaux d'eau.

BII.4 – GEOMECANIQUE

L'analyse des résultats des essais pressiométriques et enregistrements des paramètres de forages nous permet de qualifier les caractéristiques mécaniques de :

- ⇒ bonnes à très bonnes au sein du basalte fracturé.
- ⇒ très bonnes au sein du basalte compact,
- très bonnes au sein des sables basaltiques (pyroclastites), avec un point plus faible en tête de cette formation au droit de SP0-1, peut-être en relation avec une venue d'eau (non détectable en raison de l'emploi de fluide de forage),
- ⇒ très bonnes au sein des sables Villafranchien,
- ⇒ très bonnes au sein de la blocaille basaltique.

L'ensemble des formations sableuses apparaît surconsolidé.

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

Le tableau suivant regroupe les principaux paramètres géomécaniques des faciès testés :

Faciès	Nb	Pressions Limites (en MPa)			Modules (en MPa)		
i acies	essais	Min	Max	Moyenne géométrique	Min	Max	Moyenne harmonique
Basalte fracturé	7	1,83	> 7,01	5,17	22,4	586,0	108,7
Basalte compact	18	6,26	> 7,06	6,70	335,0	1259,0	598,7
Sables pyroclastites	13	3,67	> 5,84	5,30	146,8	777,0	240,5
Sables Villafranchien	14	5,00	> 5,99	5,52	139,3	1253,0	264,4
Blocaille basaltique	5	4,96	> 7,83	5,87	131,4	353,0	249,9

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

BIII – ADAPTATION AU SITE

BIII.1 - FONDATIONS

BIII.1.1 - Généralités

Compte-tenu du contexte géologique du site, de la campagne de sondage, des résultats de la prospection par sismique – réfraction et des résultats de l'étude préalable réalisée par la société AIS, nous préconisons un système de fondations superficielles, ancrées dans le basalte compact.

BIII.1.2 - Fondations superficielles

□ Contraintes de calcul

Selon le fascicule 62 – titre V du CCTG, pour une semelle les contraintes de calcul q'_{ELS} et q'_{ELU} sont définies par :

$$\frac{1}{\gamma_q} \cdot i_{\delta\beta} \cdot k_p \cdot p_{le}^* + q'o$$

avec:

p*_{le}: pression limite nette équivalente sous la fondation

- q'o : contrainte verticale effective après travaux au niveau de la base de la fondation

 k_p : facteur de portance qui dépend du sol, de l'encastrement relatif D/B, et des dimensions B.L.

- i_{δβ} : coefficient réducteur fonction de l'inclinaison des charges et du terrain

γ_q : coefficient de sécurité

Les coefficients de sécurité requis sont de 3 aux ELS et 2 aux ELU.

Dans le cas présent, nous retenons les valeurs suivantes, pour un ancrage à la cote 796,00 NGF :

p*_{le} = 6,42 MPa au droit de SP0-1
 6,93 MPa au droit de SP0-2

k_p = 1,11
 q'o : négligé

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

On retiendra les valeurs de contraintes admissibles suivantes pour une fondation superficielle, ancrée à la cote 796,00 NGF.

	SP0-1	SP0-2
q' _{ELS} (MPa)	2,38	2,54
q' _{ELU} (MPa)	3,56	3,81

■ Justifications

Le BET vérifiera que pour chaque combinaison d'action, la contrainte de référence :

- q'réf ≤ q'_{ELS} pour les états limites de service,
- q'réf ≤ q'_{ELU} pour les états limites ultimes.

□ Tassements

Les tassements sous fondations seront négligeables.

BIII.2 - STABILITE

La culée CO sera positionnée en bordure du plateau basaltique. La pente de talus aval (limite de coulée) est de 50° dans la partie supérieure.

Les affleurements rocheux montrent une prismation sub-verticale de la coulée avec débit en orgues de section pluri décimétriques et limitées par des fractures de retrait thermique.

La base d'une fondation établie à 796,00 NGF sera à 6 m du bord du talus, en horizontale, au droit du côté Nord-Ouest de la culée. A cette cote de fondation, une pente à 2B/1H n'intercepte pas le talus naturel.

La stabilité en terrain rocheux est liée à la fracturation du massif et à la possibilité d'occurrences de fractures ou dièdres défavorables (sortant par rapport au talus étudié). Compte-tenu des observations effectuées, du système de fractures dominant régit par des plans sub-verticaux, ce type de plans ou association de plans est peu probable (aucune observation dans ce sens).

Toutefois, une observation attentive des fonds de fouille et des terrassements devra être effectuée par un géologue afin de lever toute ambiguïté.

Dossier: E652.4.114-8 du 22/04/2005

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

BIII.3 – DISPOSITIONS CONSTRUCTIVES

L'exécution des terrassements nécessaires à la réalisation des fondations impliquera l'emploi d'engins puissants (pelle > 220 kW) pour l'extraction du basalte fracturé (vitesses d'onde de compression comprises entre 1 100 et 1 200 m/s).

La possibilité de blocs de taille importante et la présence de basalte compact (vitesse d'onde de compression > 2 000 m/s) en fond de fouille imposeront l'emploi de méthodes de déroctage adaptées (brises roches hydrauliques ou pétardage). En cas d'emploi d'explosifs, en raison de la présence d'avoisinants, un contrôle des vibrations devra être mis en place.

Les fondations seront réalisées dans le respect du fascicule 62, titre V et des règles de l'art. Rappelons à cet effet les dispositions principales habituelles :

- la protection des fouilles (blindage, bétonnage immédiat après réalisation des terrassements, ...),
- le traitement des sols de fondation (purges, substitution, ...),
- les précautions de bétonnage en présence d'eau (assainissement, drainage, tube plongeur ...),
- les précautions vis-à-vis du gel, des arrivées d'eau, des différentes causes d'affouillement, ...,
- les précautions concernant la stabilité des avoisinants (bâtiments, réseaux, talus, ...),
- les caractéristiques des bétons (dosage, type de ciment vis-à-vis d'eaux agressives, ...).

C – PILE P1

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

CI - PROJET AU DROIT DE P1

Le niveau fini du tablier est prévu à :

- Solution mixte 810,212 NGF

Solution BP : 809,955 NGF.

Les actions induites par le projet (fournies), aux états limites de service, sont les suivantes :

- Descentes de charges en MN - Solution béton précontraint

	Vmax	42,157
	Vmin	34,102
ELS	Vmax	56,914
ELU	Vmin	43,678

- Descentes de charges en MN - Solution mixte

			TOTAL
	Mov	Ν	28,53
ELS	Max	М	16,43
ELS	Min	Ν	23,07
		М	12,07
ELU	Max	N	36,47
	IVIAX	М	22,15
	Min	Ν	22,90
	IVIII	М	11,94

Il conviendra de s'assurer que les systèmes de fondations préconisés et les dispositions retenues sont compatibles avec les charges réellement apportées et les caractéristiques de l'ouvrage.

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

CII – RESULTATS DES INVESTIGATIONS

CII.1 - MOYENS MIS EN OEUVRE

4 forages destructifs en diamètre 64 mm, notés SP1-1, SP1-2, SP 1-3 et SP1-4, réalisés en roto-percussion. Ils ont été descendus à des profondeurs comprises entre 40,0 m et 41,0 m pour un total de 163,19 m.
156 essais pressiométriques répartis dans les forages destructifs dont 26 essais haute pression (> 5 MPa).
163,19 m d'enregistrement des paramètres de forage.
1 sondage carotté de 40 m de profondeur.
1 équipement piézométrique de 40 m mis en place dans le forage SP1-4.

On trouvera en annexe:

- le schéma d'implantation des points de reconnaissance,
- les coupes géologiques des sondages,
- les résultats des essais pressiométriques (pressions limites et modules)

Les profondeurs des différents ensembles lithologiques sont définies par rapport au niveau du terrain naturel tel qu'il était au moment des reconnaissances (février 2005).

Les têtes de sondages ont été nivelées et les altitudes rattachées au système NGF.

CII.2 - GEOLOGIE

Les reconnaissances effectuées nous ont permis de mettre en évidence la succession de terrains suivante :

- ⇒ un remblai,
- ⇒ un limon,
- ⇒ deux formations sédimentaires correspondant à des alluvions fluvio-lacustres d'après la carte géologique du Puy :
 - un <u>sable argileux</u> à grain fin, marron/gris à verdâtre
 - un limon brun/vert, voir des silts gris plus ou moins argileux
- ⇒ un niveau de <u>brèches altérées</u> plus ou moins palagonitisées, à éléments basaltiques. Ces brèches sont plus ou moins compactes. On passe de faciès plus sableux, destructurés, à des faciès compacts à éléments basaltiques.

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

⇒ En base des brèches, on retrouve un niveau de <u>cendres volcaniques</u> assez compactes, de couleur noire. On passe ensuite progressivement à une <u>argile limoneuse</u> verdâtre puis grise.

- ⇒ une <u>argile limoneuse varvée</u> violet/beige/verdâtre,
- ⇒ une <u>argile silteuse</u> marron/violacé,
- ⇒ enfin, des <u>limons et cendres</u> en base de sondage.

Le tableau ci-après récapitule, par sondage, les épaisseurs et cotes de toit des différents horizons :

Sondage	SC1		SP1-1		SP1-2	
Faciès	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)
Remblai	0,50	779,30	0,40	779,34	2,80	781,10
Sable et limons argileux	11,92	778,80	9,60	778,94	9,20	778,30
Brèches	5,88	766,88	3,70	769,34	6,00	769,10
Cendres	0,96	761,00	0,80	765,64		
Argile limoneuse	17,83	760,04	> 25,50	761,84	> 23,0	763,10
Limons et cendres	2,91	742,21				

Sondage	SP1-3		SP	1-4
Faciès	e (m)	toit (NGF)	e (m)	toit (NGF)
Remblai	0,40	778,65	3,00 *	779,30
Sable et limons argileux	9,60	778,25	9,40	776,30
Brèches	10,00	768,65	5,80	766,90
Cendres	1,20	758,65	0,80	761,10
Argile limoneuse	18,80	757,45	> 22,00	760,30

^{*} limons

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

CII.3 - HYDROGEOLOGIE

Le niveau d'eau statique suivant a été relevé en fin de travaux sur le site et lors d'un relevé ultérieur :

Sondage	SP1-3	SP1-4	
Profondeur (m)	2,50	2,60	2,75
Altitude (NGF)	776,15	776,70	776,55
Date	15/02/05	18/02/05	14/03/05

Les niveaux d'eau cités ci-dessus ne sont pas nécessairement stabilisés et ne sont valables qu'aux dates de mesures. Ils ne sauraient représenter l'amplitude des variations saisonnières de la nappe. Ces types d'observations à plus long terme nécessitent un suivi piézométrique particulier qui n'entre pas dans le cadre de la présente étude.

Les niveaux décrits ci-dessus sont à rapprocher des données pluviométriques applicables à l'époque des mesures.

A la faveur du sondage SP1-4, nous avons installé un équipement piézométrique. Il permettra un suivi éventuel des niveaux d'eau.

<u>CII.4 – GEOMECANIQUE</u>

L'analyse des résultats des essais pressiométriques et enregistrements des paramètres de forages nous permet de qualifier les caractéristiques mécaniques de :

- ⇒ faibles dans les remblais,
- ⇒ bonnes dans les sables et limons argileux,
- ⇒ bonnes dans les brèches altérées,
- ⇒ bonnes au sein des argiles limoneuses.

Le tableau suivant regroupe les principaux paramètres géomécaniques des faciès testés :

Faciès	Nb	Pr	essions Lir (en MPa)			Modules (en MPa)	
i acies	essais	Min	Max	Moyenne géométrique	Min	Max	Moyenne harmonique
Sable et limons argileux	37	0,38	4,0	1,12	3,0	179,2	14
Brèches altérées	23	3,13	6,27	4,86	56,5	541	133
Argile limoneuse	92	2,14	6,28	3,90	16,2	815	72

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

CIII – ADAPTATION AU SITE

CIII.1 - PRINCIPE DE FONDATIONS

Les fondations de la pile P1 seront des fondations profondes type pieux. Nous étudierons ciaprès les caractéristiques à prendre en compte en vue de la réalisation de ces fondations.

☐ Fondations

Type de fondation : Compte tenu de la nature du terrain rencontré, les

pieux seront du type foré boue

Ancrage : Dans les argiles limoneuses (minimum 3 diamètres)

Nous avons rencontré ces formations aux profondeurs et cotes suivantes :

Sondage	SP1-1	SP1-2	SP1-3	SP1-4	SC1
Profondeur (m)	13,70	18,00	20,00	18,20	19,26
Cote NGF	765,64	763,10	758,65	761,10	761,10

☐ Méthode de calcul

Fascicule 62 Titre V

Les sollicitations de courte durée K_{fc} sont définies par :

$$K_{fc} = \frac{12.E_M}{1,33\left(\frac{B_0}{B}\right)\left(\frac{2,65B}{B_0}\right)^{\alpha} + \alpha}$$
 pour B \ge B_0 avec B_0 = 0,60 m

avec:

 E_M : module pressiométrique (MPa)

α : coefficient de rhéologie
B : diamètre du pieu (m)

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

☐ Elément de calcul par couche

Solution béton précontraint

			SP	1-1	SP	1-2
Formation	Abaque	qs (kPa)	e (m)	Paramètre de pointe	e (m)	Paramètre de pointe
Remblai/limon peu compact	1	0	0,40	1	2,80	1
Sable et limons argileux	Q2	50	9,60	/	9,20	1
Brèche altérée	Q6	200	3,70	/	6,00	/
Argile limoneuse	Q1	40	3,90 à 4,50	p* _{le} = 2,83 MPa Kp = 1,3	3,00 à 4,50	$p_{le}^* = 3,48 \text{ MPa}$ Kp = 1,3

Solution mixte béton/acier

			SP	1-3	SP	1-4
Formation	Abaque	qs (kPa)	e (m)	Paramètre		Paramètre
			e (m)	de point	e (m)	de pointe
Remblai/limon peu	,	0	0.40	,	2.0	,
compact	/	0	0,40	/	3,0	7
Sable et limons argileux	Q2	50	9,60	/	9,40	/
Brèche altérée	Q6	200	10,0		5,80	/
Annila lineanaura	01	40	2.00 > 4.50	p* _{le} = 3,80 MPa	2.00 à 4.50	p* _{le} = 4,07 MPa
Argile limoneuse	Q1	40	3,90 à 4,50	Kp = 1,3	3,00 à 4,50	Kp = 1,3

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

CIII.2 - PREDIMENSIONNEMENT

A titre d'exemple, nous avons étudié le cas de pieux 1300 mm, 1500 mm.

Les feuilles de calcul figurent en annexe.

Les tableaux ci-dessous reprennent les principales caractéristiques pour les pieux :

□ Solution béton précontraint

	Sondage	Sondag	e SP1.1
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	18	18.6
	Q _u (kN)	10585	13193
	Q _c (kN)	6433	7935
	Combinaisons fondamentales Q _u / 1,4 (kN)	7560	9424
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	8820	10994
ELS	Combinaisons rares Q _c / 1,1 (kN)	5848	7213
団	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	4595	5668
	Γ Tête de pieu (MPa)	6637	8836

	Sondage	Sondag	e SP1.2
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	21.9	22.5
	Q _u (kN)	13421	16665
	Q _c (kN)	8194	10067
	Combinaisons fondamentales	9587	11904
ELU	Q _u / 1,4 (kN) Combinaisons accidentelles Q _u / 1,2 (kN)	11185	13888
ELS	Combinaisons rares Q _c / 1,1 (kN)	7449	9152
	Combinaisons quasi-permanentes Q_c / 1,4 (kN)	5853	7191
	Γ Tête de pieu (MPa)	6637	8836

	Sondage SP 1.1								Kf (MPa/m)	
Formation	Epaisseur (m)	E _M (MPa)	(0 Kf		Ø 1300	Ø 1500			
1- Remblai	0,40 *	1		Kf1						
2- Sables et limons	9,60	15,9 1/3			Kf2			173	190	
3 – Brèches	3,70	165 2/3		-			Kf3	1004	1053	
4 – Argile	3,90 à 4,50	205 1				kf4		697	697	

	Sondage SP 1.2								Kf (MPa/m)	
Formation	Epaisseur (m)	E _M (MPa)	(0 Kf		Ø 1300	Ø 1500			
1- Remblai	2,80 *	I		Kf1				1	1	
2- Sables et limons	9,20	15,3 1/3			Kf2		166	183		
3 – Brèches	6,00	150 2/3				Kf3	912	957		
4 – Argile	3,90 à 4,50	139 1			k	cf4		473	473	

^{*} Couche de sol pour laquelle le frottement latéral (qs) est neutralisé

□ Solution mixte

	Sondage	Sondag	e SP1.3
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	23.9	24.5
	Q _u (kN)	17323	21265
	Q _c (kN)	10814	13139
	Combinaisons fondamentales Q _u / 1,4 (kN)	12373	15189
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	14435	17721
ELS	Combinaisons rares Q _c / 1,1 (kN)	9831	11945
ij	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	7725	9385
	Г Tête de pieu (MPa)	6637	8836

	Sondage	Sondag	e SP1.4
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	22.1	22.7
	Q _u (kN)	14317	17879
	Q _c (kN)	8617	10646
	Combinaisons fondamentales Q _u / 1,4 (kN)	10226	12771
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	11931	14899
ELS	Combinaisons rares Q _c / 1,1 (kN)	7834	9678
団	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	6155	7604
	Г Tête de pieu (MPa)	6637	8836

	Sondage SP 1.3								Kf (MPa/m)	
Formation	Epaisseur (m)	E _M (MPa)	(0 Kf		Ø 1300	Ø 1500			
1- Remblai	0,40 *	1		Kf1				1	1	
2- Sables et limons	9,60	8,08 1/3			Kf2		102	113		
3 – Brèches	10,00	73 2/3				Kf3	444	466		
4 – Argile	3,90 à 4,50	156 2/3				kf4		949	995	

Sondage SP 1.4							Kf (MPa/m)	
Formation	Epaisseur (m)	E _M (MPa)	C	0 Kf		Ø 1300	Ø 1500	
1- Remblai	4,0 *	I	Kf1			1	1	
2- Sables	9,4	34,9 1/3			Kf2		439	489
3 – Brèches	5,80	169 2/3		Kf3		1028	1078	
4 – Argile	3,90 à 4,50	47 2/3		kf4			286	300

^{*} Couche de sol pour laquelle le frottement latéral (qs) est neutralisé

D – PILE P2

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

DI – PROJET AU DROIT DE P2

Le niveau fini du tablier est prévu à :

- Solution mixte 812,181 NGF

- Solution BP : 812,095 NGF.

Les actions induites par le projet (fournies), aux états limites de service, sont les suivantes :

- Descentes de charges en MN

Solution béton précontraint

Vmax		44,383
E1 0	Vmin	35,816
ELS	Vmax	59,918
ELU	Vmin	45,590

Solution mixte

			TOTAL
	Max	Ν	32,47
EI C	IVIAX	М	27,49 26,93 20,75 43,79
ELS	Min	Z	26,93
	Min	М	20,75
	Max	N	43,79
	IVIAX	М	37,06
ELU	Min	Ν	26,76
	IVIII I	М	20,55

Il conviendra de s'assurer que les systèmes de fondations préconisés et les dispositions retenues sont compatibles avec les charges réellement apportées et les caractéristiques de l'ouvrage.

DII – RESULTATS DES INVESTIGATIONS

<u>DII.1 – MOYENS MIS EN OEUVRE</u>

2 forages destructifs en diamètre 64 mm, notés SP2-1, SP2-2, réalisés en rotopercussion. Ils ont été descendus à des profondeurs comprises entre 40,39 m et 40,42 m pour un total de 80,81 m.
78 essais pressiométriques répartis dans les forages destructifs dont 6 essais haute pression (> 5 MPa).
80,81 m d'enregistrement des paramètres de forage.
1 sondage carotté de 40 m de profondeur, noté SC2.
1 équipement piézométrique de 40 m mis en place dans le forage SP2-1.

DII.2 - GEOLOGIE

Les reconnaissances effectuées nous ont permis de mettre en évidence la succession de terrains suivante :

- ⇒ un remblai,
- ⇒ des <u>limons bruns</u> à noirs plus ou moins sableux avec passage graveleux,
- ⇒ des <u>brèches altérées</u>, pouvant être destructurées en tête,
- ⇒ des cendres noires,
- ⇒ des <u>limons silteux</u> plus ou moins sableux,
- ⇒ une <u>argile limoneuse</u> varvée gris/verdâtre,
- ⇒ une <u>argile silteuse</u> gris/verdâtre.

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

Le tableau ci-après récapitule, par sondage, les épaisseurs et cotes de toit des différents horizons :

Sondage	SC2		SP2-1		SP2-2		SP63 (AIS)	
Faciès	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)
Remblai	0,48	780,15	3,00	780,35	2,60	780,50	/	/
Limons	10,07	779,67	8,50	777,35	8,40	777,90	10,00	778,52
Brèches	5,54	769,60	8,70	768,85	6,50	769,50	11,00	768,52
Sable	11,12	764,06	/	/	1,20	763,00		
Cendres	0,29	763,15	0,90	761,15	0,40	761,80		
Limons	8,80	762,65	2,90	760,25	9,90	761,40		
Argile limoneuse	13,70	753,85	17,00	757,35	11,00	751,50		

DII.3 – HYDROGEOLOGIE

Le niveau d'eau statique suivant a été relevé en fin de travaux sur le site et lors d'un relevé ultérieur :

Sondage	SP2-1 SP		2-2	
Profondeur (m)	2,90	2,90	3,05	
Altitude (NGF)	777,45	777,45	777,45	
Date	25/02/05	14/03/05	01/03/05	

Les niveaux d'eau cités ci-dessus ne sont pas nécessairement stabilisés et ne sont valables qu'aux dates de mesures. Ils ne sauraient représenter l'amplitude des variations saisonnières de la nappe. Ces types d'observations à plus long terme nécessitent un suivi piézométrique particulier qui n'entre pas dans le cadre de la présente étude.

Les niveaux décrits ci-dessus sont à rapprocher des données pluviométriques applicables à l'époque des mesures.

A la faveur du sondage SP2-1, nous avons installé un équipement piézométrique. Il permettra un suivi éventuel des niveaux d'eau.

Dossier : E652.4.114-8 du 22/04/2005

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

DII.4 – GEOMECANIQUE

L'analyse des résultats des essais pressiométriques et enregistrements des paramètres de forages nous permet de qualifier les caractéristiques mécaniques de :

- ⇒ faibles dans les remblais et limons silteux,
- ⇒ bonnes dans les brèches, limons silteux et au sein des argiles limoneuses.

Le tableau suivant regroupe les principaux paramètres géomécaniques des faciès testés :

Faciès	Nb essais	Pr	essions Lir (en MPa)		Modules (en MPa)			
i doles		Min	Max	Moyenne géométrique	Min	Max	Moyenne harmonique	
Remblai	4	0,51	0,62	0,58	4,5	21,9	10,0	
Limons silteux	16	0,51	2,34	0,91	3,2	53,9	13,3	
Brèches altérées	2	0,65	1,09	1	4,5	29,3	/	
Brèches	14	1,55	5,25	3,24	11	143	34	
limons	15	2,65	2,65	3,86	20,6	250	56	
Argile limoneuse	26	3,35	8,8	4,49	20,8	323	64	

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

DIII - ADAPTATION AU SITE

DIII.1 – PRINCIPE DE FONDATIONS

Les fondations de la pile P2 seront des fondations profondes type pieux. Nous étudierons ciaprès les caractéristiques à prendre en compte en vue de la réalisation de ces fondations.

□ Fondations

Type de fondation : Compte tenu de la nature du terrain rencontré, les

pieux seront du type foré boue

Ancrage : Dans les argiles limoneuses (minimum 3 diamètres),

ou limons silteux

Nous avons rencontré ces formations aux profondeurs et cotes suivantes :

Sondage	SP2-1	SP2-2	SC 2
Profondeur (m)	23,00	19,10	17,50
Cote NGF	757,35	761,40	762,65

☐ <u>Méthode de calcul</u>

Fascicule 62 Titre V

Les sollicitations de courte durée K_{fc} sont définies par :

$$K_{fc} = \frac{12.E_M}{1,33\left(\frac{B_0}{B}\right)\left(\frac{2,65B}{B_0}\right)^{\alpha} + \alpha}$$
 pour B \geq B_0 avec B_0 = 0,60 m

avec:

 E_M : module pressiométrique (MPa)

α : coefficient de rhéologie
B : diamètre du pieu (m)

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

□ <u>Elément de calcul par couche</u>

			SP2-1		SP2-2	
Formation	Abaque	qs (kPa)	e (m)	Paramètre de pointe	e (m)	Paramètre de pointe
				ac pointe		de pointe
Remblai/limon peu	,	0.00	3.00	,	2 ,60	,
compact	1	0,00	3,00	,	2 ,00	,
Limons sableux	Q1	20	8,5	/	8,40	/
Brèche destructurée	Q1	20	1,00	/	0,50	/
Brèche altérée	Q2	80	6,70		6,00	
Limons cendreux	Q1	40	3,80		1,60	
Argile limoneuse	Q1	40	3,00 à 4,50	p* _{le} = 4,07 MPa	3,00 à 4,50	p* _{le} = 4,28 MPa
7 agus innonease	Q.	10	0,00 0 1,00	Kp = 1,3	0,00 0 1,00	Kp = 1,3

<u>DIII.2 – PREDIMENSIONNEMENT</u>

A titre d'exemple, nous avons étudié le cas de pieux 1300 mm, 1500 mm.

Les feuilles de calcul figurent en annexe.

	Sondage	Sondag	e SP2.1
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	27.9	28.5
	Q _u (kN)	11573	14713
	Q _c (kN)	6696	8429
	Combinaisons fondamentales Q _u / 1,4 (kN)	8266	10509
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	9644	12261
ELS	Combinaisons rares Q _c / 1,1 (kN)	6087	7663
	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	4783	6021
	Г Tête de pieu (MPa)	6637	8836

	Sondage	Sondag	e SP2.2
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	23.5	24.1
	Q _u (kN)	11012	14130
	Q _c (kN)	6231	7925
	Combinaisons fondamentales Q _u / 1,4 (kN)	7866	10093
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	9177	11775
ELS	Combinaisons rares Q _c / 1,1 (kN)	5665	7204
Ш	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	4451	5660
	Г Tête de pieu (MPa)	6637	8836

Sondage SP 2.1						Kf (MPa/m)				
Formation	Epaisseur (m)	E _M (MPa)	()			Kf		Ø 1300	Ø 1500
1- Remblai	3,00 *	1		Kf	1				1	1
2- Limons	8,50	10,37 2/3		Kf2			63	66		
3 – Brèches	8,70	17,44 0,25		Kf3		3		219	244	
4 – Cendres	3,80	104 2/3		,			Kf4	633	664	
5 – Argile limoneuse	3,90 à 4,50	39,85 0,5					Kf5		324	348

Sondage SP 2.2						Kf (MPa/m)			
Formation	Epaisseur (m)	E _M (MPa) α	(0		Kf		Ø 1300	Ø 1500
1- Remblai	2,60 *	1		Kf1				1	1
2- Limons	8,40	17,96 2/3		Kf2			109	115	
3 – Brèches	7,00	50,50 1/3					Kf3	6,36	708
4 – Cendre	1,60	47 2/3			Kf4		380	398	
5 – Argile limoneuse	3,90 à 4,50	62,40				Kf5		283	297

^{*} Couche de sol pour laquelle le frottement latéral (qs) est neutralisé

E – PILE 3

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

EI – PROJET AU DROIT DE P3

Le niveau fini du tablier est prévu à :

Solution mixte 814,150 NGF

- Solution BP : 814,255 NGF.

Les actions induites par le projet (fournies), aux états limites de service, sont les suivantes :

- Descentes de charges en MN

Solution béton précontraint

	Vmax	45,25
ELS	Vmin	36,26
	Vmax	61,09
ELU	Vmin	46,58

Solution mixte

			TOTAL
	Mov	Ν	37,17
ELS	Max	М	24,09
ELS	Min	Z	25,55
	Min	М	17,88
	Max	Z	42,03
ELU	IVIAX	М	32,47
	Min	Ν	25,35
	IVIII	М	17,66

Il conviendra de s'assurer que les systèmes de fondations préconisés et les dispositions retenues sont compatibles avec les charges réellement apportées et les caractéristiques de l'ouvrage.

EII - RESULTATS DES INVESTIGATIONS

EII.1 – MOYENS MIS EN OEUVRE

2 forages destructifs en diamètre 64 mm, notés SP3-1, SP3-2, réalisés en rotopercussion. Ils ont été descendus à des profondeurs comprises entre 40,50 m et 40,90 m pour un total de 81,40 m.
77 essais pressiométriques répartis dans les forages destructifs dont 29 essais haute pression (> 5 MPa).
81,40 m d'enregistrement des paramètres de forage.
1 sondage carotté de 40 m de profondeur, noté SC3.
1 équipement piézométrique de 40 m mis en place dans le forage SP3-2.

EII.2 - GEOLOGIE

Les reconnaissances effectuées nous ont permis de mettre en évidence la succession de terrains suivante :

- ⇒ de la terre végétale,
- ⇒ des <u>limons bruns</u> à cailloutis,
- ⇒ un sable 0/2 mm ocre beige à passage induré (ciment ocre/jaune) altéré,
- ⇒ des <u>brèches palagonitiques</u> à éléments basaltiques pouvant être destructurées en tête, entrecoupées par un mince lit de cendres, puis des brèches altérées à ciment marron/vert,
- ⇒ un sable basaltique noir,
- ⇒ un sable silteux gris/vert,
- ⇒ un silt argileux varvé beige/violacé/verdâtre.

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

Le tableau ci-après récapitule, par sondage, les épaisseurs et cotes de toit des différents horizons :

Sondage	S	SC3		3-1	SP3-2	
Faciès	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)
Limons	1,60	787,80	1,40	788,35	1,50	786,75
Sable	8,11	786,20	6,60	786,95	8,30	785,25
Brèche	10,59	778,09	13,70	780,35	9,40	776,95
Sable basaltique	1,22	767,50	1,10	766,65	0,80	767,55
Sable silteux	9,48	766,28	11,20	765,55	8,20	766,75
Silt	8,90	756,70	6,00	754,35	11,80	758,55

Le tableau ci-après récapitule par sondage les résultats de la campagne AIS de 2002.

Sondage	SP66		SE	068	SP67	
Faciès	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)
Limons	0,50	784,11	/	/	1,10	785,69
Sable	10,00	783,11	11,50	784,74	10,50	784,59
Brèche	12,00	773,61	13,50	773,24	10,60	784,09

EII.3 – HYDROGEOLOGIE

Le niveau d'eau statique suivant a été relevé en fin de travaux sur le site et lors d'un relevé ultérieur :

Sondage	SP	SP3-2	
Profondeur (m)	1	7,70	8,50
Altitude (NGF)	1	779,05	778,25
Date	22/02/05	16/02/05	22/02/05

Les niveaux d'eau cités ci-dessus ne sont pas nécessairement stabilisés et ne sont valables qu'aux dates de mesures. Ils ne sauraient représenter l'amplitude des variations saisonnières de la nappe. Ces types d'observations à plus long terme nécessitent un suivi piézométrique particulier qui n'entre pas dans le cadre de la présente étude.

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

Les niveaux décrits ci-dessus sont à rapprocher des données pluviométriques applicables à l'époque des mesures.

A la faveur du sondage SP 3-2, nous avons installé un équipement piézométrique. Il permettra un suivi éventuel des niveaux d'eau.

EII.4 – GEOMECANIQUE

L'analyse des résultats des essais pressiométriques et enregistrements des paramètres de forage nous permet de qualifier les caractéristiques mécaniques de :

- ⇒ faibles dans les limons.
- ⇒ faibles à moyennes dans les sables beiges,
- ⇒ moyennes dans les brèches destructurées,
- ⇒ bonnes à très bonnes dans les brèches, les sables (basaltique et silteux), et les silts.

Le tableau suivant regroupe les principaux paramètres géomécaniques des faciès testés :

Faciès	Nb Pressions L (en MPa				Modules (en MPa)			
racies	essais	Min	Max	Moyenne géométrique	Min	Max	Moyenne harmonique	
Limons	1	1,82		1	17,2		/	
Sable beige	14	0,96 4,22		2,08	7,6	89,9	18,8	
Brèche destructurée	3	1,16	3,04	1	8,7	44,0	1	
Brèche	21	3,9	7,14	5,10	76,8	436	162	
Sable	22	3,61 6,28		5,27	33,5	340	89,4	
Silt	16	2,08	5,05	3,78	23,5	239,8	51,09	

Affaire : RN 88 - Contournement de l'agglomération du Puy-en-Velay - Viaduc de Taulhac - Synthèse

EIII – ADAPTATION AU SITE

EIII.1 – PRINCIPE DE FONDATIONS

Les fondations de la pile P3 seront des fondations profondes type pieux. Nous étudierons ciaprès les caractéristiques à prendre en compte en vue de la réalisation de ces fondations.

□ Fondations

Type de fondation : Compte tenu de la nature du terrain rencontré, les

pieux seront du type foré boue

Ancrage : Dans les sables silteux (minimum 3 diamètres)

Nous avons rencontré ces formations aux profondeurs et cotes suivantes :

Sondage	SP3-1	SP3-2	SC 3
Profondeur (m)	21,70	19,20	20,30
Cote NGF	766,65	767,55	767,50

■ <u>Méthode de calcul</u>

Fascicule 62 Titre V

Les sollicitations de courte durée K_{fc} sont définies par :

$$K_{fc} = \frac{12.E_{M}}{1,33 \left(\frac{B_{0}}{B}\right) \left(\frac{2,65B}{B_{0}}\right)^{\alpha} + \alpha}$$

 $pour \ B \ge B_0$ $avec \ B_0 = 0,60 \ m$

avec:

E_M : module pressiométrique (MPa)

α : coefficient de rhéologie
B : diamètre du pieu (m)

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

Elément de calcul par couche

			SP	3-1	SP3-2		
Formation	Abaque	qs (kPa)	o (m)	Paramètre	o (m)	Paramètre	
			e (m)	de pointe	e (m)	de pointe	
Limon peu compact	1	0,00	2,00		1,50		
Sable beige	Q1	40	6,00		8,30		
Brèche destructurée	Q1	20	1		2,70		
Brèche altérée	Q6	240	13,70		6,70		
Cabla	01	40	2.00 à 4.50	p* _{le} = 5,10 MPa	2.00 à 4.50	p* _{le} = 5,27 MPa	
Sable	Q1	40	3,00 à 4,50	Kp = 1,2	3,00 à 4,50	Kp = 1,2	

EIII.2 - PREDIMENSIONNEMENT

A titre d'exemple, nous avons étudié le cas de pieux 1300 mm, 1500 mm.

Les feuilles de calcul figurent en annexe.

Les tableaux ci-dessous reprennent les principales caractéristiques pour les pieux :

	Sondage	Sondag	e SP3.1	
	Diamètre (mm)	1300	1500	
	Fiche ancrage 3 diamètres (m)	3.9	4.5	
	Longueur de pieux	25.6	26.2	
	Q _u (kN)	23169	28288	
	Q _c (kN)	14594	17639	
	Combinaisons fondamentales	16549	20206	
\supset	Q _u / 1,4 (kN)	10549	10200	
ELU	Combinaisons accidentelles	40007	00574	
	Q _u / 1,2 (kN)	19307	23574	
	Combinaisons rares	13267	16035	
ELS	Q _c / 1,1 (kN)	13207	10035	
一面	Combinaisons quasi-permanentes	10424	12599	
	Q _c / 1,4 (kN)	10424	12399	
	Г Tête de pieu (MPa)	6637	8836	

CEBTP

Dossier : E652.4.114-8 du 22/04/2005

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

		Sondage	Sondag	e SP3.2	
		Diamètre (mm)	1300	1500	
		Fiche ancrage 3 diamètres (m)	3.9	4.5	
		Longueur de pieux	23.1	23.7	
		Q _u (kN)	17175	22351	
		Q _c (kN)	10344	13225	
	n	Combinaisons fondamentales	12268	15965	
		Q _u / 1,4 (kN)	12200	10000	
	ELU	Combinaisons accidentelles	14312	19626	
		Q _u / 1,2 (kN)	14312	18626	
		Combinaisons rares	9403	12022	
	ELS	Q _c / 1,1 (kN)	9403	12022	
	団	Combinaisons quasi-permanentes	7388	9446	
		Q _c / 1,4 (kN)	7 300	5-1 -1 0	
		Г Tête de pieu (MPa)	6637	8836	

Sur demande de la Direction Départementale de l'Equipement une solution d'ancrage des pieux dans les brèches a été étudiée, les résultats figurent en annexe.

Sondage SP 3.1								Kf (M	Kf (MPa/m)		
Formation	Epaisseur (m)	E _M (MPa)		0	Kf			Kf		Ø 1300	Ø 1500
1- Limons	2,00 *	I		Kf1				1			
2- Sable	6,00	67,65 1/2		ŀ		Kf2		551	591		
3 – Brèches	13,70	158 2/3				Kf3		961	1008		
4 – Sable	3,90 à 4,50	183 1/2					Kf4	1489	1600		

	Son	dage SP 3.2						Kf (MI	Pa/m)
Formation	Epaisseur (m)	E _M (MPa)	0 Kf		Ø 1300	Ø 1500			
1- Limons	1,50 *	I	Kf1					1	1
2- Sable	8,30	12,18 1/3			Kf2		Kf2 132		146
3 – Brèches destructurées	2,70	16,38 1/3			Kf3			206	229
4 – Brèches	6,70	210 2/3					Kf4	1277	1340
5 – Sable	3,90 à 4,50	95,20 1/2				775	832		

^{*} Couche de sol pour laquelle le frottement latéral (qs) est neutralisé

F – PILE 4

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

FI - LE PROJET

Le niveau fini du tablier est prévu à :

- Solution mixte = 816,118 NGF
- Solution BP = 816,375 NGF

Les actions induites par le projet (fournies), aux états limites de service, sont les suivantes :

- Descentes de charges en MN

Solution béton précontraint

ELS Vmax Vmin	Vmax	43,136			
	35,031				
	Vmax	58,235			
ELU	Vmin	44,657			

Solution mixte

			TOTAL
	Max	Ν	30,28
ELS	IVIAX	М	12,11
	Min	Ν	24,47
	IVIII I	М	11,13
	Max	Z	40,83
ELU	IVIAX	М	16,36
ELU	Min	Ν	24,27
	IVIII I	М	10,99

Il conviendra de s'assurer que les systèmes de fondations préconisés et les dispositions retenues sont compatibles avec les charges réellement apportées et les caractéristiques de l'ouvrage.

FII - RESULTATS DES INVESTIGATIONS

FII.1 – MOYENS MIS EN OEUVRE

4 forages destructifs en diamètre 64 mm, notés SP 4-1, SP 4-2, SP 4-3, SP 4-4
réalisés en roto-percussion. Ils ont été descendus à des profondeurs comprises entre
40,29 m et 42,62 m pour un total de 163,77 m.

- □ 156 essais pressiométriques répartis dans les forages destructifs dont 88 essais haute pression (> 5 MPa).
- ☐ 163,77 m d'enregistrement des paramètres de forage
- □ 1 sondage carotté de 41,50 m, noté SC4.
- ☐ 1 équipement piézométrique de 40 m mis en place dans le forage SP 4-1.

FII.2 – GEOLOGIE

Les reconnaissances effectuées nous ont permis de mettre en évidence la succession de terrains suivante :

- ⇒ de la terre végétale,
- ⇒ des <u>limons bruns à cailloutis basaltiques</u>,
- ⇒ des <u>brèches altérées destructurées</u> à matrice sableuse ocre/rouille (palagonitisée) en alternance avec de la brèche palagonitisée plus indurée,
- ⇒ des <u>brèches altérées</u> palagonitisées avec passage d'éléments basaltiques décimétriques ainsi que des passages à matrice gris/brun/rouille.

Le tableau ci-après récapitule, par sondage, les épaisseurs et cotes de toit des différents horizons :

SONDAGE	S	C4	SP 4-1		SP 4-2		SP 4-3		SP 4-4	
Faciès	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)
Limons	1,20	799,95	2,40	798,80	4,00	707,75	2,90	800,10	3,00	798,75
Argile à blocs	1,32	798,75	2,40			707,73				
Brèches destructurées	17,98	797,43	38,16	796,40	36,30	793,75	37,39	797,20	39,62	795,75

CEBTP

Dossier: E652.4.114-8 du 22/04/2005

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

Brèche altérée	21,00	779,45				

* Sondages campagne AIS

SONDAGE	SP	69	SP 70		SP 71		SP 72	
Faciès	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)
Limons	1	/	8,00	797,95	2,60	1,40	1,40	797,02
Sable argileux	7,50	796,93	3,60	789,95	1	4,20	4,20	795,62
Brèches	13,60	789,43	10,00	784,38	794,89	15,23	15,23	791,42

FII.3 - HYDROGEOLOGIE

Le niveau d'eau statique suivant a été relevé en fin de travaux sur le site et lors d'un relevé ultérieur :

Sondage	SP3-1		SP3-2
Profondeur (m)	1	7,70	8,50
Altitude (NGF)	1	779,05	778,25
Date	22/02/05	16/02/05	22/02/05

Les niveaux d'eau cités ci-dessus ne sont pas nécessairement stabilisés et ne sont valables qu'aux dates de mesures. Ils ne sauraient représenter l'amplitude des variations saisonnières de la nappe. Ces types d'observations à plus long terme nécessitent un suivi piézométrique particulier qui n'entre pas dans le cadre de la présente étude.

Les niveaux décrits ci-dessus sont à rapprocher des données pluviométriques applicables à l'époque des mesures.

A la faveur du sondage SP 4-1, nous avons installé un équipement piézométrique. Il permettra un suivi éventuel des niveaux d'eau.

FII.4 – GEOMECANIQUE

L'analyse des résultats des essais pressiométriques et enregistrements des paramètres de forage nous permet de qualifier les caractéristiques mécaniques de :

- ⇒ faibles dans les limons,
- ⇒ faibles à moyennes dans les sables beiges,
- ⇒ moyennes dans les brèches destructurées,

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

⇒ bonnes à très bonnes dans les brèches, les sables (basaltique et silteux), et les silts.

Le tableau suivant regroupe les principaux paramètres géomécaniques des faciès testés :

Faciès	Nb	Pr	essions Lir (en MPa)		Modules (en MPa)		
i acies	essais	Min	Max	Moyenne géométrique	Min	Max	Moyenne harmonique
Limons et argile	10	1,24	4,01	2,24	7,1	116	20,9
Brèche	146	1,64	6,52	4,71	23,4	768	125

CEBTP

Dossier: E652.4.114-8 du 22/04/2005

Affaire : RN 88 - Contournement de l'agglomération du Puy-en-Velay - Viaduc de Taulhac - Synthèse

FIII - ADAPTATION AU SITE

FIII.1 - PRINCIPE DE FONDATIONS

Les fondations de la pile P3 seront des fondations profondes type pieux. Nous étudierons ciaprès les caractéristiques à prendre en compte en vue de la réalisation de ces fondations.

□ Fondations

o Type de fondation : Compte tenu de la nature du terrain rencontré, les

pieux seront du type foré boue

o Ancrage : Dans les brèches altérées (minimum 3 diamètres)

NOTA: Des pieux forés simples peuvent être envisagés, il faut cependant noter que cette technique dans ce type de formation peut générer des risques d'éboulement des parois du forage.

Nous avons rencontré ces formations aux profondeurs et cotes suivantes :

Sondage	SC4	SP4-1	SP4-2	SP4-3	SP4-4
Profondeur (m)	2,40	2,40	4,00	2,90	3,30
Cote NGF	797,55	796,40	793,75	797,20	795,75

■ Méthode de calcul

Fascicule 62 Titre V

Les sollicitations de courte durée K_{fc} sont définies par :

$$K_{fc} = \frac{12.E_{M}}{1,33\left(\frac{B_{0}}{B}\right)\left(\frac{2,65B}{B_{0}}\right)^{\alpha} + \alpha}$$
 pour B \ge B₀ avec B₀ = 0,60 m

avec :

 E_M : module pressiométrique (MPa)

α : coefficient de rhéologie
B : diamètre du pieu (m)

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

☐ <u>Elément de calcul par couche</u>

Solution mixte

			SP	4-1	SP	4-2
Formation	Abaque	qs (kPa)	o (m)	Paramètre		Paramètre
			e (m)	de pointe	e (m)	de pointe
Limon et argile	/	0,00	2,40		4,00	
Brèche altérée	03	240	2003450	p* _{le} = 4,80 MPa	2.00 à 4.50	p* _{le} = 4,32 MPa
destructurée	Q3	240	3,90 à 4,50	Kp = 1,3	3,00 à 4,50	Kp = 1,3

Solution béton précontraint

			SP	4-3	SP	4-4
Formation	Abaque	qs (kPa)	o (m)	Paramètre (m)		Paramètre
			e (m)	de pointe	e (m)	de pointe
Limon et argile	1	0,00	2,90		3,30	
Brèche	Q3	240	3,90 à 4,50	p* _{le} = 5,21 MPa Kp = 1,3	3,00 à 4,50	$p^*_{le} = 4,76 \text{ MPa}$ Kp = 1,3

FIII.2 - PREDIMENSIONNEMENT

A titre d'exemple, nous avons étudié le cas de pieux 1300 mm, 1500 mm.

Les feuilles de calcul figurent en annexe.

Les tableaux ci-dessous reprennent les principales caractéristiques pour les pieux :

Solution mixte

	Sondage	Sondag	e SP 4.1
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	6.3	6.9
	Q _u (kN)	12795	17035
	Q _c (kN)	7162	9536
	Combinaisons fondamentales Q _u / 1,4 (kN)	9140	12168
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	10663	14196
ELS	Combinaisons rares Q _c / 1,1 (kN)	6511	8669
	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	5116	6811
	Г Tête de pieu (MPa)	6637	8836

	Sondage	Sondage	e SP 4.2
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	7.9	8.5
	Q _u (kN)	11260	14991
	Q _c (kN)	6394	8513
	Combinaisons fondamentales Q _u / 1,4 (kN)	8053	10708
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	9383	12492
ELS	Combinaisons rares Q _c /1,1 (kN)	5813	7739
Ш	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	4567	6081
	Г Tête de pieu (MPa)	6637	8836

Sondage SP 4.1						Kf (MPa/m)	
Formation	Epaisseur (m)	E _M (MPa)	(0 Kf		Ø 1300	Ø 1500
1- Limons	2,40 *	1		Kf1		1	1
2- Brèche	3,90 à 4,50	123,60 2/3			Kf2	748	785

Sondage SP 4.2						Kf (MPa/m)	
Formation	Epaisseur (m)	E _M (MPa) α	0	Kf	Ø 1300	Ø 1500	
1- Limons	4,00 *	I			1	1	
2- Brèches	3,90 à 4,50	43,5 2/3			265	278	

^{*} Couche de sol pour laquelle le frottement latéral (qs) est neutralisé

Solution béton précontraint

	Sondage	Sondage	e SP 4.3
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	6.8	7.4
	Q_{u} (kN)	12813	17058
	Q _c (kN)	7171	9547
	Combinaisons fondamentales Q _u / 1,4 (kN)	9152	12184
ELU	Combinaisons accidentelles $Q_u / 1,2 \text{ (kN)}$	10677	14215
ELS	Combinaisons rares Q _c / 1,1 (kN)	6519	8679
Ш	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	5122	6819
	Γ Tête de pieu (MPa)	6637	8836

	Sondage	Sondage SP 4.4		
	Diamètre (mm)	1300	1500	
	Fiche ancrage 3 diamètres (m)	3.9	4.5	
	Longueur de pieux	7.2	7.8	
	Q _u (kN)	12036	16024	
	Q _c (kN)	6783	9030	
	Combinaisons fondamentales Q _u / 1,4 (kN)	8597	11446	
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	10030	13354	
ELS	Combinaisons rares Q _c /1,1 (kN)	6166	8209	
Ш	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	4845	6450	
	Г Tête de pieu (MPa)	6637	8836	

	Sondage SP 4.3						Kf (MPa/m)	
Formation	Epaisseur (m)	E _м (MPa) α		0	Kf	Ø 1300	Ø 1500	
1- Limons	2,90 *	1		Kf1		1	1	
2- Brèche	3,90 à 4,50	136 2/3				827	868	

Sondage SP 4.4						Kf (MPa/m)	
Formation	Epaisseur (m)	Ем (МРа) α	0	Kf	Ø 1300	Ø 1500	
1- Limons	3,30 *	1			1	1	
2- Brèches	3,90 à 4,50	164 2/3			998	1046	

^{*} Couche de sol pour laquelle le frottement latéral (qs) est neutralisé

G – CULEE 5

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

GI - LE PROJET

Le niveau fini du tablier est prévu à 817,680 NGF pour la solution mixte et béton précontraint.

La géométrie du projet au droit de la culée C5 est fournie sur le schéma donné en annexe.

Les actions induites par le projet (fournies), aux états limites de service, sont les suivantes :

- Descentes de charges en MN

Solution béton précontraint

EL C	Vmax	9,69
ELS	Vmin	13,64
	Vmax	13,08
ELU	Vmin	18,42

Solution mixte (non communiqué)

Il conviendra de s'assurer que les systèmes de fondations préconisés et les dispositions retenues sont compatibles avec les charges réellement apportées et les caractéristiques de l'ouvrage.

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

GII - RESULTATS DES INVESTIGATIONS

GII.1 – MOYENS MIS EN OEUVRE

- □ 2 forages destructifs en diamètre 64 mm, notés SP 5-1, SP 5-2, réalisés en rotopercussion. Ils ont été descendus à des profondeurs comprises entre 32,95 m et 32,79 m pour un total de 65,74 m.
- □ 58 essais pressiométriques répartis dans les forages destructifs dont 49 essais haute pression (> 5 MPa).
- □ 65,74 m d'enregistrement des paramètres de forage.
- □ 1 sondage carotté de 30,40 m, noté SC5.
- ☐ 1 équipement piézométrique de 33 m mis en place dans le forage SP 5-2.

GII.2 - GEOLOGIE

Les reconnaissances effectuées nous ont permis de mettre en évidence la succession de terrains suivante :

- ⇒ des colluvions à blocs de pouzzolane,
- ⇒ de la <u>pouzzolane rouge/noire</u> à matrice sableuse en alternance à de la pouzzolane indurée (scories soudées). On observe des éléments centimétriques à décimétriques ainsi que des passage plus argileux.

Le faible pourcentage de récupération local s'explique par une matrice très sableuse lavée par les eaux du forage.

Le tableau ci-après récapitule, par sondage, les épaisseurs et cotes de toit des différents horizons :

Sondage	SC5		SP5-1		SP5-2	
Faciès	e (m)	toit (NGF)	e (m)	toit (NGF)	e (m)	toit (NGF)
Limons/terre végétale	0,14	805,85	3,00	807,15	2,00	802,65
Colluvions	1,36	805,61	3,00	007,13	2,00	002,03
Pouzzolane sablo- graveleuse	21,50	804,35	29,95	804,15	3,50	800,65
Scories indurées pouzzolane	7,40	782,85	29,95	604,15	27,29	797,95

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

GII.3 - HYDROGEOLOGIE

Le niveau d'eau statique suivant a été relevé en fin de travaux sur le site et lors d'un relevé ultérieur :

Sondage	SP5-1		SP	5-2
Profondeur (m)	1	Sec	18,00	18,77
Altitude (NGF)	/		784,65	783,88
Date	18/03/05	24/03/05	22/03/05	24/03/05

Les niveaux d'eau cités ci-dessus ne sont pas nécessairement stabilisés et ne sont valables qu'aux dates de mesures. Ils ne sauraient représenter l'amplitude des variations saisonnières de la nappe. Ces types d'observations à plus long terme nécessitent un suivi piézométrique particulier qui n'entre pas dans le cadre de la présente étude.

Les niveaux décrits ci-dessus sont à rapprocher des données pluviométriques applicables à l'époque des mesures.

A la faveur du sondage SP 5-2, nous avons installé un équipement piézométrique. Il permettra un suivi éventuel des niveaux d'eau.

GII.4 – GEOMECANIQUE

L'analyse des résultats des essais pressiométriques et enregistrements des paramètres de forage nous permet de qualifier les caractéristiques mécaniques de :

- ⇒ moyennes à bonnes dans les limons et colluvions,
- ⇒ bonnes dans les scories et pouzzolane.

Le tableau suivant regroupe les principaux paramètres géomécaniques des faciès testés :

Faciès	Nb	Pr	essions Lir (en MPa)		Modules (en MPa)			
1 acies	essais	Min	Max	Moyenne géométrique	Moyenne Min May	Moyenne harmonique		
Limons et colluvions	8	1,79	5,49	3,97	20,7	219,6	63	
Scories et pouzzolane	50	3,03	6,67	5,39	35,8	371	143	

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

GIII – ADAPTATION AU SITE

GIII.1 - PRINCIPE DE FONDATIONS

Les fondations de la culée C8 seront des fondations profondes type pieux. Nous étudierons ci-après les caractéristiques à prendre en compte en vue de la réalisation de ces fondations.

Fondations

o Type de fondation : Compte tenu de la nature du terrain rencontré, les

pieux seront du type foré boue

Ancrage : Dans la pouzzolane (minimum 3 diamètres)

Nous avons rencontré ces formations aux profondeurs et cotes suivantes :

Sondage	SP5-1	SP5-2	SC 5
Profondeur (m)	3,0	5,50	2,50
Cote NGF	804,15	797,15	803,35

☐ <u>Méthode de calcul</u>

Fascicule 62 Titre V

Les sollicitations de courte durée K_{fc} sont définies par :

$$K_{fc} = \frac{12.E_M}{1,33\left(\frac{B_0}{B}\right)\left(\frac{2,65B}{B_0}\right)^{\alpha} + \alpha}$$
 pour B \geq B₀ avec B₀ = 0,60 m

avec:

E_M : module pressiométrique (MPa)

α : coefficient de rhéologie
B : diamètre du pieu (m)

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

□ <u>Elément de calcul par couche</u>

			SP	5-1	SP5-2		
Formation	Abaque	qs (kPa)	o (m)	Paramètre		Paramètre	
			e (m)	de pointe	e (m)	de pointe	
Colluvions et limons	1	0,00	3,00		2,00		
Pouzzolane sableuse	Q2	80	1		3,50		
Pouzzolane	Q6	200	3,90 à 4,50	$p^*_{le} = 4,90 \text{ MPa}$ Kp = 1,3	3,90 à 4,50	p* _{le} = 5,45 MPa Kp = 1,3	

Aucun frottement latéral n'a été pris en compte dans le remblai technique de la culée C5.

<u>GIII.2 – PREDIMENSIONNEMENT</u>

A titre d'exemple, nous avons étudié le cas de pieux 1300 mm, 1500 mm.

Les feuilles de calcul figurent en annexe.

	Sondage	Sondage	e SP 5.1
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	6.9	7.5
	Q _u (kN)	11641	15498
	Q _c (kN)	6457	8597
_	Combinaisons fondamentales Q _u / 1,4 (kN)	8315	11070
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	9701	12915
ELS	Combinaisons rares Q _c / 1,1 (kN)	5870	7816
Ш	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	4612	6141
	Г Tête de pieu (MPa)	6637	8836

	Sondage	Sondage	e SP 5.2
	Diamètre (mm)	1300	1500
	Fiche ancrage 3 diamètres (m)	3.9	4.5
	Longueur de pieux	9.4	10
	Q _u (kN)	13733	18081
	Q _c (kN)	7732	10153
_	Combinaisons fondamentales $Q_u / 1,4 \; (kN)$	9809	12915
ELU	Combinaisons accidentelles Q _u / 1,2 (kN)	11444	15067
ELS	Combinaisons rares Q _c / 1,1 (kN)	7029	9230
Ш	Combinaisons quasi-permanentes Q _c / 1,4 (kN)	5523	7252
	Г Tête de pieu (MPa)	6637	8836

	Sondage SP 5.1						Kf (MPa/m)	
Formation	Epaisseur (m)	E _M (MPa)		0	Kf	Ø 1300	Ø 1500	
1- Limons	3,00 *	I		Kf1		1	1	
2- Pouzzolane	3,90 à 4,50	48,50 2/3				295	310	

	Kf (MPa/m)					
Formation	Epaisseur (m)	E _M (MPa)	0	Kf	Ø 1300	Ø 1500
1- Limons	2,80 *	1			1	1
2- Pouzzolane sableuse	3,50	181 1/2			1473	1582
3-Pouzzolane	3,90 à 4,50	245 2/3			1490	1563

Affaire: RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

* Couche de sol pour laquelle le frottement latéral (qs) est neutralisé

GIII.3 - REMBLAIS

Deux remblais seront mis en œuvre au niveau de la culée C5 :

- le remblai de la plate-forme de la culée à la cote de 813,00 NGF, au travers duquel seront forés les pieux
- le remblai de la plate-forme routière à la cote de 817,69 NGF (voir coupe en annexe).

Les remblais seront mis en œuvre sur la pente en travers par l'intermédiaire de redans, après purge de la terre végétale.

Nous avons estimé les valeurs de tassement maximal au droit de chaque sondage pour les deux remblais.

	Tassements estimés					
0	Plate-form	e 813 NGF	Plate-forme 817 NGF			
Sondage	Hauteur remblai	auteur remblai Tassement		Tassement		
	(m)	(cm)	(m)	(cm)		
SP5-1	6,00	1,2	10,5	2,1		
SP5-2	10,5	0,7	15,00	1,0		

REMARQUE:

- Il s'agit d'une estimation de l'ordre de grandeur maximal des tassements. Dans ces calculs n'intervient pas le phasage de la mise en œuvre du remblai, le taux de consolidation...
- On peut observer un tassement différentiel entre SP5-1 et SP5-2.

H - CONCLUSIONS

CEBTP

Dossier: E652.4.114-8 du 22/04/2005

Affaire: RN 88 - Contournement de l'agglomération du Puy-en-Velay - Viaduc de Taulhac - Synthèse

HI – DISPOSITIONS CONSTRUCTIVES

Les pieux dimensionnés sont de type foré boue. D'autres types de pieux sont envisageables et devront faire l'objet d'un nouveau dimensionnement.

Aucun frottement négatif n'a été pris en compte dans le dimensionnement proposé du fait de l'absence de surcharges notables prévues aux abords des pieux, d'après les éléments du projet en notre possession. Si tel ne devait être le cas, il conviendrait de revoir tout ou partie de ce dimensionnement.

Il devra être tenu compte dans le dimensionnement des pieux (choix du diamètre et définition du ferraillage), des efforts parasites (efforts longitudinaux, poussées latérales, frottement négatif,...).

Toutes dispositions devront être prises pour permettre le terrassement des couches compactes (brèches) tout en vérifiant la compatibilité des moyens prévus vis-à-vis de l'environnement.

Il devra être tenu compte également de la présence d'eau (précautions de bétonnage, caractéristiques des bétons....).

Un contrôle de continuité et de qualité du fût des pieux en béton pourra être prévu par carottage sonique ou par impédance. Le CEBTP se tient à la disposition de la Maîtrise d'œuvre ou de l'Entreprise pour la réalisation de ces contrôles.

Affaire : RN 88 – Contournement de l'agglomération du Puy-en-Velay – Viaduc de Taulhac – Synthèse

HII - CONCLUSIONS

Le tableau ci-après récapitule les valeurs de contraintes de calcul retenues pour un ancrage minimum de 3 diamètres.

Appui Sc	Sondage	Formation d'ancrage	Cote NGF	Qu (kN)		Qc (kN)	
				Ø 1300	Ø 1500	Ø 1300	Ø 1500
P1 -	SP1-1	Argile limoneuse	765,64	10585	13193	6433	7935
	SP1-2	Argile limoneuse	763,10	13421	16665	8194	10067
	SP1-3	Argile limoneuse	758,65	17323	21265	10814	13139
	SP1.4	Argile limoneuse	761,10	14317	17879	8617	10646
P2	SP2-1	Argile limoneuse	757,35	11573	14713	6696	8429
	SP2-2	Argile limoneuse	761,40	11012	14130	6231	7925
P3	SP3-1	Sable	766,65	23169	28288	14594	17639
Po	SP3-2	Sable	767,55	17175	22351	10344	13225
	SP4-1	Brèche	796,40	12795	17035	7162	9536
P4	SP4-2	Brèche	793,75	11260	14991	6394	8513
	SP4-3	Brèche	797,20	12813	17058	7171	9547
	SP4-4	Brèche	795,75	12036	16024	6783	9030
C5	SP5-1	Pouzzolane	804,15	11641	15498	6457	8597
	SP5-2	Pouzzolane	797,15	13733	18081	7732	10153

Fait à Clermont-Ferrand, le 22 Avril 2005

Rédaction	Contrôle Externe		
Frédéric LACROIX	Jean-Michel BELIN		
L'Ingénieur Chargé de l'Etude,	L'Ingénieur Responsable de l'Unité Routes,		