Chapitre 3 : polynômes

L1 MATH103_MISPI

Sommaire

- Introduction
- 2 Division euclidienne dans $\mathbf{R}[X]$
- Fonctions polynomiales, racines
- Polynômes irréductibles de $\mathbf{R}[X]$

Sommaire

Introduction

- Introduction
- 2 Division euclidienne dans $\mathbf{R}[X]$
- Fonctions polynomiales, racines
- Polynômes irréductibles de $\mathbf{R}[X]$

Polynômes irréductibles de $\mathbf{R}[X]$

Objectifs

Introduction

On ne fera pas de théorie générale : voir le polycopié (introduction) pour une explication concernant la définition mathématique et la notion d'indéterminée.

Les objectifs sont :

- la division euclidienne des polynômes : principe et pratique
- les notions de racine et de racine multiple
- factorisation, polynômes irréductibles

Introduction

Considérons le polynôme
$$P = 5X^4 - 3X^2 + X + 7$$

Fonctions polynomiales, racines

P est de dearé 4

Le terme de plus haut degré est $5X^4$

Le terme de plus bas degré est 7 (degré = 0)

 $5X^4$. $-3X^2$. X et 7 sont les monômes de P

Le coefficient du monôme de degré 2 est -3

- Introduction
- 2 Division euclidienne dans $\mathbf{R}[X]$
- Fonctions polynomiales, racines
- Polynômes irréductibles de $\mathbf{R}[X]$

On note $\mathbf{R}[X]$ l'ensemble des polynômes à coefficients dans \mathbf{R} d'indéterminée X.

Un résultat à rapprocher de la division euclidienne dans **Z** :

Proposition

Division euclidienne dans $\mathbf{R}[X]$

Soient A et B deux polynômes à coefficients réels avec $B \neq 0$. Il existe un unique couple (Q, R) de polynômes tels que A = BQ + R et deg(R) < deg(B).

Q et R s'appellent respectivement quotient et reste de la division euclidienne de A par B.

Attention: ne pas oublier la contrainte deg(R) < deg(B): elle assure l'unicité du couple (Q, R).

Le degré du polynôme nul 0 (i. e. dont tous les coefficients sentes nuls) est $-\infty$.

$$A = X^3 + X^2 - 1$$
 $B = X - 1$ $Q = ?$ $R = ?$

$$X^3 + X^2 - 1 \mid X - 1 \mid$$

$$A = X^3 + X^2 - 1$$
 $B = X - 1$ $Q = ?$ $R = ?$

$$B = X - 1$$

$$Q = ? R = ?$$

$$X^3$$
 $+X^2$

$$X^3$$
 $+X^2$ -1 X -1 X^2

$$B = X - 1$$

$$A = X^3 + X^2 - 1$$
 $B = X - 1$ $Q = ?$ $R = ?$

$$\begin{array}{c|ccccc}
X^3 & +X^2 & -1 & X & -1 \\
-(X^3 & -X^2) & & & X^2 \\
\hline
& 2X^2 & -1 & & & \\
\end{array}$$

$$A = X^3 + X^2 - 1$$
 $B = X - 1$ $Q = ?$ $R = ?$

$$\begin{array}{c|ccccc}
X^3 & +X^2 & -1 & X & -1 \\
-(X^3 & -X^2) & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & & \\
& & & & & & \\
\hline
& & & & & \\
\hline$$

$$A = X^3 + X^2 - 1$$
 $B = X - 1$ $Q = ?$ $R = ?$

$$A = X^3 + X^2 - 1$$
 $B = X - 1$ $Q = ?$ $R = ?$

$$Q = X^2 + 2X + 2$$
 $R = 1$

Consigne de rédaction :

à l'issue du calcul on doit écrire la conclusion, ce n'est pas au lecteur de le faire. Par exemple :

Le quotient de la division euclidienne de A par B est $X^2 + 2X + 2$ et le reste est 1 :

$$A = B(X^2 + 2X + 2) + 1$$

- 2 Division euclidienne dans $\mathbf{R}[X]$
- Fonctions polynomiales, racines
- 4 Polynômes irréductibles de $\mathbf{R}[X]$

Fonctions polynomiales

À tout polynôme à coefficients réels $P = \sum_{k=0}^{n} a_k X^k$ on associe la

fonction *polynomiale* réelle \tilde{P} définie sur **R** par $\tilde{P}(x) = \sum_{k=0}^{n} a_k x^k$

Fonctions polynomiales

Introduction

À tout polynôme à coefficients réels $P=\sum_{k=0}^n a_k X^k$ on associe la

fonction *polynomiale* réelle \tilde{P} définie sur **R** par $\tilde{P}(x) = \sum_{k=0}^{n} a_k x^k$

On a simplement remplacé l'indéterminée X par la variable réelle x

On dit que \tilde{P} est la fonction polynomiale associée à P

En pratique, pour simplifier, on notera encore *P* cette fonction

Définition

Le réel a est racine du polynôme $P \in \mathbf{R}[X]$ si P(a) = 0.

Racines

Introduction

Le résultat principal est celui-ci :

Proposition

Soient P un polynôme et a un réel. Alors

a est une racine de P si et seulement si X – a divise P

Démonstration.

(⇒) On a P = (X - a)Q + R avec deg(R) < 1 donc $R = r_0$ avec $r_0 \in \mathbf{R}$. De plus, $P(a) = 0 \Rightarrow (a - a)Q(a) + r_0 = r_0 = 0$ i. e. P = (X - a)Q ou encore X - a divise P.

Fonctions polynomiales, racines

Racines

Le résultat principal est celui-ci :

Proposition

Soient P un polynôme et a un réel. Alors

a est une racine de P si et seulement si X – a divise P

Démonstration.

 (\Leftarrow) Si X-a divise P alors P=(X-a)Q avec $Q\in\mathbf{R}[X]$. Donc P(a) = (a - a)Q(a) = 0 et a est une racine de P.

Factorisation

Introduction

Conséquence pratique : si on observe que P(a) = 0 alors on sait que l'on peut factoriser P par X - a. Pour ce faire on dispose de deux méthodes :

Fonctions polynomiales, racines

- la division euclidienne : elle aboutira à P = (X a)B(reste nul)
- coefficients indéterminés : méthode basée sur le fait que deux polynômes sont égaux si et seulement si les coefficients des monomes de même degré sont égaux.

Division euclidienne dans $\mathbf{R}[X]$

Exemple

$$P = X^3 - 4X^2 + X + 2$$

On observe que P(1) = 0: on pourra donc écrire P sous la forme

$$P = (X - 1)(aX^2 + bX + c)$$

Exemple

$$P = X^3 - 4X^2 + X + 2$$

On observe que P(1) = 0: on pourra donc écrire P sous la forme

$$P = (X-1)(aX^2 + bX + c)$$

On voit immédiatement que a = 1 et c = -2 : on les remplace

$$P = (X - 1)(X^2 + bX - 2)$$

puis on développe :

Exemple

$$P = X^3 - 4X^2 + X + 2 = X^3 + (b-1)X^2 + (-2-b)X + 2$$

On a donc b - 1 = -4 et -2 - b = 1 (une seule égalité suffit)

$$b = -3$$
 et $X^3 - 4X^2 + X + 2 = (X - 1)(X^2 - 3X - 2)$

Exemple

Introduction

On pourra retrouver ce résultat en effectuant la division euclidienne de $X^3 - 4X^2 + X + 2$ par X - 1.

Polynômes irréductibles de R[X]

Introduction

Corollaire

Un polynôme <u>non nul</u> de degré $n \in \mathbb{N}$ possède au plus n racine(s) distincte(s).

Corollaire

Soient P et Q des polynômes. Alors $\tilde{P} = \tilde{Q} \Longleftrightarrow P = Q$.

Conséquences

Il en résulte que deux fonctions polynomiales sont égales si et seulement si les coefficients des monômes de même degré sont égaux.

Introduction

Définition

L'ordre de multiplicité d'une racine a d'un polynôme P est le plus grand entier m tel que $(X - a)^m$ divise P.

Introduction

Définition

L'ordre de multiplicité d'une racine a d'un polynôme P est le plus grand entier m tel que $(X - a)^m$ divise P.

a est racine double si m = 2 ou triple si m = 3.

Définition

Introduction

L'ordre de multiplicité d'une racine a d'un polynôme P est le plus grand entier m tel que $(X - a)^m$ divise P.

Exemple

2 est une racine double de $P = X^3 - X^2 - 8X + 12$ (comment le vérifier?)

Définition

L'ordre de multiplicité d'une racine a d'un polynôme P est le plus grand entier m tel que $(X - a)^m$ divise P.

Il existe une relation entre l'ordre de multiplicité d'une racine et les racines des dérivées successives d'un polynôme (détails dans le polycopié à titre de complément).

Sommaire

- 1 Introduction
- 2 Division euclidienne dans $\mathbf{R}[X]$
- Fonctions polynomiales, racines
- Polynômes irréductibles de $\mathbf{R}[X]$

Polynômes irréductibles de $\mathbf{R}[X]$

Définition

Introduction

Un polynôme P de $\mathbf{R}[X]$ est irréductible s'il est non constant et si ses seuls diviseurs sont les polynômes constants et les polynômes de la forme λP avec $\lambda \in \mathbf{R}^*$.

Fonctions polynomiales, racines

Ces polynômes *multiples* de *P* sont *associés* à *P*.

Attention : il ne faut pas confondre irréductibilité et absence de racine.

Exemple

Le polynôme $X^4 + X^2 + 1$ n'a pas de racine (dans **R**) mais n'est pas irréductible, comme on le verra plus tard en TD.

Polynômes irréductibles de $\mathbf{R}[X]$: un premier résultat –admis

Théorème

Tout polynôme non constant est un produit (fini!) de facteurs irréductibles.

La décomposition est unique, à l'ordre près des facteurs, sauf à changer certains facteurs en facteurs associés.

Polynômes irréductibles de $\mathbf{R}[X]$: un second résultat -admis

Fonctions polynomiales, racines

Théorème

Introduction

Les polynômes irréductibles de $\mathbf{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 à discriminant strictement négatif.

- X + 1, $X^2 + X + 1$ sont irréductibles dans $\mathbf{R}[X]$.
- $X^4 + X^2 + 1$ n'est pas irréductible dans $\mathbf{R}[X]$.

