Université Savoie Mont Blanc UFR SceM

MATH103_MISPI (Mathématiques & applications) Contrôle des connaissances Mercredi 04 janvier 2023 (13:15–15:15)

Documents, calculatrice, téléphone portable et montre intelligente interdits. Lors de l'appréciation des copies, il sera tenu le plus grand compte du soin apporté à la présentation, de la clarté de la rédaction et de la précision des démonstrations.

Exercice 1 (fonction). Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction définie par $f(x) = \ln\left(\frac{e^x + 1}{2}\right)$.

- 1. Montrer que le domaine de définition de f est $\mathcal{D}_f = \mathbf{R}$.
- 2. La fonction f est-elle paire? Est-elle impaire?
- 3. Calculer les limites de f en $-\infty$ et $+\infty$.
- 4. Donner le domaine de dérivabilité de f puis calculer la dérivée f'.
- 5. Étudier les variations de f (on dressera un tableau de variation).
- 6. Étudier les asymptotes éventuelles à la courbe représentative C_f de f et leur position relative.
- 7. Tracer le graphe C_f de f, ses asymptotes et le vecteur tangent à C_f en 0 (on distinguera les courbes et vecteur à l'aide de différentes couleurs).

On a $ln(2) \simeq 0, 7$.

1. On a
$$\mathcal{D}_f = \{x \in \mathbf{R} : \frac{e^x + 1}{2} > 0\} = \mathbf{R} \text{ car im } (\exp) \subset \mathbf{R}_+^*.$$

- 2. Le domaine de définition est symétrique par rapport à l'origine. On a $f(-1) = \ln\left(\frac{e^{-1}+1}{2}\right)$ tandis que $f(1) = \ln\left(\frac{e+1}{2}\right)$. Ainsi $f(-1) \neq f(1)$ et $f(-1) \neq -f(1)$ car $e \neq 1$. Donc f n'est ni paire, ni impaire.
- 3. On a

$$\lim_{-\infty} f = -\ln(2)^{+} \text{ et } \lim_{+\infty} f = \lim_{x \to +\infty} \ln(e^{x}(1 + e^{-x})) - \ln(2) = \lim_{x \to +\infty} (x - \ln(2)) = +\infty$$

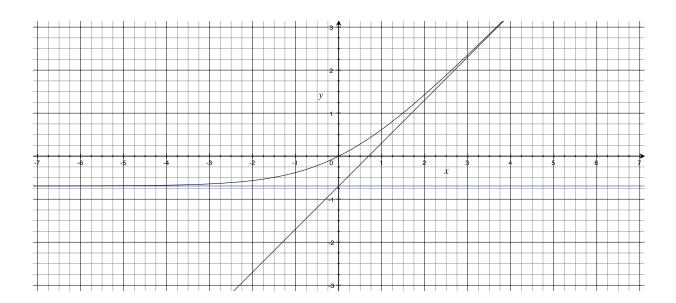
$$\operatorname{car} \lim_{-\infty} \exp(-1) = 0^{+}.$$

- 4. L'application f est dérivable sur \mathbf{R} en tant que composée de $x \mapsto \frac{e^x + 1}{2}$ dérivable sur \mathbf{R} à valeurs \mathbf{R}_+^* et de $u \mapsto \ln(u)$ dérivable sur \mathbf{R}_+^* . De plus, $\forall x \in \mathbf{R}, f'(x) = \frac{e^x}{e^x + 1}$.
- 5. Comme f' > 0 sur **R**, on obtient

x	$-\infty$	0		$+\infty$
f'	0+ +	$\frac{1}{2}$	+	1-
f _	- ln(2) ⁺			$\rightarrow +\infty$

6. D'après 3, C_f admet l'asymptote horizontale d'équation $y = -\ln(2)$ en $-\infty$ et se situe au-dessus de cette asymptote. D'autre part, $f(x) = x - \ln(2) + \ln(1 + e^{-x})$; donc C_f admet l'asymptote oblique d'équation $y = x - \ln(2)$ en $+\infty$ et se situe au-dessus de cette asymptote.

7.



Exercice 2 (dérivée et asymptote).

- 1. On considère la fonction f définie sur $\mathbf{R}_{+}^{*} =]0, +\infty[$ par $\forall x > 0, f(x) := x + 1 + \frac{\sin(x^{2})}{x}.$
 - (a) Montrer que la droite d'équation y = x + 1 est asymptote à la courbe C_f .
 - (b) Montrer que f est dérivable sur \mathbb{R}_+^* et calculer la dérivée f' de f.
 - (c) A-t-on $\lim_{+\infty} f' = 1$?
 - (d) Peut-on prolonger f et f' par continuité en 0?
- 2. Soit $g: \mathbf{R}_+^* \to \mathbf{R}$ dérivable sur \mathbf{R}_+^* et telle que $\lim_{t \to \infty} g' = \ell \in \mathbf{R}$. On suppose que la droite d'équation y = ax + b est asymptote à \mathcal{C}_g en $+\infty$ *i.e.*

$$\exists \varphi : \mathbf{R}_+^* \to \mathbf{R}, \lim_{+\infty} \varphi = 0 \text{ et } \forall x > 0, g(x) = ax + b + \varphi(x).$$

En appliquant le théorème des accroissements à g sur [x, x+1] et en faisant tendre x vers $+\infty$, montrer que $a=\ell$.

La fonction φ est-elle dérivable? Si c'est le cas, que peut-on dire de $\lim_{t\to\infty} \varphi'$?

- 3. On considère la fonction h définie sur $\mathbf{R}_+ = [0, +\infty[$ par $\forall x \geqslant 0, h(x) := x + 1 + \sqrt{x}.$
 - (a) Donner le domaine de dérivabilité de h et calculer h'. Déterminer $\lim_{t\to\infty} h'$.
 - (b) La courbe représentative C_h de h admet-elle une asymptote en $+\infty$?
- 1. (a) On a $f(x) = x + 1 + \varphi(x)$ avec $\varphi(x) := \frac{\sin(x^2)}{x}$ et $\lim_{t \to \infty} \varphi = 0$ car $|\sin| \le 1$. Ainsi, la droite d'équation y = x + 1 est asymptote à C_f en $+\infty$.

- (b) La fonction f est dérivable sur \mathbf{R}_{+}^{*} en tant que somme de fonctions dérivables sur \mathbf{R}_{+}^{*} . De plus, $f'(x) = 1 + \frac{2x^{2}\cos(x^{2}) \sin(x^{2})}{x^{2}} = 1 + 2\cos(x^{2}) \frac{\sin(x^{2})}{x^{2}}$.
- (c) La limite de f' en $+\infty$ n'existe pas à cause du terme $\cos(x^2)$. En particulier,

$$\exists$$
 une asymptote non verticale à \mathcal{C}_f en $+\infty$ $\} \not\Rightarrow \exists \lim_{t \to \infty} f'$.

- (d) On a $\lim_{0+} f = 1$ et $\lim_{0+} f' = 2$. Donc f et f' se prolongent par continuité en 0.
- 2. Soit x>0. Comme g est dérivable sur \mathbf{R}_+^* , il existe $c_x\in]x,x+1[$ tel que

$$g(x+1) - g(x) = g'(c_x).$$

Or,
$$g(x + 1) - g(x) = a + \varphi(x + 1) - \varphi(x)$$
. Ainsi,

$$\lim_{x \to +\infty} g'(c_x) \stackrel{c_x \to +\infty}{=} \ell = \lim_{x \to +\infty} (a + \varphi(x+1) - \varphi(x)) = a.$$

Comme $\varphi = g - (ax + b)$, φ est dérivable sur \mathbf{R}_+^* et $\lim_{t \to \infty} \varphi' = \ell - a = 0$. En particulier

$$\exists \text{ une asymptote de coefficient directeur } a \in \mathbf{R} \ \text{à} \ \mathcal{C}_g \ \text{en} + \infty$$
$$g \ \text{dérivable et } \lim_{+\infty} g' = \ell \in \mathbf{R}$$
$$\} \Rightarrow \ell = a.$$

- 3. (a) On a $\mathcal{D}_{h'} = \mathbf{R}_+^*$ et $\forall x > 0$, $h'(x) = 1 + \frac{1}{2\sqrt{x}}$. Enfin, $\lim_{t \to \infty} h' = 1$.
 - (b) On a $\lim_{x\to +\infty} \frac{h(x)}{x} = 1 = \lim_{t\to \infty} h'$. Cependant $\lim_{t\to +\infty} (h-x) = \lim_{x\to +\infty} (1+\sqrt{x}) = +\infty$. Par suite, \mathcal{C}_h n'admet pas d'asymptote en $+\infty$ (mais une branche parabolique direction asymptotique de direction y=x). En particulier

$$h$$
 dérivable et $\lim_{+\infty} h' = a \in \mathbf{R}$
 $\lim_{+\infty} \frac{h}{x} = a$ $\Rightarrow \exists$ asymptote oblique à \mathcal{C}_h en $+\infty$.

Exercice 3 (intégration).

- 1. En intégrant 2 fois par partie consécutivement, calculer $\int_0^{\pi} e^x \sin(x) dx$.
- 2. En utilisant le changement de variable $u = \ln x$, calculer les primitives $\int \frac{\ln(x)}{x(\ln^2(x) + 1)} dx$.
- 1. On a

$$\int_0^{\pi} e^x \sin(x) dx = \left[-e^x \cos(x) \right]_0^{\pi} + \int_0^{\pi} e^x \cos(x) dx = e^{\pi} + 1 + \left[e^x \sin(x) \right]_0^{\pi} - \int_0^{\pi} e^x \sin(x) dx$$
$$= e^{\pi} + 1 - \int_0^{\pi} e^x \sin(x) dx.$$

D'où
$$\int_{0}^{\pi} e^{x} \sin(x) dx = \frac{e^{\pi} + 1}{2}$$
.

2. On a

$$\int \frac{\ln(x)}{x(\ln^2(x)+1)} dx \stackrel{u=\ln x}{=} \int \frac{u}{u^2+1} du = \frac{1}{2} \cdot \ln(u^2+1) + C = \frac{1}{2} \cdot \ln(\ln^2(x)+1) + C$$
où $C \in \mathbf{R}$.

Exercice 4 (système linéaire et matrice).

1. On considère
$$A := \begin{pmatrix} 1 & -1 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$
, $B := \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}$ et $C := \begin{pmatrix} -1 & 0 \\ 0 & -2 \\ 1 & -1 \end{pmatrix}$.

- (a) Calculer, quand c'est possible, 3A 2B, AB et CA.
- (b) Calculer AC. Que peut-on en déduire?
- 2. On considère le système linéaire

$$(S) \begin{cases} x & -y +2z = 1 \\ x & -y +z = 0 \\ 2x & -y +2z = 0 \end{cases}$$

- (a) Déterminer les solutions de (S) à l'aide de la méthode de Gauss.
- (b) Écrire la matrice D de (S). Calculer D^{-1} si cela est possible (on utilisera la méthode de Gauss en se ramenant à un système linéaire).
- 3. On considère les matrices $E := \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$, $X := \begin{pmatrix} x \\ y \end{pmatrix}$ et $F := \begin{pmatrix} a \\ b \end{pmatrix}$ avec $x, y, a, b \in \mathbf{R}$.
 - (a) Écrire et résoudre le système linéaire associé à l'équation matricielle EX = F. En déduire que E est inversible et calculer son inverse.
 - (b) Retrouver ce résultat à l'aide des formules de Cramer.
- 1. (a) Comme A et B sont du même type, 3A 2B a un sens et

$$3A - 2B = \begin{pmatrix} 3 & -5 & 2 \\ -3 & -11 & -7 \end{pmatrix}$$

tandis que AB n'est pas d'fini car $ncol(A) = 3 \neq 2 = nlig(B)$. Enfin, $CA \in \mathcal{M}_3(\mathbf{Z})$ a un sens et

$$CA = \begin{pmatrix} -1 & 1 & -2 \\ -2 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (b) On a $AC \in \mathcal{M}_2(\mathbf{Z})$ et $AC = I_2$. La matrice A (resp. C) est inversible à droite (resp. gauche) mais non inversible car non carrée. On remarque en particulier que $\mathcal{M}_3(\mathbf{Z}) \ni CA \neq AC \in \mathcal{M}_2(\mathbf{Z})$.
- 2. (a) On a

D'où $S = \{(-1, 0, 1)\}.$

(b) On a
$$D = \begin{pmatrix} 1 & -1 & 2 \\ 1 & -1 & 1 \\ 2 & -1 & 2 \end{pmatrix}$$
. Notons $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $Y = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Alors

$$DX = Y \Leftrightarrow \begin{cases} x - y + 2z = a \\ x - y + z = b \\ 2x - y + 2z = c \end{cases} \Leftrightarrow \begin{cases} x - y + z = b \\ x - y + 2z = a \\ 2x - y + 2z = c \end{cases}$$
$$\Leftrightarrow \begin{cases} x - y + z = b \\ z = a - b \\ y = -2b + c \\ z = a - b \end{cases}$$

Ainsi, $(\forall Y \in \mathbf{R}^3)(\exists ! X \in \mathbf{R}^3), DX = Y$. On conclut que D est inversible et

$$D^{-1} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -2 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

3. (a) On a

$$EX = F \Leftrightarrow \begin{cases} x + y = a \\ 3x + 4y = b \end{cases} \Leftrightarrow \begin{cases} x + y = a \\ y = -3a + b \end{cases} \Leftrightarrow \begin{cases} x = 4a - b \\ y = -3a + b \end{cases}$$

D'où E inversible et

$$E^{-1} = \begin{pmatrix} 4 & -1 \\ -3 & 1 \end{pmatrix}.$$

(b) Par la méthode de Cramer, comme $\det(E) = 1 \cdot 4 - 1 \cdot 3 = 1 \neq 0$, E est inversible et on obtient directement

$$E^{-1} = \frac{1}{\det(E)} \begin{pmatrix} 4 & (-1) \\ (-3) & 1 \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ -3 & 1 \end{pmatrix}.$$