MATH103_MISPI (Mathématiques & applications) Contrôle terminal mardi 04 janvier 2022 (13:30–15:30)

Documents, calculatrice, téléphone portable et montre intelligente interdits. Lors de l'appréciation des copies, il sera tenu le plus grand compte du soin apporté à la présentation, de la clarté de la rédaction et de la précision des démonstrations.

Exercice 1 (questions de cours).

- 1. Donner la définition et la dérivée de la fonction tan sous deux formes.
- 2. Énoncer le théorème des accroissements finis.
- 3. Soit f une fonction continue sur un intervalle [a,b]. Que peut-on écrire à propos de $\left|\int_a^b f(t)dt\right|$?
- 1. Soit $a \in \mathbf{R}$, $a \not\equiv \frac{\pi}{2}[\pi]$. La fonction tan est dérivable en a et $\tan'(a) = \lim_{\substack{x \to a \\ x \neq a}} \frac{\tan(x) \tan(a)}{x a}$. De plus, $\tan'(a) = 1 + \tan^2(a) = \frac{1}{\cos^2(a)}$.
- 2. Soit $a < b \in \mathbf{R}$, $f : [a, b] \to \mathbf{R}$ une fonction continue sur [a, b] et dérivable sur [a, b]. Alors il existe $c \in [a, b]$ tel que f(b) f(a) = f'(c)(b a).
- 3. La fonction |f| est continue sur [a, b] et on a

$$\left| \int_{a}^{b} f(t)dt \right| \leqslant \int_{a}^{b} |f(t)|dt.$$

Exercice 2 (limite, continuité, dérivabilité, branche infinie). On considère la fonction f définie sur $[0, +\infty[$ par

$$f(x) = \frac{e^x - 1}{xe^x - 1}.$$

On désigne par \mathcal{C} sa courbe représentative dans le plan rapporté à un repère orthonormal (O, \vec{i}, \vec{j}) .

A. Étude d'une fonction auxiliaire

Soit g la fonction définie sur $[0, +\infty]$ par

$$g(x) = x + 2 - e^x.$$

- 1. Étudier le sens de variation de g sur $[0, +\infty[$ et déterminer la limite de g en $+\infty$.
- 2. Montrer que l'équation g(x) = 0 admet une solution et une seule dans $[0, +\infty[$.

On note α cette solution et on rappelle que 2 < e < 3.

3. Montrer que $1 < \alpha < 2$.

On pourra admettre que 1, 14 < $\alpha <$ 1, 15.

4. En déduire le signe de g(x) suivant les valeurs de x.

B. Étude de la fonction f et tracé de la courbe C

1. a. Montrer que pour tout x appartenant à $[0, +\infty[$,

$$f'(x) = \frac{e^x g(x)}{(xe^x + 1)^2}.$$

- b. En déduire le sens de variation de la fonction f sur $[0, +\infty[$.
- 2. a. Montrer que pour tout réel positif x,

$$f(x) = \frac{1 - e^{-x}}{x + e^{-x}}.$$

- b. En déduire la limite de f en $+\infty$. Interpréter graphiquement le résultat obtenu.
- 3. a. Établir que $f(\alpha) = \frac{1}{\alpha + 1}$.
 - b. En utilisant l'encadrement de α donné dans la partie A, donner un encadrement de $f(\alpha)$.
- 4. Déterminer une équation de la tangente (T) à la courbe \mathcal{C} au point d'abscisse 0.
- 5. a. Établir que pour tout x appartenant à l'intervalle $[0, +\infty[$,

$$f(x) - x = \frac{(x+1)u(x)}{xe^x + 1}$$
 avec $u(x) = e^x - xe^x - 1$.

- b. Étudier le sens de variation de la fonction u sur l'intervalle $[0, +\infty[$. En déduire le signe de u(x).
- c. Déduire des questions précédentes la position de \mathcal{C} par rapport à la droite (T).
- 6. Tracer \mathcal{C} et (T) sur un même croquis (unité graphique : 4 cm).

A. Étude d'une fonction auxiliaire

- 1. La fonction g est définie et dérivable sur $\mathbf{R}_{+} = [0, +\infty[$ en tant que somme de fonctions dérivables sur \mathbf{R}_{+} (théorèmes généraux). De plus, $\forall x \in \mathbf{R}_{+}^{*}$, $g'(x) = 1 e^{x} < 0$ et g'(0) = 0. Ainsi, g est strictement décroissante sur \mathbf{R}_{+} . Enfin, $\lim_{t \to \infty} g = -\infty$ car $\lim_{x \to +\infty} xe^{-x} = 0^{(+)}$.
- 2. Montrer que l'équation g(x) = 0 admet une solution et une seule dans $[0, +\infty[$. Comme g(0) = 1, $\lim_{\substack{+\infty \ +\infty}} g = -\infty$ et g est continue sur l'intervalle \mathbf{R}_+ , il existe $\alpha \in \mathbf{R}_+$ tel que $g(\alpha) = 0$. Comme g est strictement décroissante, un zéro de g est unique.
- 3. On a g(1) = 3 e > 0 et $g(2) = 4 e^2 < 0$ donc $\alpha \in]1, 2[$.
- 4. Il s'ensuit que pour $x \in \mathbf{R}_+$,

$$g(x) \begin{cases} > 0 & \text{si } 0 \leqslant x < \alpha \\ = 0 & \text{si } x = \alpha \\ > 0 & \text{si } x > \alpha. \end{cases}$$

B. Étude de la fonction f et tracé de la courbe C

1. a. Montrer que pour tout x appartenant à $[0, +\infty[$,

$$f'(x) = \frac{e^x g(x)}{(xe^x + 1)^2}.$$

- b. En déduire le sens de variation de la fonction f sur $[0, +\infty[$.
- 2. a. Montrer que pour tout réel positif x,

$$f(x) = \frac{1 - e^{-x}}{x + e^{-x}}.$$

- b. En déduire la limite de f en $+\infty$. Interpréter graphiquement le résultat obtenu.
- 3. a. Établir que $f(\alpha) = \frac{1}{\alpha + 1}$.
 - b. En utilisant l'encadrement de α donné dans la partie A, donner un encadrement de $f(\alpha)$.
- 4. Déterminer une équation de la tangente (T) à la courbe \mathcal{C} au point d'abscisse 0.
- 5. a. Établir que pour tout x appartenant à l'intervalle $[0, +\infty[$

$$f(x) - x = \frac{(x+1)u(x)}{xe^x + 1}$$
 avec $u(x) = e^x - xe^x - 1$.

- b. Étudier le sens de variation de la fonction u sur l'intervalle $[0, +\infty[$. En déduire le signe de u(x).
- c. Déduire des questions précédentes la position de \mathcal{C} par rapport à la droite (T).
- 6. Tracer \mathcal{C} et (T) sur un même croquis (unité graphique : 4 cm).

Exercice 3 (intégration).

- 1. Calculer $\int x \ln(x) dx$.
- 2. On considère la fonction f définie par $f(x) = \frac{1 e^{-x}}{x + e^{-x}}$ sur $[0, +\infty[$. Déterminer une primitive F de f sur $[0, +\infty[$.
- 3. Calculer $\int_{\ln(\frac{\pi}{2})}^{\ln(\pi)} \frac{\sin(e^t)}{\sin^2(e^t) + 1} \cos(e^t) e^t dt \text{ à l'aide du changement de variable } x = \sin(e^t).$
- 1. On a $\int x \ln(x) dx = \frac{x^2}{2} \ln(x) \frac{1}{2} \int x dx = \frac{x^2}{2} (\ln(x) \frac{1}{2}).$
- 2. On a $F(x) = \int f(t)dt = \int \frac{1 e^{-t}}{t + e^{-t}}dt = \ln(x + e^{-x}) + C$ avec $C \in \mathbf{R}$ car $(x + e^{-x})' = 1 e^{-x}$ et $x + e^{-x} > 0$ sur \mathbf{R}_+ .
- 3. On a

$$\int_{\ln(\frac{\pi}{2})}^{\ln(\pi)} \frac{\sin(e^t)}{\sin^2(e^t) + 1} \cos(e^t) e^t dt \stackrel{x = \sin(e^t)}{=} \int_1^0 \frac{x}{x^2 + 1} dx = -\left[\frac{1}{2}\ln(x^2 + 1)\right]_0^1$$

 $\operatorname{car} dx = \cos(e^t)e^t dt$. Finalement

$$\int_{\ln(\frac{\pi}{2})}^{\ln(\pi)} \frac{\sin(e^t)}{\sin^2(e^t) + 1} \cos(e^t) e^t dt = -\frac{\ln 2}{2}.$$

Exercice 4 (système linéaire et matrice).

- 1. Soit $A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$ et $B_1 = \begin{pmatrix} -1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}$. Si l'opération a un sens, calculer $A_1 3B_1$.
- 2. Soit $A_2 = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$ et $B_2 = \begin{pmatrix} 1 & 3 \\ -1 & -3 \end{pmatrix}$. Calculer A_2B_2 et B_2A_2 . Que peut-on en déduire?
- 3. On considère le système linéaire (S1) $\begin{cases} -2x y + z = 0 \\ -2x 2y + 3z = 1 \\ -x y + 2z = 2 \end{cases}$ matricielle de (S1).
- 4. On considère la matrice $A_4 = \begin{pmatrix} -2 & -1 & 1 \\ -2 & -2 & 3 \\ -1 & -1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ avec $a, b, c \in \mathbf{R}$.
 - (a) Écrire le système linéaire associé à A_4 de second membre B.
 - (b) La matrice A_4 est-elle inversible? Si oui, déterminer son inverse.
- 1. On a A_1 , $3B_1 \in \mathcal{M}_{2,3}(\mathbf{R})$ donc $A_1 3B_1$ a un sens et $A_1 3B_1 = \begin{pmatrix} 4 & -5 & -8 \\ 2 & -3 & -5 \end{pmatrix}$.
- 2. On a $A_2B_2 = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ tandis que $B_2A_2 = \begin{pmatrix} 5 & 5 \\ -5 & -5 \end{pmatrix}$. On en déduit $A_2B_2 \neq B_2A_2$ donc le produit matriciel dans $\mathcal{M}_2(\mathbf{R})$ n'est pas commutatif.
- 3. Posons $A_4 = \begin{pmatrix} -2 & -1 & 1 \\ -2 & -2 & 3 \\ -1 & -1 & 2 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $B_4 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$. Alors

$$(S1) \Leftrightarrow A_4 X = B_4.$$

- 4. (a) Le système linéaire est (S) $\begin{cases} -2x & -y & +z = a \\ -2x & -2y & +3z = b \\ -x & -y & +2z = c \end{cases}$
 - (b) On a

$$(S) \Leftrightarrow \begin{cases} x + y - 2z = -c \\ -2x - y + z = a \\ -2x - 2y + 3z = b \end{cases} \Leftrightarrow \begin{cases} x + y - 2z = -c \\ y - 3z = a - 2c \\ -z = b - 2c \end{cases}$$

D'où

$$\begin{cases} x & = -a+b-c \\ y & = a-3b+4c \\ z & = -b+2c \end{cases}$$

Dès lors, pour tout B, (S) admet une unique solution X_B . La matrice A_4 est donc inversible et

$$A_4^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ 1 & -3 & 4 \\ 0 & -1 & 2 \end{pmatrix}.$$