

Spécialité
Mécanique Mécatronique Matériaux Composites

Éric PAIREL Responsable pédagogique

Yann MEYER
Enseignant-Chercheur

Architecture de la spécialité Mécanique

Mécanique (MECA)

Mécanique Mécatronique Matériaux composites (nom d'usage)

Deux parcours en FISA:

- Génie industriel (GI)
- Conception & mécatronique (CM)

Deux parcours en FISE:

- Matériaux composites (MC Le Bourget)
- Mécatronique & industrialisation (MI Annecy)

Ingénieur en mécanique

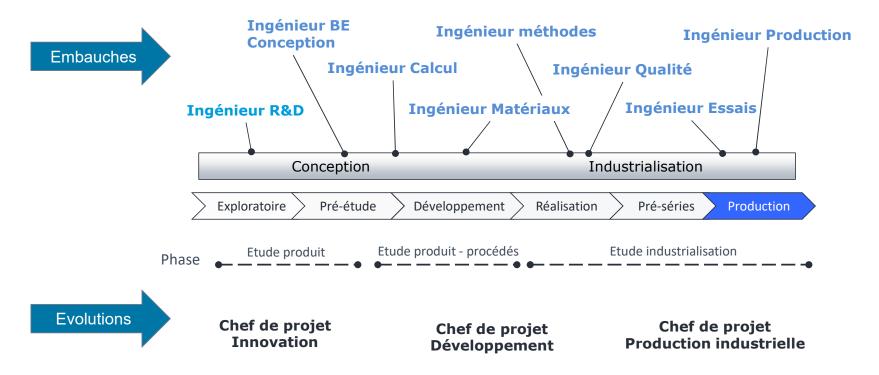
Les compétences développées dans la spécialité Mécanique :

Compétences générales:

- Concevoir des produits manufacturés
- Industrialiser des produits manufacturés
- Piloter les procédés de fabrication

Compétences spécifiques aux parcours en FISE :

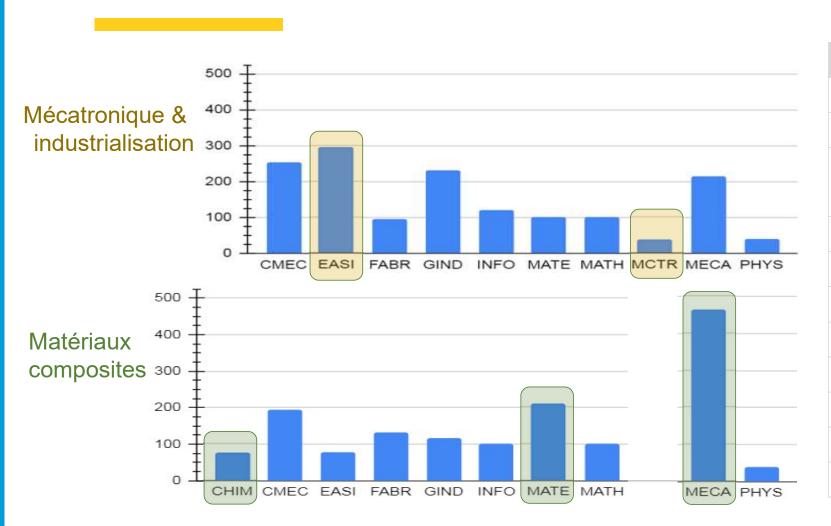
- Concevoir des produits en matériaux composites (MC)
- Concevoir des systèmes mécatroniques (MI)



Principaux métiers de l'ingénieur en mécanique

à tous les stades de développement des produits :

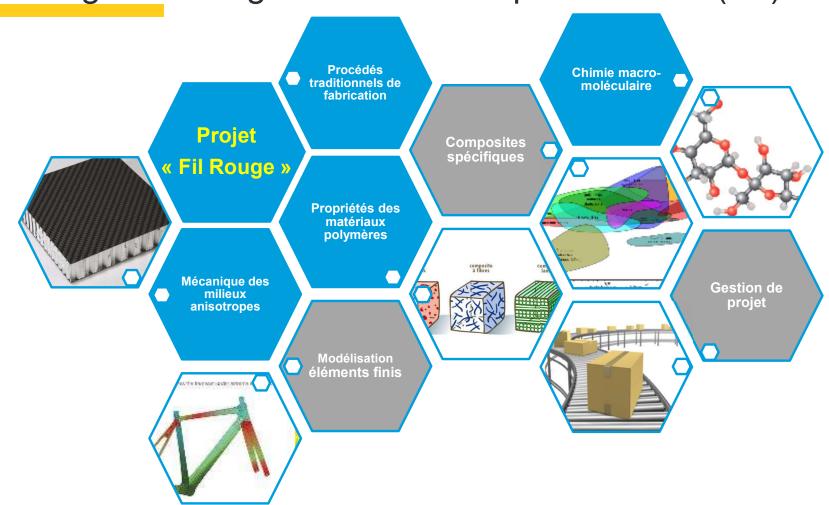
dans une multitude de secteurs industriels : la manufacture (sport & loisirs, transport, énergies...), le service (en conception, production...), les essais.



Spécialité Mécanique Mécatronique Matériaux Composites

La formation

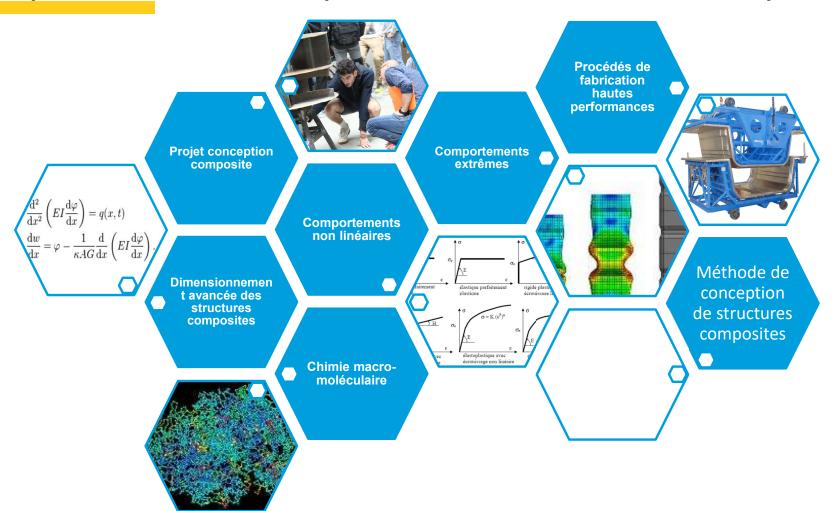
Profil S&T des deux parcours



Code	Discipline		
CHIM	Chimie		
CMEC	Conception mécanique		
EASI	Électronique- Électrotechnique, Automatique, Signal, Images		
FABR	Fabrication		
GIND	Génie industriel		
INFO	Informatique, Génie Informatique		
MATE	Matériaux		
MATH	Mathématiques		
MCTR	Mécatronique		
MECA	Mécaniques		
PHYS	Physique		

Parcours MC: Savoir et Savoir Faire

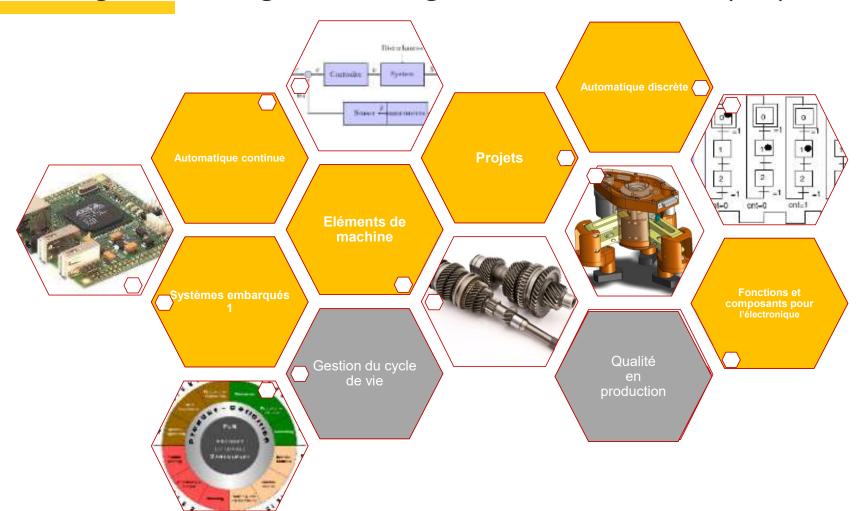
Technologies de l'ingénieur: vers la spécialisation (S7)


Parcours MC: Savoir et Savoir Faire

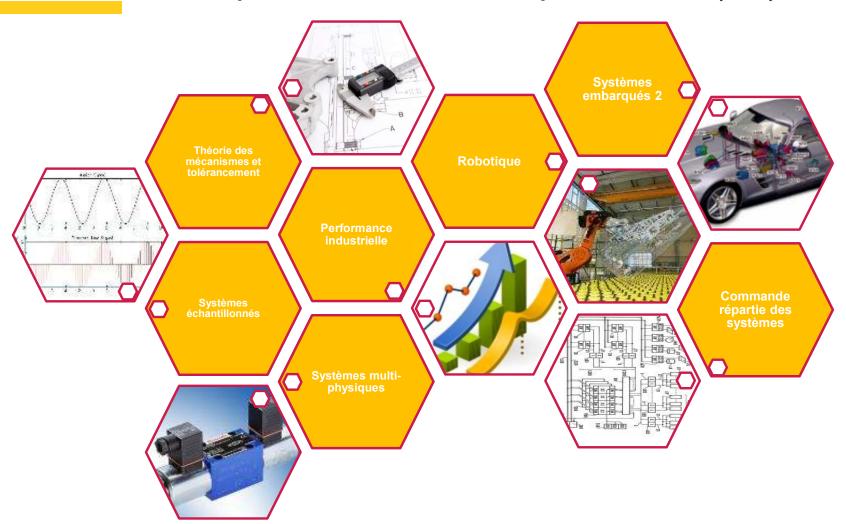
Technologies de l'ingénieur et gestion industrielle (S8)

Parcours MC: Savoir et Savoir Faire

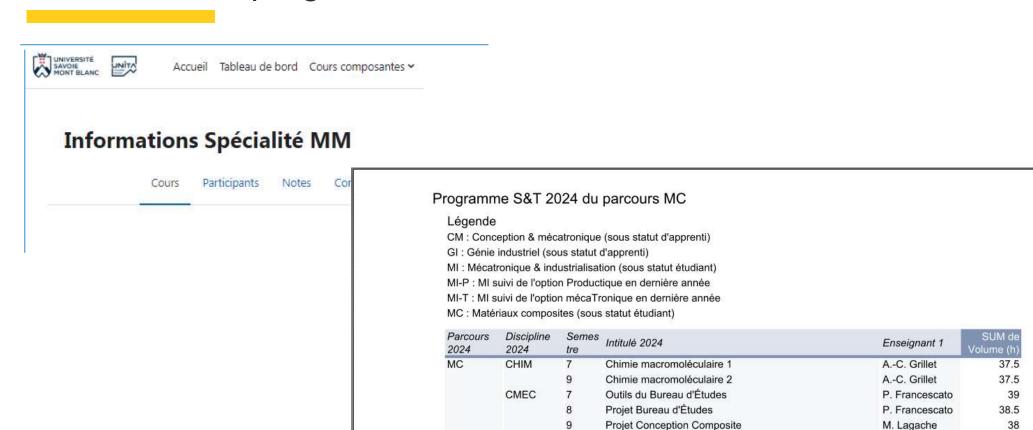
Conception avancée composites – Production hautes perf. (S9)


Parcours MI: Savoir et Savoir Faire

Technologies de l'ingénieur: vers la spécialisation (S7)


Parcours MI: Savoir et Savoir Faire

Technologies de l'ingénieur et gestion industrielle (S8)


Parcours MI: Savoir et Savoir Faire

Intégration mécatronique – Maitrise de la production (S9)

Formation

Présentations et programmes sur Moodle

FABR

GIND

Fabrication composite 1

Fabrication composite 2

Méthodes instrumentales

Qualité en production

C-----it-- -- t-ifi----

Introduction à la gestion industrielle

Gestion de cycle de vie de produits industriels

P. Francescato

P. Francescato

A.-C. Grillet

L. Tabourot

A.-C. Grillet

B. Riveill

38.5

37.5

39

38

37

Formation

Détail sur l'intranet de Polytech A.C.

					Semestre 8 V
S8	UE801 : Système, production et qualité		EASI851	Auto Continue & Vibration (parcours MI)	
			EASI852	Automatisation centralisée (parcours MI)	
			INF0820f	Base de données (Parcours GI, CM, MI)	
			MATE851	Propriétés des matériaux polymères 2 (parcours	MC)
			MATE853	Fabrication Composites 1 (parcours MC)	
			MECA851	Qualité en production	
		eption mécanique, et composite 2	INFO821f	Systèmes embarqués (Parcours CM,MI)	
			MECVOEST	Continu de quale de vie de produite industriale	

Exemples de réalisations en projet

Projets « Fil Rouge » FI4 MC

Ski roue style classique composite – Société Nordeex

Châssis composite Drône FPV- Société Menga FPV

Couteau de rando le plus léger du marché – Société Opinel

Projet Zephyr (kit solaire)- INES & EM Project

Etude du changement de matière d'une chaussure de ski de rando haute performance – Société P. Gignoux


Eolienne Eco-conçue base Lin-Elium

Exemples de réalisations en projet

Rec'O Hydrolienne pour récupération d'énergie portable

(FI4 MMT - 2014)

https://vimeo.com/channels/139973/115715890

Spécialité
Mécanique Mécatronique Matériaux Composites

Les effectifs et le choix du parcours

Effectifs

Cibles: 2/3 MI, 1/3 MC

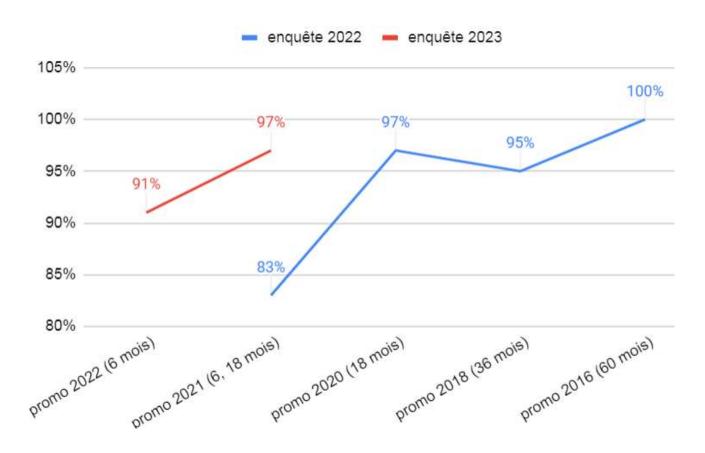
Taille gr. TP = 7 mini, 14 maxi

Parcours	Minimum	Cible	Maximum
Promo.	45 (5 gr. TP)	72 (6x12)	84 (6x14)
MC – Le Bourget	15 (7+8)	24 (2x12)	28 (2x14)
MI - Annecy	30 (3x10)	48 (4x12)	56 (4x14)

Effectifs

Procédure d'affectation

- Principe : affectation selon les vœux des élèves ; mais :
- arbitrage nécessaire si une des limites est atteinte :
 - arbitrage sur le classement de l'élève basé sur une moyenne entre :
 - sa moyenne générale au S5
 - la récurrence de son vœu :
 - vœu A puis A : très motivé =16 /20
 - vœu A puis B : motivé = 14 /20
 - vœu puis vœu A ou B : motivé = 14 /20
 - vœu A ou B, puis ¬vœu : démotivé = 12 /20
 - ¬vœu puis ¬vœu : pas motivé = 8 /20


Spécialité
Mécanique Mécatronique Matériaux Composites

Éric PAIREL Responsable pédagogique

Yann MEYER
Enseignant-Chercheur

Insertion professionnelle

