MATH103_MISPI (Mathématiques & applications) Contrôle des connaissances Mardi 14 novembre 2023 (15:45–17:15)

Documents, calculatrice, téléphone portable et montre intelligente interdits. Lors de l'appréciation des copies, il sera tenu le plus grand compte du soin apporté à la présentation, de la clarté de la rédaction et de la précision des démonstrations.

Exercice 1 (langage). Les assertions suivantes sont-elles vraies ou fausses? Le démontrer (une réponse non justifiée ne sera pas considérée).

- 1. $\forall x \in \mathbf{R}, \exists M \in \mathbf{R}, e^x \leqslant M$.
- 2. $\exists A \in \mathbf{R}, \forall x \in \mathbf{R}, (x \leqslant A \Rightarrow x^5 \leqslant 1).$
- 3. $\forall A \in \mathbf{R}, \exists M \in \mathbf{R}, \forall x \in \mathbf{R}, (x \geqslant M \Rightarrow \ln x \geqslant A).$
- 4. Soit $f: I \to \mathbf{R}$ une fonction définie sur un intervalle I de \mathbf{R} . On a

f positive sur
$$I \iff (\forall x \in I)(\forall \mu > 0), f(x) > -\mu$$
.

1. Vrai.

Soit $x \in \mathbf{R}$. En posant $M := e^x$, on a évidemment, $e^x \leq M$. Autrement dit

$$(\forall x \in \mathbf{R})(\exists M_x := e^x \in \mathbf{R}), e^x \leqslant M.$$

2. Vrai.

On a

$$\forall x \in \mathbf{R}, (x \leqslant 1 \Rightarrow x^5 \leqslant 1)$$

car si $x \le 0$ alors $x^5 \le 0 \le 1$ (5 est impair) tandis que si $0 < x \le 1$ alors $0 \le x^{k+1} \le x^k$, $k \in \mathbb{N}$. Ainsi

$$(\exists A := 1 \in \mathbf{R})(\forall x \in \mathbf{R}), x \leqslant A \Rightarrow x^5 \leqslant 1.$$

En réalité, tout réel $A \in]-\infty,1]$ convient.

3. Vrai.

Soit $x \in \mathcal{D}_{\ln} = \mathbf{R}_{+}^{*}$ et $A \in \mathbf{R}$. On a

$$\ln x \geqslant A \Leftrightarrow e^{\ln x} \geqslant e^A \Leftrightarrow x \geqslant e^A > 0$$

car exp et ln sont croissantes et réciproques l'une de l'autre. Ainsi

$$x \geqslant e^A \Rightarrow \ln x \geqslant A$$
.

Récapitulons,

$$(\forall A \in \mathbf{R})(\exists M := e^A \in \mathbf{R})(\forall x \in \mathbf{R}), x \geqslant M \Rightarrow \ln x \geqslant A.$$

4. Vrai.

 (\Rightarrow)

f positive sur
$$I \Leftrightarrow \forall x \in I, f(x) \ge 0$$

$$\Rightarrow (\forall x \in I)(\forall \nu < 0), f(x) \ge 0 > \nu$$

$$\Rightarrow (\forall x \in I)(\forall \mu > 0), f(x) > -\mu$$

 (\Leftarrow) Supposons $\neg (f \text{ positive sur } I) i.e. <math>\exists a \in I, f(a) < 0$. Autrement dit

$$(\exists a \in I)(\exists \mu := -f(a) > 0), f(a) \leqslant -\mu$$

On a démontré la contraposée.

Exercice 2 (fonction/application). On considère l'application $f: \mathbf{R} \to \mathbf{R}$ $x \mapsto 1-x^2$.

- 1. Quelle est, par f, l'image directe de [-2,1]? l'image réciproque de [-3,1]? les antécédents de -3?
- 2. L'application f est-elle injective? surjective?
- 3. Trouver deux exemples de couples (I, J) d'intervalles de R tels que la fonction

$$g: I \to J$$
$$x \mapsto 1 - x^2$$

soit bijective.

4. Déterminer à l'aide de la représentation graphique de f les ensembles suivants :

$$f(]-3,2[), f^{-1}(]-3,2[), f^{-1}(f(]-3,2[)), f(f^{-1}(]-3,2[)), f^{-1}([-8,-3[).$$

- 1. On a $f([-2,1]) = f([-2,0]) \cup f([0,1]) = [-3,1] \cup [0,1] = [-3,1]$; $f^{-1}([-3,1]) = [-2,2]$; $f^{-1}(-3) = \{-2,2\}$ donc les antécédents de -3 sont -2 et 2.
- 2. L'application f n'est pas injective car f(-2) = -3 = f(2) avec $-2 \neq 2$; l'application f n'est pas surjective car $2 \in \mathbf{R}$ n'est pas atteint $(2 = 1 x^2 \Leftrightarrow x^2 = -1)$.
- 3. On peut poser $(I, J) = (\mathbf{R}_+,] \infty, 1]$) ou $(I, J) = (\mathbf{R}_-,] \infty, 1]$) où $f_{|I|}$ est strictement monotone.
- 4. On a f(]-3,2[)=]-8,1]; $f^{-1}(]-3,2[)=]-2,2[$; $f^{-1}(f(]-3,2[))=f^{-1}(]-8,1])=]-3,3[$; $f(f^{-1}(]-3,2[))=f(]-2,2[)=]-3,1]$; $f^{-1}([-8,-3[)=[-3,-2[\cup]2,3].$

Exercice 3 (inégalité). On justifiera les réponses à l'aide d'une propriété appropriée. Soient x et y deux réels tels que $x \in [-3, 2]$ et $y \in [2, 4]$.

- 1. Donner un encadrement des réels a = x + y et b = x y.
- 2. Donner un encadrement des réels c = xy et $d = \frac{y}{1+x^2}$.
- 1. On a

$$\begin{array}{rcl}
-3 & \leqslant & x & \leqslant 2 \\
2 & \leqslant & y & \leqslant 4 \\
\Rightarrow -1 & \leqslant & a & \leqslant 6
\end{array}$$

car l'addition est compatible avec l'ordre.

De manière analogue

$$\begin{array}{ccccc} -3 & \leqslant & x & \leqslant & 2 \\ -4 & \leqslant & -y & \leqslant & -2 \\ \Rightarrow -7 & \leqslant & b & \leqslant & 0 \end{array}$$

2. On a

$$\begin{array}{rcl}
-3 & \leqslant & x & \leqslant 2 \\
\Rightarrow -3y & \leqslant & c & \leqslant 2y
\end{array}$$

car la multiplication par un scalaire positif ou nul est compatible avec l'ordre.

Or

Enfin,

$$-3 \leqslant x \leqslant 2$$

$$\Rightarrow 0 \leqslant x^{2} \leqslant 9$$

$$\Rightarrow \frac{1}{10} \leqslant \frac{1}{1+x^{2}} \leqslant 1$$

$$\Rightarrow \frac{1}{5} \leqslant \frac{y}{1+x^{2}} \leqslant 4$$

Exercice 4 (somme & factoriel). Soit $n \in \mathbb{N}$.

1. (a) Soit $k \in \mathbb{N}$. Prouver que

$$(k+1)! - k! = k \cdot k!$$

- (b) En déduire une expression simple de la valeur de la somme $\sum_{k=0}^{n} k \cdot k!$ en fonction de n.
- 2. (a) Soit $k \in \mathbb{N}$. Montrer que

$$\frac{k}{(k+1)!} = \frac{1}{k!} - \frac{1}{(k+1)!}.$$

- (b) En déduire une expression simple de la valeur de la somme $\sum_{k=0}^{n} \frac{k}{(k+1)!}$ en fonction de n.
- 1. (a) On a $(k+1)! k! = k!(k+1-1) = k \cdot k!$.
 - (b) On a

$$\sum_{k=0}^{n} k \cdot k! = \sum_{k=0}^{n} ((k+1)! - k!) = \sum_{k=1}^{n+1} k! - \sum_{k=0}^{n} k! = (n+1)! - 0! = (n+1)! - 1.$$

2. (a) On a

$$\frac{k}{(k+1)!} = \frac{k+1-1}{(k+1)!} = \frac{k+1}{(k+1)!} - \frac{1}{(k+1)!} = \frac{1}{k!} - \frac{1}{(k+1)!}.$$

(b) On a

$$\sum_{k=0}^{n} \frac{k}{(k+1)!} = \sum_{k=0}^{n} \left(\frac{1}{k!} - \frac{1}{(k+1)!}\right) = \sum_{k=0}^{n} \frac{1}{k!} - \sum_{k=1}^{n+1} \frac{1}{k!} = \frac{1}{0!} - \frac{1}{(n+1)!} = 1 - \frac{1}{(n+1)!}.$$

Exercice 5 (polynôme). Les questions 1 & 2 sont indépendantes.

- 1. (a) Effectuer la division euclidienne de $A := X^4 + X^2 + 1$ par $B := X^2 + X + 1$.
 - (b) Que peut-on en déduire sur A?
- 2. (a) Soit $a, b \in \mathbb{C}$ et $n \in \mathbb{N}^*$. Développer $(a + b)^n$ à l'aide de la formule du binôme de Newton.
 - (b) Prouver que $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$.

- (c) Montrer que $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$
- (d) Quel est le coefficient de x^3 dans $(2x-4)^5$?
- 1. (a) On obtient $A = B(X^2 X + 1)$ où $Q = X^2 X$ est le quotient et R = 0 est le reste de la division euclidienne de A par B (on a bien deg $R = -\infty < 2 = \deg B$).
 - (b) Le polynôme A n'est pas irréductible dans $\mathbf{R}[X]$ et $X^4 + X^2 + 1 = (X^2 + X + 1)(X^2 X + 1)$ est une factorisation en polynômes irréductibles dans $\mathbf{R}[X]$ (car les facteurs sont de degré 2 à discriminant < 0).
- 2. (a) On a

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

(b) En posant a = b := 1 dans l'égalité précédente, on obtient

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}.$$

(c) En posant a := -1 et b := 1 dans l'égalité précédente, on obtient

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} (-1)^k 1^{n-k} = (-1+1)^n = 0^n = 0.$$

(d) Le coefficient de x^3 dans $(2x-4)^5$ est égal à

$$\binom{5}{3}2^3(-4)^2 = \frac{5\cdot 4}{2} \cdot 2^3 \cdot 2^4 = 5\cdot 2^8 = 5\cdot 256 = 1280.$$

Exercice 6 (complexe/racine).

- 1. (a) Dans C, déterminer les solutions de l'équation $\delta^2 = -5 + 12i$.
 - (b) Résoudre l'équation $(2+i)z^2 (3+2i)z + 1 \frac{i}{2} = 0$.
- 2. Soit a un réel.
 - (a) Écrire $\frac{1+ia}{1-ia}$ sous forme exponentielle (indication : on pourra poser $a=\frac{\sin\alpha}{\cos\alpha}$).
 - (b) Soit $n \in \mathbf{N} \setminus \{0, 1\}$. Résoudre dans \mathbf{C} l'équation $z^n = \frac{1 + ia}{1 ia}$.
- 1. (a) Posons $\delta = x + iy$ avec $x, y \in \mathbf{R}$. Il vient :

$$\begin{cases} x^2 - y^2 = -5 \\ xy = 6 \\ x^2 + y^2 = 13 \end{cases} \Leftrightarrow \begin{cases} x^2 = 4 \\ y^2 = 9 \\ xy = 6 \end{cases} (x,y) = (2,3)$$

Autrement dit, $\delta = \pm (2+3i)$.

(b) On a

$$\Delta = (-(3+2i))^2 - 4(2+i)(1-\frac{i}{2}) = 9 + 12i - 4 - 2(2+i)(2-i) = 5 + 12i - 2|2+i|^2$$
$$= 5 + 12i - 2(4+1) = -5 + 12i.$$

D'après 1,

$$z_1 = \frac{3 + 2i - (2+3i)}{2(2+i)} = \frac{1}{2} \cdot \frac{1-i}{2+i} = \frac{1}{2} \cdot \frac{(1-i)(2-i)}{4+1} = \frac{1-3i}{10}$$

et

$$z_2 = \frac{3+2i+2+3i}{2(2+i)} = \frac{5}{2} \cdot \frac{1+i}{2+i} = \frac{5}{2} \cdot \frac{(1+i)(2-i)}{5} = \frac{3+i}{2}.$$

On conclut $S = \{\frac{1-3i}{10}, \frac{3+i}{2}\}.$

2. (a) Comme $\tan :]-\frac{\pi}{2}, \frac{\pi}{2}[\to \mathbf{R} \text{ est surjective, il existe (en réalité un unique) } \alpha \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ tel que $a = \tan \alpha = \frac{\sin \alpha}{\cos \alpha}$. Il vient

$$\frac{1+ia}{1-ia} = \frac{1+i\tan\alpha}{1-i\tan\alpha} = \frac{\cos\alpha+i\sin\alpha}{\cos\alpha-i\sin\alpha} = \frac{e^{i\alpha}}{e^{-i\alpha}} = e^{2i\alpha}.$$

(b) On a

$$z^n = \frac{1+ia}{1-ia} \Leftrightarrow z^n = e^{2i\alpha} \Leftrightarrow z = \rho e^{i\theta} \text{ avec } \begin{cases} \rho = 1 \\ \theta \equiv \frac{2\alpha}{n} \left[\frac{2\pi}{n}\right] \end{cases}$$
.

D'où

$$\mathcal{S} = \{e^{2i \cdot \frac{\alpha}{n}}, e^{2i \cdot \frac{\alpha + \pi}{n}}, e^{2i \cdot \frac{\alpha + 2\pi}{n}}, \dots, e^{2i \cdot \frac{\alpha + (n-1)\pi}{n}}\}$$

(de cardinal n) avec $\alpha = \arctan a$.